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Abstract In this article an efficient modification of the homotopy perturbation

method is presented by using Chebyshev polynomials. Special attention is given

to prove the convergence of the method. Some examples are given to verify the

convergence hypothesis, and illustrate the efficiency and simplicity of the

method. We compared our numerical results against the conventional numerical

method, fourth-order Runge–Kutta method (RK4). From the numerical results

obtained from these two methods we found that the proposed technique and

RK4 are in excellent conformance. From the presented examples, we found that

the proposed method can be applied to a wide class of linear and non-linear

ODEs.
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1. Introduction

The homotopy perturbation method (HPM) was introduced by He [7–9,13–17] in
the year 1998. In this method the solution is considered as the summation of an
infinite series which converges rapidly to the exact solution. This technique has
been employed to solve a large variety of linear and nonlinear differential equa-
tions. This scheme is used for solving nonlinear boundary value problems [7]. This
method is also adopted for solving the pure strong nonlinear second-order differ-
ential equations [8]. Some other applications of this method are as follows: appli-
cation of He’s HPM is described to solve nonlinear integro-differential equations
[4], for traveling wave solutions of nonlinear wave equations. Also, this method is
used to solve the nonlinear parabolic equation with non local boundary conditions
[6]. In general, this method has been successfully applied to solve many types of
linear and nonlinear problems in science and engineering by many authors
[3,5,11,12,14].

Our main goal in this paper is concerned with the implementation of
HPM and its modifications which have efficiently used to solve the ordinary
differential equations [1,10]. For this reason, at the beginning of implementa-
tion of HPM, Chebyshev orthogonal polynomials are used to expand func-
tions. The obtained results show the advantage from using the proposed
modified HPM.

In addition, the proposed modified HPM is numerically performed through
Matlab version 7.
2. Solution procedure using the modified HPM

In this section, an efficient modification of HPM is presented by using Chebyshev
polynomials.

The well known Chebyshev polynomials [2] are defined on the interval [�1,1]
and can be determined with the aid of the following recurrence formula:
Tnþ1ðzÞ ¼ 2zTnðzÞ � Tn�1ðzÞ; n ¼ 1; 2; . . .
The first three Chebyshev polynomials are
T0ðxÞ ¼ 1; T1ðxÞ ¼ x; T1ðxÞ ¼ 2x2 � 1:
In this paper, we suggest that the non-homogeneous term f(x) can be expressed in
Chebyshev series:
fðxÞ �
X1
k¼0

ckTkðxÞ: ð1Þ
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Theorem 1 (Chebyshev truncation theorem). The error in approximating f(x) by
the sum of its first m terms is bounded by the sum of the absolute values of all the
neglected coefficients. If
fmðxÞ ¼
Xm
k¼0

ckTkðxÞ; ð2Þ
then, for all f(x), all m, and all x 2 [�1,1], we have
ETðmÞ � jfðxÞ � fmðxÞj 6
X1

k¼mþ1
jckj; ð3Þ
Proof. The Chebyshev polynomials are bounded by one, that is, ŒTk(x)Œ 6 1 for
all x 2 [�1,1] and for all k. This implies that the k-th term is bounded by ŒckŒ. Sub-
tracting the truncated series from the infinite series, bounding each term in the dif-
ference, and summing the bounds gives the theorem.

Now, in order to use these polynomials on the interval x 2 [0,1] we define the so
called shifted Chebyshev polynomials by introducing the change of variable
z = 2x � 1. Let the shifted Chebyshev polynomials Tn(2x � 1) be denoted by
Pn(x). Then Pn(x) can be obtained as follows
Pnþ1ðxÞ ¼ 2ð2x� 1ÞPnðxÞ � Pn�1ðxÞ; n ¼ 1; 2; . . . : ð4Þ

Now, we use the shifted Chebyshev expansion to expand f(x) in the following
form:
fðxÞ � fmðxÞ ¼
Xm
k¼0

ckPkðxÞ; ð5Þ
where the constants coefficients ck, k = 0,1,2, . . . ,m by using the orthogonal prop-
erty are defined by:
c0 ¼
1

p

Z 1

�1

fð0:5xþ 0:5ÞT0ðxÞffiffiffi
1
p
� x2

dx; ck

¼ 2

p

Z 1

�1

fð0:5xþ 0:5ÞTkðxÞffiffiffi
1
p
� x2

dx: ð6Þ
Now, the proposed modification will implement to solve the following two initial
nonlinear ordinary differential equations. h

Model problem 1.

Consider the following nonlinear ordinary differential equation:
u00 þ xu0 þ x2u3 ¼ fðxÞ ¼ ð2þ 6x2Þex2 þ x2e3x
2

; x 2 ½0; 1�; ð7Þ

subject to the following initial conditions:
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uð0Þ ¼ 1; u0ð0Þ ¼ 0; ð8Þ

with the exact solution uðxÞ ¼ ex

2
:

The procedure of the solution follows the following two steps:

Step 1. Expand the function f(x) using Chebyshev polynomials:Using the
above consideration, the function f(x) can be approximated by eight
terms (m= 8) of the expansion (5) as follows:
fCðxÞ � 2:00232� 0:358488 xþ 18:0328 x2 � 86:4534 x3 þ 416:556 x4

� 1042:66 x5 þ 1502:72 x6 � 1134:64x7 þ 366:624x8:
Step 2. Implementation of HPM:The essential idea of HPM is to introduce a
homotopy parameter, say p, which takes the values from 0 to 1. When
p= 0, the equation is in sufficiently simplified form, which normally
admits a rather simple solution. As p gradually increases to 1, the
equation goes through a sequence of ‘‘deformation’’, the solution is
‘‘close’’ to that at the previous stage of ‘‘deformation’’. Eventually
at p= 1, the system takes the original form of equation and the final
stage of ‘‘deformation’’ gives the desired solution.Now according to
HPM, we can construct the following simple homotopy v:
v 00 þ p½xv 0 þ x2v3 � fðxÞ� ¼ 0; ð9Þ

where p 2 [0,1] is an embedding parameter, we use it to expand the solution as a
power series in p in the following form:
v ¼ v0 þ pv1 þ p2v2 þ � � � ; ð10Þ

setting p = 1 results the approximate solution of (9):
u ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ � � � ð11Þ
For more details on HPM and its convergence, see [3,9].
Substituting from (10) into (9), and equating the terms with the identical powers

of p, we can obtain a system of n + 1 linear ODEs. Assuming n = 4, the system is
as follows:
v 000 ¼ fðxÞ; v0ð0Þ ¼ 1; v 00ð0Þ ¼ 0;

v 001 þ xv 00 þ x2v3
0 ¼ 0; v1ð0Þ ¼ v 01ð0Þ ¼ 0;

v 002 þ xv 01 þ x2 3v1v2
0

� �
¼ 0; v2ð0Þ ¼ v 02ð0Þ ¼ 0;

v 003 þ xv 02 þ x2 3v2v2
0 þ 3v0v2

1

� �
¼ 0; v3ð0Þ ¼ v 03ð0Þ ¼ 0;

v 004 þ xv 03 þ x2 3v3v2
0 þ 6v0v1v2 þ v3

1

� �
¼ 0; v4ð0Þ ¼ v 04ð0Þ ¼ 0:

8>>>>>><
>>>>>>:

ð12Þ
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The solution of the system of equations (12) is in the following form:
v0ðxÞ ¼
Z x

0

Z x

0

fðxÞdxdxþ vð0Þ þ v 0ð0Þx

¼ 1þ 1:00116x2 � 0:059748x3 þ 1:50273x4 � 4:32267x5 þ 13:8852x6

� 24:8252x7 þ 26:8343x8 � 15:7589x9 þ 4:0736x10;

v1ðxÞ ¼ �
Z x

0

Z x

0

xv 00 þ x2v3
0

� �
dxdx

¼ �0:250193x4 þ 0:00896221x5 � 0:30048x6 þ 0:518871x7 � 1:6219x8

þ 2:59866x9 � 2:95968x10 þ 2:209x11:
Having vi, i = 0,1,2, . . . , 8 the approximate solution of u(x) is as follows:
uCðxÞ ffi
X8
i¼0

v i

¼ 1þ 1:00116x2 � 0:059748x3 þ 1:25254x4 � 4:31371x5 þ 13:6181x6

� 24:3074x7 þ 25:2544x8 � 13:2109x9 þ 1:27996x10:
The absolute error between the exact solution u(x) and the approximate solution
uC(x) using the Chebyshev expansion for f(x) is presented in Fig. 1.

Now, also to perform HPM, we can expand the function f(x) using Taylor series
at the point x= a:
fðxÞ ffi
Xm
k¼0

fðkÞðaÞ
k!
ðx� aÞk; ð13Þ
for an arbitrary natural number m.
If we expand the function f(x) by the Taylor series (13) about the point x= 0

with eight terms, we have:
fTðxÞ ffi 2þ 9x2 þ 10x4 þ 7:83x6 þ 5:58333x8 þOðx9Þ:
Figure 1 The absolute error Œu(x) � uC(x)Œ.



Figure 2 The absolute error Œu(x) � uT(x)Œ.
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So, the solution of the system (12) is:
v0ðxÞ ¼
Z x

0

Z x

0

fðxÞdxdxþ vð0Þ þ v 0ð0Þx

¼ 1þ x2 þ 0:75x4 þ 0:3334x6 þ 0:1399x8 þ 0:0621x10;

v1ðxÞ ¼ �
Z x

0

Z x

0

xv 00 þ x2v3
0

� �
dxdx

¼ �0:25x4 � 0:2x6 � 0:12946x8 � 0:084661x10 þ � � � ;

v2ðxÞ ¼ �
Z x

0

Z x

0

xv 01 þ x2 3v1v
2
0

� �� �
dxdx

¼ 0:0333333x6 þ 0:348214x8 þ 0:0348413x10 þ � � � ;

v3ðxÞ ¼ �
Z x

0

Z x

0

xv 02 þ x2 3v2v
2
0 þ 3v0v

2
1

� �� �
dxdx

¼ �0:00357143x8 � 0:00420635x10 þ � � �

Having vi, i= 0,1,2, . . . , 8 the approximate solution of u(x) is as follows:
uTðxÞ ffi
X8
i¼0

v i

¼ 1þ x2 þ 0:5x4 þ 0:16667x6 þ 0:04167x8 þ 0:008334x10 � 0:02619x12

þ � � �
The absolute error between the exact solution u(x) and the approximate solution
uT(x) using the Taylor expansion for f(x) with m= 8 is presented in Fig. 2.

Also, to solve Eq. (7) by the numerical method, fourth-order Runge–Kutta
method, we reduce this equation to the following system of ordinary differential
equations:



0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

u(
x)

uRK4
uexact
uC

Figure 3 Comparison between the exact solution uexact, uRK4 and the solution of our proposed method uC(x).
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u0ðxÞ ¼ vðxÞ; ð14Þ
v 0ðxÞ ¼ �xvðxÞ � x2u3ðxÞ þ fðxÞ; ð15Þ
subject to the following initial conditions:
uð0Þ ¼ 1; vð0Þ ¼ 0: ð16Þ

Fig. 3 presents a comparison between the exact solution ux, with fourth-order
Runge–Kutta uRK4, and the approximate solution of our proposed method
uC(x). From this figure, we can see that the two methods are in excellent agreement
with the exact solution.

Model problem 2.
Consider the following nonlinear ordinary differential equation:
u00 þ uu0 ¼ fðxÞ ¼ x sinð2x2Þ � 4x2 sinðx2Þ þ 2 cosðx2Þ; x 2 ½0; 1�; ð17Þ

subject to the following initial conditions:
uð0Þ ¼ 0; u0ð0Þ ¼ 0; ð18Þ

with the exact solution u(x) = sin(x2).

The procedure of the solution follows the following two steps:

Step 1. Expand the function f(x) using Chebyshev polynomials:Using the
above consideration, the function f(x) can be approximated by eight
terms (m= 8) of the expansion (5) as follows:
fCðxÞ ffi 2� 0:0003xþ 0:008x2 þ 1:892x3 � 4:308x4 � 2:3986x5 þ 4:6816x6

� 6:276x7 þ 3:025x8:
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Step 2. Implementation of HPM:According to HPM, we can construct the
following simple homotopy v:
Table 1

f(x) at d

x

0.0

0.2

0.4

0.8

0.6

1.0
v 00 þ p½vv 0 � fðxÞ� ¼ 0; ð19Þ

where p 2 [0,1] is an embedding parameter, we use it to expand the solution in the
form (10). Substituting from (10) into (19), and equating the terms with the iden-
tical powers of p, we can obtain a system of n + 1 linear ordinary differential
equations. Assuming n = 4 the system is as follows:
v 000 ¼ fðxÞ; v0ð0Þ ¼ v 00ð0Þ ¼ 0;

v 001 þ v0v 00 ¼ 0; v1ð0Þ ¼ v 01ð0Þ ¼ 0;

v 002 þ ðv1v 00 þ v0v 01Þ ¼ 0; v2ð0Þ ¼ v 02ð0Þ ¼ 0;

v 003 þ ðv2v 00 þ v1v 01 þ v0v 02Þ ¼ 0; v3ð0Þ ¼ v 03ð0Þ ¼ 0;

v 004 þ ðv3v 00 þ v2v 01 þ v1v 02 þ v0v 03Þ ¼ 0; v4ð0Þ ¼ v 04ð0Þ ¼ 0:

8>>>>>><
>>>>>>:

ð20Þ
The solution of the system of equations (20) is in the following form:
v0ðxÞ ¼ x2 � 0:00004x3 þ 0:00069x4 þ 0:094575x5 � 0:14359x6 � 0:05710x7

þ 0:08359x8 � 0:08716x9 þ 0:033609x10;

v1ðxÞ ¼ �0:1x5 þ 6:2996� 10�6x6 � 0:00010x7 � 0:01182x8 þ 0:01596x9

þ 0:00570x10 þ � � �

Having vi, i= 0,1,2, . . . , 8 the approximate solution of u(x) is as follows:
uCðxÞ ffi
X8
i¼0

v i

¼ x2 � 0:000038x3 þ 0:000684x4 � 0:005425x5 � 0:143585x6

� 0:057196x7 þ 0:084268x8 � 0:071205x9 þ 0:039329x10 þ � � �

Now, if we expand the function f(x) by the Taylor series (13), we have:
fðxÞ � 2þ 2x3 � 5x4 � 1:33333x7 þ 0:75x8 þOðx9Þ:
Comparison of the absolute error of u(x) using the Chebyshev expansion and Taylor expansion for

ifferent values of m (m = 4 and 8).

Œu(x) � uC4(x)Œ Œu(x) � uC8(x)Œ Œu(x) � uT4(x)Œ Œu(x) � uT8(x)Œ

2.01055e�12 2.13058e�15 1.01055e�09 2.13058e�12
3.36702e�08 1.83661e�11 1.36702e�06 2.98725e�08
1.08796e�06 4.90253e�09 5.24571e�04 9.01472e�06
2.03445e�06 8.73997e�09 0.25348e�04 2.23254e�06
8.07432e�05 5.94450e�08 7.01854e�03 7.01450e�05
1.34807e�05 2.87034e�08 2.35475e�03 3.22254e�05
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Figure 4 Comparison between the exact solution uexact, uRK4 and the solution of our proposed method uC(x).
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So, the solution of the system of equations (20) is:
v0ðxÞ¼x2þ0:1x5�0:166667x6�0:0185185x9þ0:00833333x10;

v1ðxÞ¼�0:1x5�0:0125x8þ0:0185185x9�0:000454545x11þ0:0029321x12þ��� ;
v2ðxÞ¼0:0125x8þ0:00204545x11�0:0029321x12þ0:000121753x14�0:000581276x15þ��� ;
v3ðxÞ¼�0:00159091x11�0:000324675x14þ0:000457819x15�0:0000264634x17þ��� ;
v4ðxÞ¼0:000202922x14þ0:0000496801x17�0:0000693145x18þ0:00000511x20þ���
Having vi, i = 0,1,2, . . . , 8 the approximate solution of u(x) is as follows:
uTðxÞ �
X8
i¼0

v i ¼ x2 � 0:166667x6 þ 0:00833333x10 � 0:0017094x13

þ 0:000106838x16 þ � � �

A comparison of the absolute error of u(x) using the Chebyshev expansion (col-
umns 2 and 3) and Taylor expansion (columns 4,5) for f(x) with different values
of m (m= 4 and 8) is presented in Table 1. From this table, it is evident that
the overall errors can be made smaller by adding new terms from the series (5)
and (13).

Also, to solve Eq. (17) by the numerical method, fourth-order Runge–Kutta
method, we reduce this equation to the following system of ODEs:
u0ðxÞ ¼ vðxÞ; ð21Þ
v 0ðxÞ ¼ �uðxÞvðxÞ þ fðxÞ; ð22Þ
subject to the following initial conditions:
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uð0Þ ¼ 0; vð0Þ ¼ 0: ð23Þ

Fig. 4, presents a comparison between exact solution ux, with the numerical meth-
od, fourth-order Runge–Kutta and the approximate solution of our proposed
method uC(x). From this figure, we can see that the two methods are in excellent
agreement with the exact solution.

3. Conclusion

In this paper an efficient modification of HPM is presented by using Chebyshev
polynomials. The convergence analysis of the proposed method is introduced.
Also, we presented comparative solutions with proposed method and the numer-
ical method, fourth-order Runge–Kutta method (RK4). We choose the conven-
tional RK4 as our benchmark, as it is widely accepted and used. From the
introduced model problems we can conclude that the proposed method can be ap-
plied to linear and nonlinear models which represent by ordinary differential equa-
tions. The solution obtained using the suggested method is in excellent agreement
with the already existing ones and show that this approach can solve the problem
effectively. Also, the obtained results demonstrate reliability and efficiency of the
proposed method. All numerical results are obtained using Matlab version 7.
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