Infinitely many solutions for systems of \boldsymbol{n} fourth order partial differential equations coupled with Navier boundary conditions

Shapour Heidarkhani *
Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran

Received 29 February 2012; revised 13 April 2013; accepted 14 April 2013
Available online 25 April 2013

Abstract

In this paper, the existence of infinitely many solutions for a class of systems of \boldsymbol{n} fourth order partial differential equations coupled with Navier boundary conditions is established. The approach is fully based on Ricceri's Variational Principle [B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000) 401-410].

Mathematics subject classification: 35J40; 35J60

1. Introduction

In this work, we discuss the existence of infinitely many weak solutions for the nonlinear elliptic system of n fourth order partial differential equations under Navier boundary conditions

$$
\begin{cases}\Delta\left(\left|\Delta u_{i}\right|^{p_{i}-2} \Delta u_{i}\right)-\alpha_{i} \Delta_{p_{i}} u_{i}+\beta_{i}\left|u_{i}\right|^{p_{i}-2} u_{i}=\lambda F_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right) & \text { in } \Omega \tag{1}\\ u_{i}=\Delta u_{i}=0 & \text { on } \partial \Omega\end{cases}
$$

for $\quad 1 \leqslant i \leqslant n$, where $\quad \Delta_{p_{i}} u_{i}=\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right) \quad$ is the p_{i}-Laplacian operator, $p_{i}>\max \left\{1, \frac{N}{2}\right\}$ for $1 \leqslant i \leqslant n, \quad \alpha_{i}$ and β_{i} for $1 \leqslant i \leqslant n$ are positive constants, $\Omega \subset \mathbb{R}^{N}(N \geqslant 1)$ is a non-empty bounded open set with smooth boundary $\partial \Omega, \lambda>0$ and $F: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function such that the mapping $\left(t_{1}, t_{2} \cdots, t_{n}\right) \rightarrow F\left(x, t_{1}\right.$, $\left.t_{2}, \cdots, t_{n}\right)$ is in C^{1} in \mathbb{R}^{n} for all $x \in \Omega, F_{t_{i}}$ is continuous in $\Omega \times \mathbb{R}^{n}$ for $i=1, \ldots, n$,

[^0]
and $F(x, 0, \ldots, 0)=0$ for all $x \in \Omega$. Here, $F_{t_{i}}$ denotes the partial derivative of F with respect to t_{i}. The system (1) is called $\left(p_{1}, \ldots, p_{n}\right)$-biharmonic.

Here and in the sequel, for all $\gamma>0$ we denote by $K(\gamma)$ the set

$$
\begin{equation*}
\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} \frac{\left|t_{i}\right|^{p_{i}}}{p_{i}} \leqslant \gamma\right\} . \tag{2}
\end{equation*}
$$

A special case of our main result is the following theorem.
Theorem 1.1. Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function for $1 \leqslant i \leqslant n$ such that the differential 1-form $w:=\sum_{i=1}^{n} f_{i}\left(\xi_{1}, \ldots, \xi_{n}\right) d \xi_{i}$ is integrable and let F be a primitive of w such that $F\left(\xi_{1}, \ldots, \xi_{n}\right) \geqslant 0$ in \mathbb{R}^{n}. Fix $p_{i}>\max \left\{1, \frac{N}{2}\right\}$ for $1 \leqslant i \leqslant n$ and assume that

$$
\liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \max _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{p_{n} p_{n}}{\prod_{i=1}^{T p_{i}}}\right)} F\left(t_{1}, \ldots, t_{n}\right)=0
$$

and

$$
\limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} F(0, \ldots, 0, \xi)=+\infty .
$$

Then, the system

$$
\begin{cases}\Delta\left(\left|\Delta u_{i}\right|^{p_{i}-2} \Delta u_{i}\right)-\alpha_{i} \Delta_{p_{i}} u_{i}+\beta_{i}\left|u_{i}\right|^{p_{i}-2} u_{i}=f_{i}\left(u_{1}, \ldots, u_{n}\right) & \text { in } \Omega, \\ u_{i}=\Delta u_{i}=0 & \text { on } \partial \Omega\end{cases}
$$

for $1 \leqslant i \leqslant n$, admits a sequence of pairwise distinct positive weak solutions.
There is an increasing interest in studying fourth-order boundary value problems, because the static form change of a beam can be described by a fourth-order equation, and also a model to study traveling waves in suspension bridges can be described by nonlinear fourth-order equations (for instance, see [22]). More general nonlinear fourth-order elliptic boundary value problems have been studied in recent years. Several results are known concerning the existence of multiple solutions for fourth-order boundary value problems, and we refer the reader to [1,3-5,12,14,18-20,26,25,27] and the references cited therein.

For a discussion about the existence of infinitely many solutions for differential equations, using Ricceri's Variational Principle [31], applying a smooth version of Theorem 2.1 of [7] which is a more precise version of Ricceri's Variational Principle [31] and employing a non-smooth version of Ricceri's Variational Principle [31] due to Marano and Motreanu [28], we refer the reader to the papers [15-17,21,32], $[2,4,8-11,14]$ and [13], respectively. We also refer the reader to the papers [23,24,29,30,34] where the existence of infinitely many solutions for some boundary value problems has been studied by using different approaches (variational methods, perturbation theory, sub-super solutions,...). Here, our motivation comes from the recent papers $[4,6]$.

The outline of the paper is organized as follows: in the forthcoming section, we shall recall our main tool (Theorem 2.1) and some basic notations which we need in the proofs. Whereas, Section 3 is devoted to the existence of infinitely many weak solutions for the system (1). To be precise, our main result (Theorem 3.1), some of its possible consequences, the proofs and some examples to illustrate the results are presented. Finally, in Section 4, as a remarkable consequence of the main result, we shall discuss the existence of infinitely many weak solutions for the nonlinear elliptic system of n doubly eigenvalue fourth order partial differential equations under Navier boundary conditions. Precisely, arguing as in [6], we shall prove that an appropriate oscillating behavior of the nonlinear term, even under small perturbations, ensures again the existence of infinitely many solutions. Two examples of application are pointed out (see Examples 4.1 and 4.2).

2. Preliminaries

Our main tool is the celebrated Ricceri's Variational Principle [31, Theorem 2.5] that we now recall as follows:

Theorem 2.1. Let X be a reflexive real Banach space, and $\Phi, \Psi: X \rightarrow \mathbb{R}$ be two Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-continuous, strongly continuous, and coercive and Ψ is sequentially weakly upper semi-continuous. For every $r>\inf _{X} \Phi$, let us put

$$
\varphi(r):=\inf _{\left.u \in \Phi^{-1}(]-\infty, r\right)} \frac{\sup _{\left.\left.v \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi(v)-\Psi(u)}{r-\Phi(u)}
$$

and

$$
\gamma:=\liminf _{r \rightarrow+\infty} \varphi(r), \quad \delta:=\liminf _{r \rightarrow\left(\inf _{X} \Phi\right)^{+}} \varphi(r) .
$$

Then, one has
(a) for every $r>\inf _{X} \Phi$ and every $\left.\lambda \in\right] 0, \frac{1}{\varphi(r)}[$, the restriction of the functional $I_{\lambda}=\Phi-\lambda \Psi$ to $\Phi^{-1}(]-\infty, r[)$ admits a global minimum, which is a critical point (local minimum) of I_{λ} in X.
(b) If $\gamma<+\infty$ then, for each $\lambda \in] 0, \frac{1}{\gamma}[$, the following alternative holds: either
$\left(b_{1}\right) \quad I_{\lambda}$ possesses a global minimum, or
$\left(b_{2}\right)$ there is a sequence $\left\{u_{n}\right\}$ of critical points (local minima) of I_{λ} such that

$$
\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=+\infty
$$

(c) If $\delta<+\infty$ then, for each $\lambda \in] 0, \frac{1}{\delta}[$, the following alternative holds: either
$\left(c_{1}\right)$ there is a global minimum of Φ which is a local minimum of I_{λ}, or
$\left(c_{2}\right)$ there is a sequence of pairwise distinct critical points (local minima) of I_{λ} which weakly converges to a global minimum of Φ.

Let $X=\prod_{i=1}^{n}\left(W^{2, p_{i}}(\Omega) \cap W_{0}^{1, p_{i}}(\Omega)\right)$, endowed with the norm

$$
\left\|\left(u_{1}, \ldots, u_{n}\right)\right\|=\sum_{i=1}^{n}\left\|u_{i}\right\|_{p_{i}},
$$

where

$$
\left\|u_{i}\right\|_{p_{i}}=\left(\int_{\Omega}\left|\Delta u_{i}(x)\right|^{p_{i}} d x+\alpha_{i} \int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}} d x+\beta_{i} \int_{\Omega}\left|u_{i}(x)\right|^{p_{i}} d x\right)^{1 / p_{i}}
$$

for $1 \leqslant i \leqslant n$.
We say that $u=\left(u_{1}, \ldots, u_{n}\right)$ is a weak solution to the system (1) if $u=\left(u_{1}, \ldots, u_{n}\right) \in X$ and

$$
\begin{aligned}
& \int_{\Omega} \sum_{i=1}^{n}\left(\left|\Delta u_{i}(x)\right|^{p_{i}-2} \Delta u_{i}(x) \Delta v_{i}(x)+\alpha_{i}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla v_{i}(x)\right. \\
& \left.\quad+\beta_{i}\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) v_{i}(x)\right) d x-\lambda \int_{\Omega} \sum_{i=1}^{n} F_{u_{i}}\left(x, u_{1}(x), \ldots, u_{n}(x)\right) v_{i}(x) d x=0
\end{aligned}
$$

for every $\left(v_{1}, \ldots, v_{n}\right) \in X$.
We also need the following proposition in the proof of Theorem 3.1.
Proposition 2.2. The operator $T: X \rightarrow X^{*}$ defined by

$$
\begin{aligned}
T\left(u_{1}, \ldots, u_{n}\right)\left(h_{1}, \ldots, h_{n}\right)= & \int_{\Omega} \sum_{i=1}^{n}\left|\Delta u_{i}(x)\right|^{p_{i}-2} \Delta u_{i}(x) \Delta h_{i}(x) d x \\
& +\alpha_{i} \int_{\Omega} \sum_{i=1}^{n}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla h_{i}(x) d x \\
& +\beta_{i} \int_{\Omega} \sum_{i=1}^{n}\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) h_{i}(x) d x
\end{aligned}
$$

for every $\left(u_{1}, \ldots, u_{n}\right),\left(h_{1}, \ldots, h_{n}\right) \in X$, is strictly monotone.
Proof. Since

$$
\begin{aligned}
T\left(u_{1}, \ldots, u_{n}\right)\left(u_{1}, \ldots, u_{n}\right) & =\sum_{i=1}^{n}\left(\int_{\Omega}\left|\Delta u_{i}(x)\right|^{p_{i}} d x+\alpha_{i} \int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}} d x+\beta_{i} \int_{\Omega}\left|u_{i}(x)\right|^{p_{i}} d x\right) \\
& =\sum_{i=1}^{n}\left\|u_{i}\right\|_{p_{i}}^{p_{i}},
\end{aligned}
$$

T is coercive. Taking into account (2.2) of [33] for $p>1$ there exists a positive constant C_{p} such that

$$
\left.\left.\langle | x\right|^{p-2} x-|y|^{p-2} y, x-y\right\rangle \geqslant \begin{cases}C_{p}|x-y|^{p} & \text { if } p \geqslant 2 \\ C_{p} \frac{|x-y|^{2}}{(|x|+|y|)^{2-p}} & \text { if } 1<p<2\end{cases}
$$

where $\langle.,$.$\rangle denotes the usual inner product in \mathbb{R}^{N}$, for every $x, y \in \mathbb{R}^{N}$. Thus, it is easy to see that

$$
\begin{aligned}
& \left\langle T\left(u_{1}, \ldots, u_{n}\right)-T\left(v_{1}, \ldots, v_{n}\right)\right)\left(u_{1}-v_{1}, \ldots, u_{n}-v_{n}\right\rangle \\
& \geqslant \geqslant \sum_{i \in I_{1}} C_{p_{i}} \int_{\Omega}\left(\left|\Delta u_{i}(x)-\Delta v_{i}(x)\right|^{p_{i}} d x+\alpha_{i}\left|\nabla u_{i}(x)-\nabla v_{i}(x)\right|^{p_{i}}+\beta_{i}\left|u_{i}(x)-v_{i}(x)\right|^{p_{i}}\right) d x \\
& \quad+\sum_{i \in I_{2}} C_{p_{i}} \int_{\Omega}\left(\frac{\left|\Delta u_{i}(x)-\Delta v_{i}(x)\right|^{2}}{\left(\left|\Delta u_{i}(x)\right|+\left|\Delta v_{i}(x)\right|\right)^{2-p_{i}}}+\alpha_{i} \frac{\left|\nabla u_{i}(x)-\nabla v_{i}(x)\right|^{2}}{\left(\left|\nabla u_{i}(x)\right|+\left|\nabla v_{i}(x)\right|\right)^{2-p_{i}}}\right. \\
& \left.\quad+\beta_{i} \frac{\left|u_{i}(x)-v_{i}(x)\right|^{2}}{\left(\left|u_{i}(x)\right|+\left|v_{i}(x)\right|\right)^{2-p_{i}}}\right) d x>0
\end{aligned}
$$

where $I_{1}=\left\{i \in\{1, \ldots, n\}: p_{i} \geqslant 2\right\}$ and $I_{2}=\left\{i \in\{1, \ldots, n\}: 1<p_{i}<2\right\}$, for every $\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{n}\right) \in X$, which means that T is strictly monotone.

Put

$$
\begin{equation*}
k=\max \left\{\sup _{u_{i} \in W^{2, p_{i}}(\Omega) \cap W_{0}^{1, p_{i}}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|^{p_{i}}}{\left\|u_{i}\right\|_{p_{i}}^{p_{i}}} ; \quad \text { for } \quad 1 \leqslant i \leqslant n\right\} . \tag{3}
\end{equation*}
$$

For $p_{i}>\max \left\{1, \frac{N}{2}\right\} \quad$ for $\quad 1 \leqslant i \leqslant n$, since the embedding $W^{2, p_{i}}(\boldsymbol{\Omega}) \cap W_{0}^{1, p_{i}}(\boldsymbol{\Omega}) \hookrightarrow C^{0}(\bar{\Omega})$ for $1 \leqslant i \leqslant n$ is compact, one has $k<+\infty$.

Fix $x^{0} \in \Omega$ and pick $s>0$ such that

$$
S\left(x^{0}, s\right) \subset \Omega
$$

where $S\left(x^{0}, s\right)$ denotes the ball with center at x^{0} and radius s.
Put

$$
\begin{aligned}
& \sigma_{n}=\sigma_{n}\left(N, p_{n}, s\right):=\frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \int_{\frac{s}{2}}^{s}\left|\frac{12(N+1)}{s^{3}} \xi-\frac{24 N}{s^{2}}+\frac{9(N-1)}{s} \frac{1}{\xi^{3}}\right|^{p_{n}} \xi^{N-1} d \xi \\
& \theta_{n}=\theta_{n}\left(N, p_{n}, x^{0}, s\right):=\int_{S\left(x^{0}, s\right) \backslash S\left(x^{0}, \frac{s}{2}\right)}\left[\sum_{i=1}^{N}\left(\frac{12 l\left(x_{i}-x_{i}^{0}\right)}{s^{3}}-\frac{24\left(x_{i}-x_{i}^{0}\right)}{s^{2}}+\frac{9}{s} \frac{\left(x_{i}-x_{i}^{0}\right)}{l}\right)^{2}\right]^{p_{n}^{2}} d x
\end{aligned}
$$

where Γ denotes the Gamma function and $l=\sqrt{\sum_{i=1}^{N}\left(x_{i}-x_{i}^{0}\right)^{2}}$,

$$
\varrho_{n}=\varrho_{n}\left(N, p_{n}, s\right):=\frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)}\left(\frac{\left(\frac{s}{2}\right)^{N}}{N}+\int_{\frac{s}{2}}^{s}\left|\frac{4}{s^{3}} \xi^{3}-\frac{12}{s^{2}} \xi^{2}+\frac{9}{s} \xi-1\right|^{p_{n}} \xi^{N-1} d \xi\right)
$$

and

$$
\begin{equation*}
L:=\frac{1}{k \prod_{i=1}^{n-1} p_{i}\left(\sigma_{n}+\alpha_{n} \theta_{n}+\beta_{n} \varrho_{n}\right)} \tag{4}
\end{equation*}
$$

3. Main results

We formulate our main result as follows.

Theorem 3.1. Assume that
(A1) $F\left(x, 0, \ldots, 0, t_{n}\right) \geqslant 0$ for each $x \in \Omega \backslash S\left(x^{0}, \frac{s}{2}\right), t_{n} \in \mathbb{R}$;
(A2) $\Lambda_{0}<L \Lambda_{1}$ where

$$
\begin{aligned}
& \Lambda_{0}: \liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K}\left(\frac{\xi^{p_{n}}}{\left.\prod_{i=1}^{p^{p_{i}}}\right)}\right. \\
& \left.\Lambda_{1}:=\limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{,}{2}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x, 0, \ldots, \xi\right) d x,
\end{aligned}
$$

L is given by (4) and $K\left(\frac{\xi^{p_{n}}}{\prod_{i=1}^{n} p_{i}}\right)=\left\{\left(t_{1}, \ldots, t_{n}\right) \left\lvert\, \sum_{i=1}^{n} \frac{\mid t_{i} p_{i}}{p_{i}} \leqslant \frac{\xi^{p_{n}}}{\prod_{i=1}^{n} p_{i}^{p_{i}}}\right.\right\}$ (see (2)).
Then, for each

$$
\lambda \in \Lambda:=] \frac{\frac{1}{k L \prod_{i=1}^{n} p_{i}}}{\Lambda_{1}}, \frac{\frac{1}{k \prod_{i=1}^{n} p_{i}}}{\Lambda_{0}}[
$$

the system (1) has an unbounded sequence of weak solutions in X.

Proof. In order to apply Theorem 2.1 to our problem, we introduce the functionals $\Phi, \Psi: X \rightarrow \mathbb{R}$ for each $u=\left(u_{1}, \ldots, u_{n}\right) \in X$, as follows

$$
\begin{equation*}
\Phi(u)=\sum_{i=1}^{n} \frac{\left\|u_{i}\right\|_{p_{i}}^{p_{i}}}{p_{i}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi(u)=\int_{\Omega} F\left(x, u_{1}(x), \ldots, u_{n}(x)\right) d x \tag{6}
\end{equation*}
$$

Because $\quad p_{i}>\max \left\{1, \frac{N}{2}\right\}$ for $1 \leqslant i \leqslant n, \quad X \quad$ is compactly embedded in $C^{0}(\bar{\Omega}) \times \ldots \times C^{0}(\bar{\Omega})$; it is well known that Φ and Ψ are well defined and continuously differentiable functionals whose derivatives at the point $u=\left(u_{1}, \ldots, u_{n}\right) \in X$ are the functionals $\Phi^{\prime}(u), \Psi^{\prime}(u) \in X^{*}$, given by

$$
\begin{aligned}
\Phi^{\prime}(u)(v)= & \int_{\Omega} \sum_{i=1}^{n}\left|\Delta u_{i}(x)\right|^{p_{i}-2} \Delta u_{i}(x) \Delta v_{i}(x) d x+\alpha_{i} \int_{\Omega} \sum_{i=1}^{n}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla v_{i}(x) d x \\
& +\beta_{i} \int_{\Omega} \sum_{i=1}^{n}\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) v_{i}(x) d x
\end{aligned}
$$

and

$$
\Psi^{\prime}(u)(v)=\int_{\Omega} \sum_{i=1}^{n} F_{u_{i}}\left(x, u_{1}(x), \ldots, u_{n}(x)\right) v_{i}(x) d x
$$

for every $v=\left(v_{1}, \ldots, v_{n}\right) \in X$, respectively. Ψ is sequentially weakly upper semicontinuous.

Moreover, Proposition 2.2 establishes Φ^{\prime} is monotone. So we obtain that Φ is sequentially weakly lower semicontinuous (see [35, Proposition 25.20(d)]). Furthermore, $\Psi^{\prime}: X \rightarrow X^{*}$ is a compact operator. Indeed, it is enough to show that Ψ^{\prime} is strongly continuous on X. For this, for fixed $\left(u_{1}, \ldots, u_{n}\right) \in X$, let $\left(u_{1 m}, \ldots, u_{n m}\right) \rightarrow\left(u_{1}, \ldots, u_{n}\right)$ weakly in X as $m \rightarrow+\infty$; then we have $\left(u_{1 m}, \ldots, u_{n m}\right)$ converges uniformly to $\left(u_{1}, \ldots, u_{n}\right)$ on $\bar{\Omega}$ as $m \rightarrow+\infty\left(\right.$ see [35]). Since $F(x, ., \ldots,$.$) is C^{1}$ in \mathbb{R}^{n} for every $x \in \bar{\Omega}$, the derivatives of F are continuous in \mathbb{R}^{n} for every $x \in \bar{\Omega}$, so for $1 \leqslant i \leqslant n, F_{u_{i}}\left(x, u_{1 m}, \ldots, u_{n m}\right) \rightarrow F_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right)$ strongly as $m \rightarrow+\infty$; it follows that $\Psi^{\prime}\left(u_{1 m}, \ldots, u_{n m}\right) \rightarrow \Psi^{\prime}\left(u_{1}, \ldots, u_{n}\right)$ strongly as $m \rightarrow+\infty$. Thus we proved that Ψ^{\prime} is strongly continuous on X, which implies that Ψ^{\prime} is a compact operator by Proposition 26.2 of [35].

Put $I_{\lambda}:=\Phi-\lambda \Psi$. Clearly, the weak solutions of the system (1) are exactly the solutions of the equation $I_{\lambda}^{\prime}\left(u_{1}, \ldots, u_{n}\right)=0$. Now, we want to show that

$$
\gamma<+\infty
$$

Let $\left\{\xi_{m}\right\}$ be a sequence of positive numbers such that $\xi_{m} \rightarrow+\infty$ as $m \rightarrow \infty$ and

$$
\lim _{m \rightarrow \infty} \xi_{m}^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{p_{m}^{p_{n}}}{\prod_{i=1}^{p} p_{i}^{p}}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x=\Lambda_{0} .
$$

Put $r_{m}=\frac{\xi_{n}^{p_{n}}}{k \prod_{i=1}^{n} p_{i}}$ for all $m \in \mathbb{N}$. Since, for each $\left(u_{1}, \ldots, u_{n}\right) \in X$,

$$
\sup _{x \in \Omega}\left|u_{i}(x)\right|^{p_{i}} \leqslant k\left\|u_{i}\right\|_{p_{i}}^{p_{i}}
$$

for $i=1, \ldots, n$ (see (3)), we have

$$
\sup _{x \in \Omega} \sum_{i=1}^{n} \frac{\left|u_{i}(x)\right|^{p_{i}}}{p_{i}} \leqslant k \sum_{i=1}^{n} \frac{\left\|u_{i}\right\|_{p_{i}}^{p_{i}}}{p_{i}}
$$

for each $u=\left(u_{1}, \ldots, u_{n}\right) \in X$, and so

$$
\sup _{x \in \Omega} \sum_{i=1}^{n} \frac{\left|v_{i}(x)\right|^{p_{i}}}{p_{i}} \leqslant \frac{\xi_{m}^{p_{n}}}{\prod_{i=1}^{n} p_{i}}
$$

for all $v=\left(v_{1}, \ldots, v_{n}\right) \in X$ such that $\sum_{i=1}^{n} \frac{\left\|v_{i}\right\|_{p_{i}}^{p_{i}}}{p_{i}} \leqslant r_{m}$. Hence, one has

$$
\begin{aligned}
\varphi\left(r_{m}\right) & =\inf _{u \in \Phi^{-1}(\}-\infty, r_{m}[)} \frac{\left(\sup _{\left.\left.v \in \Phi^{-1}(]-\infty, r_{m}\right]\right)} \Psi(v)\right)-\Psi(u)}{r_{m}-\Phi(u)} \leqslant \frac{\sup _{\left.\left.v \in \Phi^{-1}(]-\infty, r_{m}\right]\right)} \Psi(v)}{r_{m}} \\
& \leqslant \frac{\int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{\xi_{m}^{p}}{\prod_{i=1}^{p} p_{i}^{p}}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x}{\frac{\xi_{p}^{p}}{k \prod_{i=1}^{n} p_{i}}} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\gamma \leqslant \liminf _{m \rightarrow+\infty} \varphi\left(r_{m}\right) \leqslant\left(k \prod_{i=1}^{n} p_{i}\right) \Lambda_{0}<+\infty \tag{7}
\end{equation*}
$$

Assumption (A2) together with (7), imply

$$
\Lambda \subseteq] 0, \frac{1}{\gamma}[
$$

Fix $\lambda \in \Lambda$. We conclude from (7) that condition (b) of Theorem 2.1 can be applied, and either I_{λ} has a global minimum or there exists a sequence $\left\{u_{m}=\left(u_{1 m}, \ldots, u_{n m}\right)\right\}$ of weak solutions of the system (1) such that $\lim _{m \rightarrow \infty}\left\|\left(u_{1 m}, \ldots, u_{n m}\right)\right\|=+\infty$.

The other step is to show that the functional I_{λ} has no global minimum. For fixed λ, we claim that the functional $\Phi-\lambda \Psi$ is unbounded from below. Indeed, since

$$
\frac{1}{\lambda}<k L \prod_{i=1}^{n} p_{i} \Lambda_{1}
$$

we can choose a sequence $\left\{d_{m}\right\}$ of positive numbers and a positive constant τ such that $d_{m} \rightarrow+\infty$ as $m \rightarrow \infty$ and

$$
\begin{equation*}
\frac{1}{\lambda}<\tau<k L d_{m}^{-p_{n}} \prod_{i=1}^{n} p_{i} \int_{S\left(x^{0}, \frac{s}{2}\right)} F\left(x, 0, \ldots, 0, d_{m}\right) d x \tag{8}
\end{equation*}
$$

for each $m \in \mathbb{N}$ large enough. Let $\left\{w_{m}\right\}$ be a sequence in X defined by $w_{m}(x)=\left(0, \ldots, 0, w_{n m}(x)\right)$ such that

$$
w_{n m}(x)= \begin{cases}0 & \text { if } x \in \bar{\Omega} \backslash S\left(x^{0}, s\right) \tag{9}\\ d_{m} & \text { if } x \in S\left(x^{0}, \frac{s}{2}\right) \\ d_{m}\left(\frac{4}{s^{3}} 3^{3}-\frac{12}{s^{2}} 2^{2}+\frac{9}{s} l-1\right) & \text { if } x \in S\left(x^{0}, s\right) \backslash S\left(x^{0}, \frac{s}{2}\right)\end{cases}
$$

We have

$$
\frac{\partial w_{n m}(x)}{\partial x_{i}}= \begin{cases}0 & \text { if } x \in \bar{\Omega} \backslash S\left(x^{0}, s\right) \cup S\left(x^{0}, \frac{s}{2}\right), \\ d_{m}\left(\frac{12 l\left(x_{i}-x_{i}^{0}\right)}{s^{3}}-\frac{24\left(x_{i}-x_{i}^{0}\right)}{s^{2}}+\frac{9}{s} \frac{\left(x_{i}-x_{i}^{0}\right)}{l}\right) & \text { if } x \in S\left(x^{0}, s\right) \backslash S\left(x^{0}, \frac{s}{2}\right)\end{cases}
$$

and

$$
\frac{\partial^{2} w_{n m}(x)}{\partial x_{i}^{2}}= \begin{cases}0 & \text { if } x \in \bar{\Omega} \backslash S\left(x^{0}, s\right) \cup S\left(x^{0}, \frac{s}{2}\right), \\ d_{m}\left(\frac{12}{s^{3}} \frac{\left(x_{i}-x_{i}^{0}\right)^{2}+l^{2}}{l}-\frac{24}{s^{2}}+\frac{9}{s} \frac{l^{2}-\left(x_{i}-x_{i}^{0}\right)^{2}}{\beta^{3}}\right) & \text { if } x \in S\left(x^{0}, s\right) \backslash S\left(x^{0}, \frac{s}{2}\right)\end{cases}
$$

and so that

$$
\sum_{i=1}^{N} \frac{\partial^{2} w_{n m}(x)}{\partial x_{i}^{2}}= \begin{cases}0 & \text { if } x \in \bar{\Omega} \backslash S\left(x^{0}, s\right) \cup S\left(x^{0}, \frac{s}{2}\right) \\ d_{m}\left(\frac{12 l(N+1)}{s^{3}}-\frac{24 N}{s^{2}}+\frac{9}{s} \frac{N-1}{\beta^{3}}\right) & \text { if } x \in S\left(x^{0}, s\right) \backslash S\left(x^{0}, \frac{s}{2}\right)\end{cases}
$$

For any fixed $m \in \mathbb{N}$, it is easy to see that $w_{m}=\left(0, \ldots, 0, w_{n m}\right) \in X$ and, in particular, since

$$
\begin{aligned}
\int_{\Omega}\left|\Delta w_{n}(x)\right|^{p_{n}} d x & =d_{m}^{p_{n}} \frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \int_{\frac{s}{2}}^{s}\left|\frac{12(N+1)}{s^{3}} \xi-\frac{24 N}{s^{2}}+\frac{9(N-1)}{s} \frac{1}{\xi^{3}}\right|^{p_{n}} \xi^{N-1} d \xi, \\
\int_{\Omega}\left|\nabla w_{n}(x)\right|^{p_{n}} d x & =\int_{S\left(x^{0}, s\right) \backslash S\left(x^{0}, \frac{s}{2}\right)}\left[\sum_{i=1}^{N} d_{m}^{2}\left(\frac{12 l\left(x_{i}-x_{i}^{0}\right)}{s^{3}}-\frac{24\left(x_{i}-x_{i}^{0}\right)}{s^{2}}+\frac{9}{s} \frac{\left(x_{i}-x_{i}^{0}\right)}{l}\right)^{2}\right]^{\frac{p_{n}}{2}} d x \\
& =d_{m}^{p_{n}} \int_{S\left(x^{0}, s\right) \backslash\left(x^{0}, \frac{s}{2}\right)}\left[\sum_{i=1}^{N}\left(\frac{12 l\left(x_{i}-x_{i}^{0}\right)}{s^{3}}-\frac{24\left(x_{i}-x_{i}^{0}\right)}{s^{2}}+\frac{9}{s} \frac{\left(x_{i}-x_{i}^{0}\right)}{l}\right)^{2}\right]^{\frac{p_{n}}{2}} d x
\end{aligned}
$$

and

$$
\int_{\Omega}\left|w_{n}(x)\right|^{p_{n}} d x=d_{m}^{p_{n}} \frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)}\left(\frac{\left(\frac{s}{2}\right)^{N}}{N}+\int_{\frac{s}{2}}^{s}\left|\frac{4}{s^{3}} \xi^{3}-\frac{12}{s^{2}} \xi^{2}+\frac{9}{s} \xi-1\right|^{p_{n}} \xi^{N-1} d \xi\right)
$$

we observe that

$$
\left\|w_{n m}\right\|_{p_{n}}^{p_{n}}=\left(\sigma_{n}+\alpha_{n} \theta_{n}+\beta_{n} \varrho_{n}\right) d_{m}^{p_{n}}
$$

and so

$$
\begin{equation*}
\Phi\left(w_{m}\right)=\frac{\left(\sigma_{n}+\alpha_{n} \theta_{n}+\beta_{n} \varrho_{n}\right) d_{m}^{p_{n}}}{p_{n}}=\frac{d_{m}^{p_{n}}}{k L \prod_{i=1}^{n} p_{i}} . \tag{10}
\end{equation*}
$$

On the other hand, bearing Assumption (A1) in mind, from (6) one has

$$
\begin{equation*}
\Psi\left(w_{m}\right) \geqslant \int_{S\left(x^{0}, \frac{5}{2}\right)} F\left(x, 0, \ldots, 0, d_{m}\right) d x \tag{11}
\end{equation*}
$$

So, in view of (10), (11) and (8), we obtain

$$
I_{\lambda}\left(w_{m}\right) \leqslant \frac{d_{m}^{p_{n}}}{k L \prod_{i=1}^{n} p_{i}}-\lambda \int_{S\left(x^{0}, \frac{s}{2}\right)} F\left(x, 0, \ldots, 0, d_{m}\right) d x<\frac{d_{m}^{p_{n}}}{k L \prod_{i=1}^{n} p_{i}}(1-\lambda \tau)
$$

for every $m \in \mathbb{N}$ large enough. Hence, our claim holds true; it follows that I_{λ} has no global minimum. Therefore, Theorem 2.1 assures that there is a
sequence $\left\{u_{m}=\left(u_{1 m}, \ldots, u_{n m}\right)\right\} \subset X$ of critical points of I_{λ} such that $\lim _{m \rightarrow \infty}\left\|\left(u_{1 m}, \ldots, u_{n m}\right)\right\|=+\infty$, and we have the conclusion.

We present an example to illustrate Theorem 3.1.

Example 3.1. Let $\Omega \subset \mathbb{R}^{2}$ be a non-empty open set with a smooth boundary $\partial \Omega$ and consider the increasing sequence of positive real numbers given by

$$
a_{1}=2, a_{m+1}=m!\left(a_{m}\right)^{\frac{5}{4}}+2
$$

for every $m \geqslant 1$. Define the function $F: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
F\left(x, y, t_{1}, t_{2}\right)= \begin{cases}\left(a_{m+1}\right)^{5} e^{x^{2}+y^{2}-\frac{1}{1-\left(t_{1}-a_{m+1}\right)^{2}-\left(l_{2}-a_{m+1}\right)^{2}}+1} & \text { if }\left(x, y, t_{1}, t_{2}\right) \in \Omega \times \bigcup_{m \geqslant 1} S\left(\left(a_{m+1}, a_{m+1}\right), 1\right), \\ 0 & \text { otherwise },\end{cases}
$$

where $S\left(\left(a_{m+1}, a_{m+1}\right), 1\right)$ denotes the open unit ball with center at $\left(a_{m+1}, a_{m+1}\right)$. It is clear that F is a non-negative function such that $F\left(.,,, t_{1}, t_{2}\right)$ is continuous in Ω for all $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}, F(x, y, \ldots)$ is C^{1} in \mathbb{R}^{2} for every $(x, y) \in \Omega, F(x, y, 0,0)=0$ for all $(x, y) \in \Omega$ and for every $\varrho>0$,

$$
\sup _{\left|\left(t_{1}, t_{2}\right)\right| \leq \varrho}\left(\left|F_{t_{1}}\left(x, y, t_{1}, t_{2}\right)\right|+\left|F_{t_{2}}\left(x, y, t_{1}, t_{2}\right)\right|\right) \in L^{1}(\Omega) .
$$

Now, for every $m \in \mathbb{N}$, one has

$$
\max _{\left(t_{1}, t_{2}\right) \in S\left(\left(a_{m+1}, a_{m+1}\right), 1\right)} F\left(x, y, t_{1}, t_{2}\right)=F\left(x, y, 0, a_{m+1}\right)=\left(a_{m+1}\right)^{5} e^{x^{2}+y^{2}} .
$$

Since

$$
\lim _{m \rightarrow+\infty} \frac{F\left(x, y, 0, a_{m+1}\right)}{\left(a_{m+1}\right)^{4}}=+\infty
$$

we see that

$$
\limsup _{\xi \rightarrow+\infty} \xi^{-4} F(x, y, 0, \xi) d x=+\infty
$$

Moreover, by choosing $\xi_{m}=\sqrt[4]{4}\left(a_{m+1}-1\right)$ for every $m \in \mathbb{N}$, one has

$$
\sup _{\left(t_{1}, t_{2}\right) \in K\left(\frac{\xi^{4}}{16}\right)} F\left(x, y, t_{1}, t_{2}\right)=\left(a_{m}\right)^{5} e^{x^{2}+y^{2}}, \quad \forall m \in \mathbb{N} .
$$

Then,

$$
\lim _{m \rightarrow+\infty} \frac{\sup _{\left(t_{1}, t_{2}\right) \in K\left(\frac{\left(\xi_{1}^{4}\right)}{16}\right)} F\left(x, y, t_{1}, t_{2}\right)}{4\left(a_{m+1}-1\right)^{4}}=0
$$

and so

$$
\liminf _{\xi \rightarrow+\infty} \xi^{-4} \sup _{\left(t_{1}, t_{2}\right) \in K\left(\frac{\xi^{4}}{16}\right)} F\left(x, y, t_{1}, t_{2}\right)=0 .
$$

Therefore,

$$
0=\liminf _{\xi \rightarrow+\infty} \xi^{-4} \int_{\Omega} \sup _{\left(t_{1}, t_{2}\right) \in K\left(\frac{\xi^{4}}{16}\right)} F\left(x, y, t_{1}, t_{2}\right) d x<L \limsup _{\xi \rightarrow+\infty} \xi^{-4} \int_{S\left(x^{0}, \frac{s}{2}\right)} F(x, y, 0, \xi) d x=+\infty .
$$

Hence, all the assumptions of Theorem 3.1 are satisfied. So, Theorem 3.1 is applicable to the system

$$
\begin{cases}\Delta\left(|\Delta u|^{2} \Delta u\right)=\lambda F_{u}(x, y, u, v) & \text { in } \Omega \\ \Delta\left(|\Delta v|^{2} \Delta v\right)=\lambda F_{v}(x, y, u, v) & \text { in } \Omega \\ u=\Delta u=v=\Delta v=0 & \text { on } \partial \Omega\end{cases}
$$

for every $\lambda \in] 0,+\infty[$.
Remark 3.1. Arguing as in [4, Remark 3.3] we notice that instead of Assumption (A2) in Theorem 3.1, we are allowed to suppose the following more general condition
(A3) there exist two sequences $\left\{a_{m}\right\}$ and $\left\{b_{m}\right\}$ with $\left|a_{m}\right|<\sqrt[p_{n}]{L} b_{m}$ for every $m \in \mathbb{N}$ and $\lim _{m \rightarrow+\infty} b_{m}=+\infty$ such that

$$
\begin{aligned}
& \lim _{m \rightarrow+\infty}\left(b_{m}^{p_{n}}-\frac{a_{m}^{p_{n}}}{L}\right)^{-1} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K} F\left(\frac{b_{m}^{p_{n}}}{\prod_{i=1}^{p_{i}}}\right) \\
& \quad<L \limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{s}{2}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x-\int_{S\left(x^{0}, \frac{s}{2}\right)} F\left(x, 0, \ldots, 0, a_{m}\right) d x
\end{aligned}
$$

where L is given by (4) and $K\left(\frac{b_{m}^{p_{n}}}{\prod_{i=1}^{p_{i}}}\right)=\left\{\left(t_{1}, \ldots, t_{n}\right) \left\lvert\, \sum_{i=1}^{n} \frac{\left|t_{i}\right|^{p_{i}}}{p_{i}} \leqslant \frac{b_{m}^{p_{n}}}{\prod_{i=1}^{p_{i}}}\right.\right\}$ (see (2)).
Obviously, from (A3) we obtain (A2), by choosing $a_{m}=0$ for all $m \in \mathbb{N}$. Moreover, if we assume (A3) instead of (A2) and set $r_{m}=\frac{b_{n}^{p_{n}}}{k \prod_{i=1}^{n} p_{i}}$ for all $m \in \mathbb{N}$, by the same argument as in Theorem 3.1, we obtain

$$
\begin{aligned}
& \varphi\left(r_{m}\right)=\inf _{\left.u \in \Phi^{-1}(]-\infty, r_{m}\right)} \frac{\left.\sup _{\left(v \in \Phi^{-1}\left(0-\infty, r_{m}\right]\right)} \Psi(v)\right)-\Psi(u)}{r_{m}-\Phi(u)} \\
& \leqslant \frac{\sup _{\left.v \in \Phi^{-1}\left(\mid-\infty, r_{m}\right]\right)} \Psi(v)-\int_{\Omega} F\left(x, w_{1 m}(x), \ldots, w_{n m}(x)\right) d x}{r_{m}-\sum_{i=1}^{n} \frac{\left\|w_{i m}\right\|_{p_{i}}^{p_{i}}}{p_{i}}} \\
& \leqslant\left(k \prod_{i=1}^{n} p_{i}\right) \frac{\int_{\Omega} \sup ^{\left(t_{1}, \ldots, t_{n}\right) \in K}\left(\frac{p_{n}^{p_{n}}}{\prod_{i=1}^{p_{i}}}\right)}{} F\left(x, t_{1}, \ldots, t_{n}\right) d x-\int_{S\left(x^{0}, \frac{s}{2}\right)} F\left(x, 0, \ldots, 0, a_{m}\right) d x
\end{aligned}
$$

where $w_{m}(x)=\left(w_{1 m}(x), \ldots w_{n m}(x)\right)$ defined by $w_{1 m}(x)=\ldots=w_{(n-1) m}(x)=0$ for all $x \in \Omega$ and $w_{n m}(x)$ as given in (9) with a_{m} instead of d_{m}. We have the same conclusion as in Theorem 3.1 with Λ replaced by

$$
\left.\Lambda^{\prime}:=\right] \widetilde{\Lambda_{1}}, \widetilde{\Lambda_{2}}[
$$

where

$$
\widetilde{\Lambda_{1}}:=\frac{\frac{1}{k L \prod_{i=1}^{n} p_{i}}}{\limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{s}{2}\right)} F(x, 0, \ldots, 0, \xi) d x}
$$

and

$$
\widetilde{\Lambda_{2}}:=\frac{\frac{1}{\prod_{i=1}^{n} p_{i}}}{\lim _{m \rightarrow+\infty} \frac{\int_{\Omega} \sup { }_{\left(t_{1}, \ldots, t_{n}\right) \in K}\left(\frac{b_{m}^{p_{n}}}{\prod_{i=1}^{p_{i}}}\right)^{F\left(x, t_{1}, \ldots, t_{n}\right) d x-\int_{S\left(x, 0, \frac{s}{2}\right)} F\left(x, 0, \ldots, 0, a_{m}\right) d x}}{b_{m}^{p_{n}}-\frac{p_{m}^{m_{m}}}{L}}} .
$$

It is of interest to list some consequences of Theorem 3.1.
Corollary 3.2. Assume that assumption (A1) in Theorem 3.1 holds. Suppose that
(B1)

$$
\liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{z^{z p_{n}}}{\prod_{i=1}^{i} p_{i} p_{i}}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x<\frac{1}{k \prod_{i=1}^{n} p_{i}}
$$

(B2)

$$
\limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{s}{2}\right)} F(x, 0, \ldots, 0, \xi) d x>\frac{1}{k L \prod_{i=1}^{n} p_{i}},
$$

where L is given by (4) and $K\left(\frac{z^{p_{n}}}{\prod_{i=1}^{n} p_{i}^{p_{i}}}\right)=\left\{\left(t_{1}, \ldots, t_{n}\right) \left\lvert\, \sum_{i=1}^{n} \frac{\left|t_{i}\right|^{p_{i}}}{p_{i}} \leqslant \frac{z^{p^{p}}}{\prod_{i=1}^{n}}\right.\right\}$ (see (2)).
Then, the system

$$
\begin{cases}\Delta\left(\left|\Delta u_{i}\right|^{p_{i}-2} \Delta u_{i}\right)-\alpha_{i} \Delta_{p_{i}} u_{i}+\beta_{i}\left|u_{i}\right|^{p_{i}-2} u_{i}=F_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right) & \text { in } \Omega \\ u_{i}=\Delta u_{i}=0 & \text { on } \partial \Omega\end{cases}
$$

for $1 \leqslant i \leqslant n$, has an unbounded sequence of weak solutions in X.
Corollary 3.3. Let $F: R^{n} \rightarrow R$ be a C^{1} function in R^{n} such that $F(0, \ldots, 0)=0$. Assume that
(B3) $F\left(0, \ldots, 0, t_{n}\right) \geqslant 0$ for each $t_{n} \in \mathbb{R}$;
(B4)

$$
\liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \max _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{\xi^{p_{n}}}{\Pi_{i=1}^{n} p_{i}}\right)} F\left(t_{1}, \ldots, t_{n}\right)<\frac{L\left(\frac{s}{2}\right)^{N} \frac{\pi^{N / 2}}{\Gamma\left(1+\frac{N}{2}\right)}}{m(\Omega)} \limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} F(0, \ldots, 0, \xi)
$$

where L is given by (4) and $K\left(\frac{\xi^{p_{n}}}{\prod_{i=1}^{n} p_{i}}\right)=\left\{\left(t_{1}, \ldots, t_{n}\right) \left\lvert\, \sum_{i=1}^{n} \frac{\left|t_{i}\right|^{p_{i}}}{p_{i}} \leqslant \frac{\xi^{p_{n}}}{\prod_{i=1}^{n} p_{i}^{p_{i}}}\right.\right\}$ (see (2)).
Then, for each

$$
\frac{\frac{1}{k L \prod_{i=1}^{n} p_{i}}}{\left(\frac{s}{2}\right)^{N} \frac{\pi^{N / 2}}{\Gamma\left(1+\frac{N}{2}\right)} \limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} F(0, \ldots, 0, \xi)}<\lambda<\frac{\frac{1}{m(\Omega) k \prod_{i=1}^{n} p_{i}}}{\liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{i^{p} p_{n}}{\prod_{i=1}^{n} p_{i}}\right)} F\left(t_{1}, \ldots, t_{n}\right)}
$$

the system

$$
\begin{cases}\Delta\left(\left|\Delta u_{i}\right|^{p_{i}-2} \Delta u_{i}\right)-\alpha_{i} \Delta_{p_{i}} u_{i}+\beta_{i}\left|u_{i}\right|^{p_{i}-2} u_{i}=\lambda F_{u_{i}}\left(u_{1}, \ldots, u_{n}\right) & \text { in } \Omega, \\ u_{i}=\Delta u_{i}=0 & \text { on } \partial \Omega\end{cases}
$$

for $1 \leqslant i \leqslant n$, has an unbounded sequence of weak solutions in X.
Proof. Set $F\left(x, t_{1}, \ldots, t_{n}\right)=F\left(t_{1}, \ldots, t_{n}\right)$ for all $x \in \Omega$ and $t_{i} \in \mathbb{R}$ for $1 \leqslant i \leqslant n$. Since $m\left(S\left(x^{0}, \frac{s}{2}\right)\right)=\left(\frac{s}{2}\right)^{N} \frac{\pi^{N / 2}}{\Gamma\left(1+\frac{N}{2}\right)}$, Theorem 3.1 ensures the conclusion.

Remark 3.2. Theorem 1.1 is an immediate consequence of Corollary 3.3.
By the same way as in the proof of Theorem 3.1 but using conclusion (c) of Theorem 2.1 instead of (b), the following result holds.

Theorem 3.4. Assume that Assumption (A1) in Theorem 3.1 holds. Suppose that

$$
\begin{align*}
& \liminf _{\xi \rightarrow 0^{+}} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K} F\left(\frac{z^{p_{n}}}{\prod_{i=1}^{p_{i}}}\right) \tag{C1}\\
& \quad<L \limsup \xi_{\xi \rightarrow 0^{+}} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{s}{2}\right)} F(x, 0, \ldots, 0, \xi) d x
\end{align*}
$$

where L is given by (4) and $K\left(\frac{\varepsilon^{p_{n}}}{\prod_{i=1}^{n} p_{i}}\right)=\left\{\left(t_{1}, \ldots, t_{n}\right) \left\lvert\, \sum_{i=1}^{n} \frac{\left|t_{i}\right|^{p_{i}}}{p_{i}} \leqslant \frac{\xi^{p_{n}}}{\prod_{i=1}^{n} p_{i}}\right.\right\}$ (see (2)).
Then, for each
the system (1) has a sequence of weak solutions, which strongly converges to 0 in X.
Proof. We take Φ, Ψ and I_{λ} be as before. In a similar way as in the proof of Theorem 3.1 we verify that $\delta<+\infty$. Let $\left\{\xi_{m}\right\}$ be a sequence of positive numbers such that $\xi_{m} \rightarrow 0^{+}$as $m \rightarrow+\infty$ and

Put $r_{m}=\frac{\xi_{m}^{p_{n}}}{k \prod_{i=1}^{n} p_{i}}$ for all $m \in \mathbb{N}$. Fix $\lambda \in \Lambda^{\prime \prime}$. We claim that the functional I_{λ} does not have a local minimum at zero. Let $\left\{d_{m}\right\}$ be a sequence of positive numbers and $\tau>0$ such that $d_{m} \rightarrow 0^{+}$as $m \rightarrow \infty$ and

$$
\begin{equation*}
\frac{1}{\lambda}<\tau<k L d_{m}^{-p_{n}} \prod_{i=1}^{n} p_{i} \int_{S\left(x^{0}, \frac{s}{2}\right)} F\left(x, 0, \ldots, 0, d_{m}\right) d x \tag{12}
\end{equation*}
$$

for each $m \in \mathbb{N}$ large enough. Let $\left\{w_{m}\right\}$ be a sequence in X defined by $w_{m}(x)=\left(0, \ldots, 0, w_{n m}(x)\right)$ such that $w_{n m}$ is chosen as in (9). According to (10)-(12), we obtain

$$
I_{\lambda}\left(w_{m}\right) \leqslant \frac{d_{m}^{p_{n}}}{k L \prod_{i=1}^{n} p_{i}}-\lambda \int_{S\left(x^{0}, \frac{s}{2}\right)} F\left(x, 0, \ldots, 0, d_{m}\right) d x<\frac{d_{m}^{p_{n}}}{k L \prod_{i=1}^{n} p_{i}}(1-\lambda \tau)<0,
$$

for every $m \in \mathbb{N}$ large enough. Since $I_{\lambda}(0)=0$, this confirms our claim. Hence, the part (c) of Theorem 2.1 ensures the existence of a sequence $\left\{u_{m}=\left(u_{1 m}, \ldots, u_{n m}\right)\right\}$ in X of critical points of I_{λ} such that $\left\|u_{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$, the proof is complete.

Remark 3.3. Employing Remark 3.1, we clearly observe that in Theorem 3.4, we are permitted to assume (A3) instead of (C1) by supposing $\lim _{k \rightarrow+\infty} b_{k}=0$ instead of $\lim _{k \rightarrow+\infty} b_{k}=+\infty$ and replacing $\xi \rightarrow+\infty$ with $\xi \rightarrow 0^{+}$, and for every $\lambda \in \Lambda^{\prime}$, in this case, the system (1) has a sequence of weak solutions, which strongly converges to 0 in X.

Here, we want to point out the following consequence when $n=1$ and $\alpha_{1}=\beta_{1}=0$, which follow from Theorem 3.1.

Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a L^{2}-Carathéodory function. Let F be the function defined by $F(x, t)=\int_{0}^{t} f(x, s) d s$ for each $(x, t) \in \Omega \times \mathbb{R}$.

Put

$$
\begin{equation*}
\sigma=\sigma(N, p, s):=\frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \int_{\frac{s}{2}}^{s}\left|\frac{12(N+1)}{s^{3}} \xi-\frac{24 N}{s^{2}}+\frac{9(N-1)}{s} \frac{1}{\xi^{3}}\right|^{p} \xi^{N-1} d \xi \tag{13}
\end{equation*}
$$

Theorem 3.5. Let $p>\max \left\{1, \frac{N}{2}\right\}$. Suppose that
(D1) $F(x, t) \geqslant 0$ for each $(x, t) \in\left(\Omega \backslash S\left(x^{0}, \frac{s}{2}\right)\right) \times \mathbb{R}$;
(D2)

$$
\liminf _{\xi \rightarrow+\infty} \xi^{-p} \int_{\Omega} \sup _{|t| \leqslant \xi} F(x, t) d x<\frac{1}{k^{p} \sigma} \limsup _{\xi \rightarrow+\infty} \xi^{-p} \int_{S\left(x^{0}, \frac{s}{2}\right)} F(x, \xi) d x,
$$

where σ is given by (13) and $k=\sup _{u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\max _{x-\bar{\Omega}}|u(x)|}{\left(\int_{\Omega}\left|\Delta u_{i}(x)\right|^{p} d x\right)^{1 / p}}$.
Then, for each

$$
\lambda \in] \frac{\frac{\sigma}{p}}{\limsup _{\xi \rightarrow+\infty} \xi^{-p} \int_{S\left(x^{0}, \frac{s}{2}\right)} F(x, \xi) d x}, \frac{\frac{1}{p k^{p}}}{\liminf _{\xi \rightarrow+\infty} \xi^{-p} \int_{\Omega} \sup _{|t| \leqslant \xi} F(x, t) d x}[
$$

the problem

$$
\begin{cases}\Delta\left(|\Delta u|^{p-2} \Delta u\right)=\lambda f(x, u) & \text { in } \Omega \tag{14}\\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

has an unbounded sequence of weak solutions in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$.
Remark 3.4. We also observe that in Theorem 3.5, by Theorem 3.4 and replacing $\xi \rightarrow+\infty$ with $\xi \rightarrow 0^{+}$, by the same reasoning, we have that for every $\lambda \in \Lambda^{\prime \prime \prime}$, in this case, the problem (14) has a sequence of weak solutions, which strongly converges to 0 in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$.

We illustrate the result as follows:
Example 3.2. Let $a, b \in \mathbb{R}$ with $a<b$. Let $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x, t)= \begin{cases}h(x) t^{2}(3-3 \sin (\ln (|t|))-\cos (\ln (|t|))) & \text { if }(x, t) \in[a, b] \times(\mathbb{R}-\{0\}) \\ 0 & \text { if }(x, t) \in[a, b] \times\{0\}\end{cases}
$$

where $h:[a, b] \rightarrow \mathbb{R}$ is a positive continuous function.
A direct calculation yields

$$
F(x, t)= \begin{cases}h(x) t^{3}(1-\sin (\ln (|t|))) & \text { if }(x, t) \in[a, b] \times(\mathbb{R}-\{0\}), \\ 0 & \text { if }(x, t) \in[a, b] \times\{0\}\end{cases}
$$

and so, $\liminf _{\xi \rightarrow 0^{+}} \xi^{-3} \int_{a}^{b} \sup _{|t| \leqslant \xi} F(x, t) d x=0$ and $\lim \sup _{\xi \rightarrow 0^{+}} \xi^{-3} \int_{a+\alpha}^{b-\beta} F(x, \xi) d x$ $=2 \int_{a+\alpha}^{b-\beta} h(x) d x$ for all positive α and β with $\beta+\alpha<b-a$. Hence, with $p=3$, taking Remark 3.4 into account, the problem (14), in this case, for every

$$
\frac{\sigma(1,3, s)}{6 \int_{a+\alpha}^{b-\beta} h(x) d x}<\lambda<+\infty
$$

where $0<s<(b-a) / 2$, has a sequence of weak solutions, which strongly converges to 0 in $W^{2,3}([a, b]) \cap W_{0}^{1,3}([a, b])$.

Finally, in this section, we give the following consequence.
Corollary 3.6. Let $p>\max \left\{1, \frac{N}{2}\right\}$. Let $g_{1}: \Omega \rightarrow \mathbb{R}$ be a non-negative continuous function, and set $G_{1}(t)=\int_{0}^{t} g_{1}(\xi) d \xi$ for all $t \in \mathbb{R}$ such that

$$
\begin{equation*}
\liminf _{\xi \rightarrow+\infty} \xi^{-p} G_{1}(\xi)<+\infty \tag{E1}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{\xi \rightarrow+\infty} \xi^{-p} G_{1}(\xi)=+\infty \tag{E2}
\end{equation*}
$$

Then, for every $\alpha_{i} \in L^{l}(\Omega)$ for $1 \leqslant i \leqslant n$, with $\min _{x \in \Omega}\left\{\alpha_{i}(x) ; 1 \leqslant i \leqslant n\right\} \geqslant 0$ and with $\alpha_{1} \neq 0$, and for every non-negative continuous $g_{i}: \mathbb{R} \rightarrow \mathbb{R}$ for $2 \leqslant i \leqslant n$ satisfying

$$
\max \left\{\sup _{\xi \in \mathbb{R}} G_{i}(\xi) d t ; 2 \leqslant i \leqslant n\right\} \leqslant 0
$$

and

$$
\min \left\{\liminf _{\xi \rightarrow+\infty} \frac{G_{i}(\xi)}{\xi^{p}} ; 2 \leqslant i \leqslant n\right\}>-\infty
$$

where $G_{i}(t)=\int_{0}^{t} g_{i}(\xi) d \xi$ for all $t \in \mathbb{R}$ for $2 \leqslant i \leqslant n$, for each

$$
\lambda \in] 0, \frac{1}{\left(p k^{p} \int_{\Omega} \alpha_{1}(x) d x\right) \liminf _{\xi \rightarrow+\infty} \xi^{-p} G_{1}(\xi)}[
$$

where $k=\sup _{u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}|u(x)|}{\left(\int_{\Omega}\left|\Delta u_{i}(x)\right|^{p} d x\right)^{1 / p}}$, the problem

$$
\begin{cases}\Delta\left(|\Delta u|^{p-2} \Delta u\right)=\lambda \sum_{i=1}^{n} \alpha_{i}(x) g_{i}(u) & \text { in } \Omega \tag{15}\\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

has an unbounded sequence of weak solutions in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$.
Proof. Set $f(x, t)=\sum_{i=1}^{n} \alpha_{i}(x) g_{i}(t)$ for all $(x, t) \in \Omega \times \mathbb{R}$. The assumption (E2) in conjunction with the condition

$$
\min \left\{\liminf _{\xi \rightarrow+\infty} \xi^{-p} G_{i}(\xi) ; 2 \leqslant i \leqslant n\right\}>-\infty
$$

yields

$$
\limsup _{\xi \rightarrow+\infty} \xi^{-p} \int_{S\left(x^{0}, \frac{s}{2}\right)} F(x, \xi) d x=\limsup _{\xi \rightarrow+\infty} \xi^{-p} \sum_{i=1}^{n}\left(G_{i}(\xi) \int_{S\left(x^{0}, \frac{,}{2}\right)} \alpha_{i}(x) d x\right)=+\infty .
$$

Moreover, the assumption (E1) together with the condition

$$
\max \left\{\sup _{\xi \in \mathbb{R}} G_{i}(\xi) d t ; 2 \leqslant i \leqslant n\right\} \leqslant 0
$$

implies

$$
\liminf _{\xi \rightarrow+\infty} \xi^{-p} \int_{\Omega} \sup _{|t| \leqslant \xi} F(x, t) d x \leqslant\left(\int_{\Omega} \alpha_{1}(x) d x\right) \liminf _{\xi \rightarrow+\infty} \xi^{-p} G_{1}(\xi)<+\infty
$$

Hence, applying Theorem 3.5 we have the result.
Remark 3.5. We point out that by using Corollary 3.6, the problem (15) with $\alpha_{1}=1$, g_{1} be the function h as chosen in [2, Example 1] and $\alpha_{2}=\ldots=\alpha_{n}=0$, with $\alpha_{1}=1$, g_{1} be the function f as given in [7, Example 4.1] and $\alpha_{2}=\ldots=\alpha_{n}=0$, as well as with $\alpha_{1}=1, g_{1}$ be the function f as given in [7, Example 4.2] and $\alpha_{2}=\ldots=\alpha_{n}=0$, for every $\lambda \in] 0,+\infty\left[\right.$, has an unbounded sequence of weak solutions in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$.

Remark 3.6. In Corollary 3.6, replacing $\xi \rightarrow+\infty$ with $\xi \rightarrow 0^{+}$, by the same reasoning, we have that for every $\lambda \in] 0,1 /\left(p k^{p} \int_{\Omega} \alpha_{1}(x) d x\right) \liminf _{\xi \rightarrow 0^{+}} \xi^{-p} G_{1}(\xi)[$, the problem (15) has a sequence of weak solutions, which strongly converges to 0 in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$.

Remark 3.7. The statement of the results mainly depends upon the choice of the test function w_{m}. With our choice of w_{m} as given in (9), we have the present structure of the results. So, other candidates for the test function w_{m} can be considered to have other versions of the statement of the results, for instance, see [14].

4. A remarkable consequence

This section is concerned, as a consequence of Theorem 3.1, with the existence of infinitely many solutions for the nonlinear elliptic system of n doubly eigenvalue fourth order partial differential equations under Navier boundary conditions

$$
\begin{cases}\Delta\left(\left|\Delta u_{i}\right|^{p_{i}-2} \Delta u_{i}\right)-\alpha_{i} \Delta_{p_{i}} u_{i}+\beta_{i}\left|u_{i}\right|^{p_{i}-2} u_{i}=\lambda H_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right)+\mu G_{u_{i}}\left(x, u_{1}, \ldots, u_{n}\right) & \text { in } \Omega, \tag{16}\\ u_{i}=\Delta u_{i}=0 & \text { on } \partial \Omega\end{cases}
$$

for $1 \leqslant i \leqslant n, p_{i}>\max \left\{1, \frac{N}{2}\right\}, \alpha_{i}$ and β_{i} for $1 \leqslant i \leqslant n$ are positive constants, $\Omega \subset \mathbb{R}^{N}(N \geqslant 1)$ is a non-empty bounded open set with smooth boundary $\partial \Omega, \lambda$ is a positive parameter, μ is a non-negative parameter, $H: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function such that the mapping $\left(t_{1}, t_{2}, \cdots, t_{n}\right) \mapsto H\left(x, t_{1}, t_{2}, \cdots, t_{n}\right)$ is in C^{1} in \mathbb{R}^{n} for all $x \in \Omega, H_{t_{i}}$ is continuous in $\Omega \times \mathbb{R}^{n}$ for $i=1, \cdots, n$, and $H(x, 0, \ldots, 0)=0$ for all $x \in \Omega$, $G: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function such that $G\left(., t_{1}, \ldots, t_{n}\right)$ is measurable in Ω for all $\left(t_{1}, \ldots, t_{n}\right) \in R^{n}$ and $G(x, ., \ldots,$.$) is C^{1}$ in \mathbb{R}^{n} for every $x \in \Omega$ and satisfies the condition

$$
\begin{equation*}
\sup _{\left|\left(t_{1}, \ldots, t_{n}\right)\right| \leqslant s} \sum_{i=1}^{n}\left|G_{t_{i}}\left(x, t_{1}, \ldots, t_{n}\right)\right| \leqslant m_{s}(x) \tag{17}
\end{equation*}
$$

for all $s>0$ and some $m_{s} \in L^{1}$ with $G(., 0, \ldots, 0) \in L^{1}$, and $H_{u_{i}}$ and $G_{u_{i}}$ denote the partial derivative of H and G with respect to u_{i} for $1 \leqslant i \leqslant n$, respectively. Our objective here is to present conditions on H which imply the existence of infinitely many solutions to the system (16).

We state the main result of this section as follows.

Theorem 4.1. Assume that
(F1) $H\left(x, 0, \ldots, 0, t_{n}\right) \geqslant 0$ for each $x \in \Omega \backslash S\left(x^{0}, \frac{s}{2}\right), t_{n} \in \mathbb{R}$;

$$
\begin{align*}
& \liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K}\left(\frac{\xi^{p_{n}}}{\prod_{i=1}^{n}}\right) H\left(x, t_{1}, \ldots, t_{n}\right) d x \tag{F2}\\
& \quad<L \limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{s}{2}\right)} H(x, 0, \ldots, 0, \xi) d x
\end{align*}
$$

where L is given by (4) and $K\left(\frac{\xi^{p_{n}}}{\prod_{i=1}^{n} p_{i}}\right)=\left\{\left(t_{1}, \ldots, t_{n}\right) \left\lvert\, \sum_{i=1}^{n} \frac{\mid t_{i} p_{i}}{p_{i}} \leqslant \frac{\xi^{p_{n}}}{\prod_{i=1}^{n} p_{i}}\right.\right\}$ (see (2)).
Then, for each $\lambda \in] \lambda_{1}, \lambda_{2}[$ where

$$
\lambda_{1}:=\frac{\frac{1}{k L \prod_{i=1}^{n} p_{i}}}{\limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{5}{2}\right)} H(x, 0, \ldots, 0, \xi) d x}
$$

and

$$
\lambda_{2}:=\frac{\frac{1}{k \prod_{i=1}^{n} p_{i}}}{\sup _{\xi \rightarrow+\infty}} H \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{\dot{p}^{p_{n}}}{\prod_{i=1}^{p_{i}}}\right)} H\left(x, t_{1}, \ldots, t_{n}\right) d x,
$$

for every nonnegative arbitrary function $G: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is measurable in Ω and C^{l} in \mathbb{R}^{n} satisfying the condition (17) such that

$$
\begin{equation*}
G_{\infty}:=\lim _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K}\left(\frac{z^{p_{n}}}{\prod_{i=1}^{n} 1_{i}}\right) . ~ G\left(x, t_{1}, \ldots, t_{n}\right) d x<+\infty \tag{18}
\end{equation*}
$$

and for every $\mu \in\left[0, \mu_{G, 2}[\right.$ where

$$
\mu_{G, \lambda}:=\frac{1}{G_{\infty} k \prod_{i=1}^{n} p_{i}}\left(1-\lambda k \prod_{i=1}^{n} p_{i} \liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{z^{p} p_{n}}{\prod_{i=1}^{p_{i}}}\right)} H\left(x, t_{1}, \ldots, t_{n}\right) d x\right),
$$

the system (16) has an unbounded sequence of weak solutions in X.
Proof. Fix $\bar{\lambda} \in] \lambda_{1}, \lambda_{2}[$ and let G be a function satisfying the condition (17). If $\mu=0$, Theorem 4.1 gives back to Theorem 3.1. We assume $\mu>0$. Since, $\bar{\lambda}<\lambda_{2}$, one has

$$
\mu_{G, \bar{\lambda}}:=\frac{1}{G_{\infty} k \prod_{i=1}^{n} p_{i}}\left(1-\bar{\lambda} k \prod_{i=1}^{n} p_{i} \liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K}\left(\frac{p^{p_{n}}}{\prod_{i=1}^{p_{i}^{p}}}\right) \quad H\left(x, t_{1}, \ldots, t_{n}\right) d x\right)>0
$$

Fix $\bar{\mu} \in] 0, \mu_{G, \bar{\lambda}}\left[\right.$ and set $v_{1}:=\lambda_{1}$ and $v_{2}:=\lambda_{2} /\left(1+k \prod_{i=1}^{n} p_{i} \frac{\bar{\mu}}{\lambda} \lambda_{2} G_{\infty}\right)$. If $G_{\infty}=0$, clearly, $v_{1}=\lambda_{1}, v_{2}=\lambda_{2}$ and $\left.\bar{\lambda} \in\right] v_{1}, v_{2}\left[\right.$. If $G_{\infty} \neq 0$, since $\bar{\mu}<\mu_{G, \bar{\lambda}}$, we obtain

$$
\frac{\bar{\lambda}}{\lambda_{2}}+k \prod_{i=1}^{n} p_{i} \bar{\mu} G_{\infty}<1
$$

and so

$$
\frac{\lambda_{2}}{1+k \prod_{i=1}^{n} p_{i} \frac{\mu}{\lambda} \lambda_{2} G_{\infty}}>\bar{\lambda}
$$

namely, $\bar{\lambda}<v_{2}$. Hence, bearing in mind that $\bar{\lambda}>\lambda_{1}=v_{1}$, one has $\left.\bar{\lambda} \in\right] v_{1}, v_{2}[$.

Now, set

$$
F\left(x, \xi_{1}, \ldots, \xi_{n}\right)=H\left(x, \xi_{1}, \ldots, \xi_{n}\right)+\frac{\bar{\mu}}{\bar{\lambda}} G\left(x, \xi_{1}, \ldots, \xi_{n}\right)
$$

for all $x \in \Omega$ and $\xi_{i} \in \mathbb{R}$ for $1 \leqslant i \leqslant n$. Then

$$
\begin{aligned}
& \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{z^{p p_{n}}}{\left.\prod_{i=1}^{n}\right)}\right.} F\left(x, t_{1}, \ldots, t_{n}\right) d x \\
& =\xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\xi_{i=1}^{p_{i=1}^{n}}\right)}\left[H\left(x, t_{1}, \ldots, t_{n}\right)+\frac{\bar{\mu}}{\bar{\lambda}} G\left(x, \xi_{1}, \ldots, \xi_{n}\right)\right] d x \\
& \leqslant \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{\tilde{p}^{p_{n}}}{\left.\prod_{i=1}^{p_{i}}\right)}\right.} H\left(x, t_{1}, \ldots, t_{n}\right) d x+\frac{\bar{\mu}}{\bar{\lambda}} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{z^{p p_{n}}}{\prod_{i=1}^{p} p_{i}^{p}}\right)} G\left(x, t_{1}, \ldots, t_{n}\right) d x .
\end{aligned}
$$

Taking (18) into account, we get

$$
\begin{align*}
& \liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{z^{p}}{\prod_{i=1}^{n} p_{i}^{p}}\right)} F\left(x, t_{1}, \ldots, t_{n}\right) d x \\
& \quad \leqslant \liminf _{\bar{\xi} \rightarrow+\infty} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{\xi^{p_{n}}}{\left.\prod_{i=1}^{p_{i}^{p i}}\right)}\right.} H\left(x, t_{1}, \ldots, t_{n}\right) d x+\frac{\bar{\mu}}{\bar{\lambda}} G_{\infty} . \tag{19}
\end{align*}
$$

Moreover, since G is nonnegative, we obtain

$$
\begin{equation*}
\limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{5}{2}\right)} F(x, 0, \ldots, 0, \xi) d x \geqslant \limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{5}{2}\right)} H(x, 0, \ldots, 0, \xi) d x \tag{20}
\end{equation*}
$$

Therefore, (19) together with (20), yields

$$
\begin{equation*}
\bar{\lambda} \in] v_{1}, v_{2}[\subseteq] \lambda_{1}, \lambda_{2}[. \tag{21}
\end{equation*}
$$

So, from (21), Assumption (A2) is verified. Hence, applying Theorem 3.1, we have the conclusion.

Remark 4.1. Under the conditions

$$
\liminf _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{e^{p_{n}}}{\left.\prod_{i=1}^{n}\right)}\right.} H\left(x, t_{1}, \ldots, t_{n}\right) d x=0
$$

and

$$
\limsup _{\xi \rightarrow+\infty} \xi^{-p_{n}} \int_{S\left(x^{0}, \frac{\xi}{2}\right)} H(x, 0, \ldots, 0, \xi) d x=+\infty
$$

Theorem 4.1 concludes that for every $\lambda>0$ and for each $\mu \in\left[0,1 / k G_{\infty} \prod_{i=1}^{n} p_{i}[\right.$ the system (16) admits infinitely many weak solutions in X. Moreover, if $G_{\infty}=0$, the result holds for every $\lambda>0$ and $\mu>0$.

Remark 4.2. As we mentioned in the last section, in Theorem 4.1 also, replacing $\xi \rightarrow+\infty$ by $\xi \rightarrow 0^{+}$, by the same reasoning, we have that for every $\left.\lambda \in\right] \lambda_{1}, \lambda_{2}[$, in this case, and for every nonnegative arbitrary function $G: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is measurable in Ω and C^{1} in \mathbb{R}^{n} satisfying the condition (17) such that

$$
G_{0}:=\lim _{\xi \rightarrow 0^{+}} \xi^{-p_{n}} \int_{\Omega} \sup _{\left(t_{1}, \ldots, t_{n}\right) \in K\left(\frac{z^{p_{n}}}{\prod_{i=1}^{p_{i}}}\right)} G\left(x, t_{1}, \ldots, t_{n}\right) d x<+\infty
$$

and for every $\mu \in\left[0, \mu_{G, \lambda}[\right.$ where
the system (16) has a sequence of weak solutions, which strongly converges to 0 in X.
We present two examples to illustrate Theorem 4.1 as follows.
Example 4.1. Let $\Omega \subset \mathbb{R}^{3}$ be a non-empty open set with a smooth boundary $\partial \Omega$ and let $G: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a nonnegative function which is measurable in Ω and C^{1} in \mathbb{R}^{3} satisfying the condition

$$
\sup _{\left|\left(t_{1}, t_{2}, t_{3}\right)\right| \leqslant s} \sum_{i=1}^{3}\left|G_{t_{i}}\left(x, y, z, t_{1}, t_{2}, t_{3}\right)\right| \leqslant m_{s}(x, y, z)
$$

for all $s>0$ and some $m_{s} \in L^{1}$ with $G(., ., ., 0, \ldots, 0) \in L^{1}$ such that

$$
\lim _{\xi \rightarrow+\infty} \xi^{-5} \int_{\Omega} \sup _{\left(t_{1}, t_{2}, t_{2}\right) \in K\left(\frac{\xi^{5}}{(25)}\right)} G\left(x, y, z, t_{1}, t_{2}, t_{3}\right) d x<+\infty
$$

Consider the increasing sequence of positive real numbers given by

$$
a_{1}=2, a_{m+1}=m!\left(a_{m}\right)^{\frac{6}{5}}+2
$$

for every $m \geqslant 1$. Define the function $H: \Omega \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
H\left(x, y, z, t_{1}, t_{2}, t_{3}\right)= \begin{cases}\left(a_{m+1}\right)^{6} e^{x^{2}+y^{2}+z^{2}-\frac{1}{1-\sum_{i=1}^{3}\left(t_{i}-a_{m+1}\right)^{2}}}+ & \text { if } \Omega \times \bigcup_{m \geqslant 1} S\left(\left(a_{m+1}, a_{m+1}, a_{m+1}\right), 1\right), \\ 0 & \text { otherwise }\end{cases}
$$

where $S\left(\left(a_{m+1}, a_{m+1}, a_{m+1}\right), 1\right)$ denotes the open unit ball with center at $\left(a_{m+1}, a_{m+1}, a_{m+1}\right)$. It is clear that F is a non-negative function such that $H\left(., ., ., t_{1}, t_{2}, t_{3}\right)$ is continuous in Ω for all $\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}^{3}, H(x, y, z, ., .,$.$) is C^{1}$ in \mathbb{R}^{3} for every $(x, y, z) \in \Omega, H(x, y, z, 0,0,0)=0$ for all $(x, y, z) \in \Omega$ and for every $\varrho>0$,

$$
\sup _{\left|\left(t_{1}, t_{2}, t_{3}\right)\right| \leqslant \varrho}\left(\left|H_{t_{1}}\left(x, y, z, t_{1}, t_{2}, t_{3}\right)\right|+\left|H_{t_{2}}\left(x, y, z, t_{1}, t_{2}, t_{3}\right)\right|+\left|H_{t_{3}}\left(x, y, z, t_{1}, t_{2}, t_{3}\right)\right|\right) \in L^{1}(\Omega) .
$$

Now, for every $m \in \mathbb{N}$, the restriction $\left.H\left(x, y, z, t_{1}, t_{2}, t_{3}\right)\right|_{S\left(\left(a_{m+1}, a_{m+1}, a_{m+1}\right), 1\right)}$ attains its maximum in $\left(0,0, a_{m+1}\right)$ and one has $F\left(x, y, z, 0,0, a_{m+1}\right)=\left(a_{m+1}\right)^{6} e^{x^{2}+y^{2}+z^{2}}$. Since

$$
\lim _{m \rightarrow+\infty} \frac{H\left(x, y, z, 0,0, a_{m+1}\right)}{\left(a_{m+1}\right)^{5}}=+\infty
$$

we see that

$$
\limsup _{\xi \rightarrow+\infty} \xi^{-5} H(x, y, z, 0,0, \xi) d x=+\infty
$$

Moreover, by choosing $\xi_{m}=\sqrt[5]{25}\left(a_{m+1}-1\right)$ for every $m \in \mathbb{N}$, one has

$$
\sup _{\left(t_{1}, t_{2}, t_{3}\right) \in K\left(\frac{\xi^{5}}{125}\right)} H\left(x, y, z, t_{1}, t_{2}, t_{3}\right)=\left(a_{m}\right)^{6} e^{x^{2}+y^{2}+z^{2}}, \quad \forall m \in \mathbb{N} .
$$

Then,

$$
\lim _{m \rightarrow+\infty} \frac{\sup _{\left(t_{1}, t_{2}, t_{3}\right) \in K\left(\frac{\xi^{5}}{255}\right)} H\left(x, y, z, t_{1}, t_{2}, t_{3}\right)}{25\left(a_{m+1}-1\right)^{5}}=0,
$$

whereupon

$$
\liminf _{\xi \rightarrow+\infty} \xi^{-5} \sup _{\left(t_{1}, t_{2}, t_{3}\right) \in K\left(\frac{\xi^{5}}{125}\right)} H\left(x, y, z, t_{1}, t_{2}, t_{3}\right)=0 .
$$

Therefore,

$$
\begin{aligned}
0 & =\liminf _{\xi \rightarrow+\infty} \xi^{-5} \int_{\Omega} \sup _{\left(t_{1}, t_{2}\right) \in K\left(\frac{\xi}{125}\right)} H\left(x, y, z, t_{1}, t_{2}, t_{3}\right) d x \\
& <L \limsup _{\xi \rightarrow+\infty} \xi^{-5} \int_{S\left(x^{0}, \frac{5}{2}\right)} H(x, y, z, 0,0, \xi) d x=+\infty .
\end{aligned}
$$

Hence, all the assumptions of Theorem 4.1 are satisfied. So, Theorem 4.1 is applicable to the system

$$
\begin{cases}\Delta\left(|\Delta u|^{3} \Delta u\right)-\alpha_{1} \Delta_{5} u+\beta_{1}|u|^{3} u=\lambda H_{u}(x, y, z, u, v, w)+\mu G_{u}(x, y, z, u, v, w) & \text { in } \Omega \tag{22}\\ \Delta\left(|\Delta v|^{3} \Delta v\right)-\alpha_{2} \Delta_{5} v+\beta_{2}|v|^{3} v=\lambda H_{v}(x, y, z, u, v, w)+\mu G_{v}(x, y, z, u, v, w) & \text { in } \Omega \\ \Delta\left(|\Delta w|^{3} \Delta w\right)-\alpha_{3} \Delta_{5} w+\beta_{3}|w|^{3} w=\lambda H_{w}(x, y, z, u, v, w)+\mu G_{w}(x, y, z, u, v, w) & \text { in } \Omega \\ u=\Delta u=v=\Delta v=w=\Delta w=0 & \text { on } \partial \Omega\end{cases}
$$

where α_{i}, β_{i} for $i=1,2,3$ are positive constants, for every $\left.(\lambda, \mu) \in\right] 0,+\infty\left[\times\left[0, \frac{1}{125 k G_{\infty}}[\right.\right.$.
For instance, choosing

$$
G\left(x, y, z, t_{1}, t_{2}, t_{3}\right)=\frac{e^{-t_{1}^{+}}\left(t_{1}^{+}\right)^{\alpha}+e^{-t_{2}^{+}}\left(t_{2}^{+}\right)^{\beta}+e^{-t_{3}^{+}}\left(t_{1}^{+}\right)^{\gamma}}{1+\sqrt{x^{2}+y^{2}+z^{2}}}
$$

where $t_{i}^{+}=\max \left\{t_{i}, 0\right\}$ for $i=1,2,3, \alpha, \beta$ and γ are positive real numbers, for all $\left(x, y, z, t_{1}, t_{2}, t_{3}\right) \in \Omega \times \mathbb{R}^{3}$, the system (22), in this case, for every
$(\lambda, \mu) \in] 0,+\infty[\times[0,+\infty[$, has an unbounded sequence of weak solutions in $\left(W^{2,5}(\Omega) \cap W_{0}^{1,5}(\Omega)\right)^{3}$.

Example 4.2. Let α and β be two positive constants with $\alpha+\beta<1$, and let f be as given in Example 3.2. By the same argument as in Example 3.2, taking Remark 4.2 into account, we observe that the problem

$$
\left\{\begin{array}{l}
\left(\left|u^{\prime \prime}\right| u^{\prime \prime}\right)^{\prime \prime}=\lambda f(x, u)+\mu g(x, u) \quad \text { in }(0,1), \\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

where $g:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an arbitrary nonnegative L^{2}-Carathéodory function such that

$$
g_{0}:=\lim _{\xi \rightarrow 0^{+}} \xi^{-3} \int_{0}^{1} \sup _{|t| \leqslant \xi} \int_{0}^{t} g(x, \delta) d \delta d x<+\infty
$$

for every

$$
(\lambda, \mu) \in] \frac{\sigma(1,3, s)}{6 \int_{\alpha}^{1-\beta} h(x) d x},+\infty\left[\times\left[0, \frac{8}{g_{0}}[,\right.\right.
$$

where $0<s<\frac{1}{2}$ (we recall that, if $p>1$, for every $u \in W^{2, p}([0,1]) \cap W_{0}^{1, p}([0,1])$,

$$
\max _{x \in[0,1]}|u(x)| \leqslant \frac{1}{2} p^{-\frac{1}{p}}\left(\int_{0}^{1}\left|u^{\prime \prime}(x)\right|^{p} d x\right)^{\frac{1}{p}}
$$

for details see [26, Lemma 2], has a sequence of weak solutions, which strongly converges to 0 in $W^{2,3}([0,1]) \cap W_{0}^{1,3}([0,1])$.

Acknowledgments

The author expresses his sincere gratitude to the referees for reading this paper very carefully and also for valuable suggestions concerning improvement of the manuscript.

References

[1] G.A. Afrouzi, S. Heidarkhani, D. O'Regan, Existence of three solutions for a doubly eigenvalue fourthorder boundary value problem, Taiwanese J. Math. 15 (1) (2011) 201-210.
[2] G. Bonanno, G. D'Aguì, On the Neumann problem for elliptic equations involving the p-Laplacian, J. Math. Anal. Appl. 358 (2009) 223-228.
[3] G. Bonanno, B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl. 343 (2008) 1166-1176.
[4] G. Bonanno, B. Di Bella, Infinitely many solutions for a fourth-order elastic beam equation, Nonlinear Differ. Equ. Appl. NoDEA 18 (2011) 357-368.
[5] G. Bonanno, B. Di Bella, A fourth-order boundary value problem for a Sturm-Liouville type equation, Appl. Math. Comput. 217 (2010) 3635-3640.
[6] G. Bonanno, G. Molica Bisci, A remark on perturbed elliptic Neumann problems, Stud. Univ. BabeşBolyai Math. LV (4) (2010).
[7] G. Bonanno, G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009) 1-20.
[8] G. Bonanno, G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the pLaplacian, Proc. R. Soc. Edinburgh 140A (2010) 737-752.
[9] G. Bonanno, G. Molica Bisci, V. Rădulescu, Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatsh. Math. doi:http://dx.doi.org/10.1007/s00605-010-0280-2, in press.
[10] G. Bonanno, G. Molica Bisci, V. Rǎdulescu, Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces, C.R. Acad. Sci. Paris Ser. I 349 (2011) 263-268.
[11] G. Bonanno, G. Molica Bisci, D. O'Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems, Math. Comput. Model. 52 (2010) 152-160.
[12] G. Bonanno, B. Di Bella, D. O'Regan, Non-trivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. Appl. 62 (2011) 1862-1869.
[13] P. Candito, Infinitely many solutions to the Neumann problem for elliptic equations involving the p Laplacian and with discontinuous nonlinearities, Proc. Edinburgh Math. Soc. 45 (2002) 397-409.
[14] P. Candito, R. Livrea, Infinitely many solutions for a nonlinear Navier boundary value problem involving the p-biharmonic, Stud. Univ. "Babeş-Bolyai Math. LV (4) (2010).
[15] G. Dai, Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$ Laplacian, Nonlinear Anal. 70 (2009) 2297-2305.
[16] X. Fan, C. Ji, Existence of infinitely many solutions for a Neumann problem involving the $p(x)$ Laplacian, J. Math. Anal. Appl. 334 (2007) 248-260.
[17] J.R. Graef, S. Heidarkhani, L. Kong, Infinitely many solutions for systems of multi-point boundary value problems using variational methods, Topol. Methods in Nonlinear Anal., in press.
[18] J.R. Graef, S. Heidarkhani, L. Kong, Multiple solutions for a class of (p_{1}, \ldots, p_{n})-biharmonic systems, Commun. Pure Appl. Anal. (CPAA) 12 (3) (2013) 1393-1406.
[19] S. Heidarkhani, Existence of non-trivial solutions for systems of n fourth order partial differential equations, Math. Slovaca, in press.
[20] S. Heidarkhani, Y. Tian, C.-L. Tang, Existence of three solutions for a class of (p_{1}, \ldots, p_{n})-biharmonic systems with Navier boundary conditions, Ann. Polon. Math. 104 (2012) 261-277.
[21] A. Kristály, Infinitely many solutions for a differential inclusion problem in \mathbb{R}^{N}, J. Differ. Equ. 220 (2006) 511-530.
[22] A.C. Lazer, P.J. McKenna, Large amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev. 32 (1990) 537-578.
[23] C. Li, The existence of infinitely many solutions of a class of nonlinear elliptic equations with a Neumann boundary conditions for both resonance and oscillation problems, Nonlinear Anal. 54 (2003) 431-443.
[24] C. Li, S. Li, Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary conditions, J. Math. Anal. Appl. 298 (2004) 14-32.
[25] L. Li, C.-L. Tang, Existence of three solutions for (p, q)-biharmonic systems, Nonlinear Anal. 73 (2010) 796-805.
[26] C. Li, C.-L. Tang, Three solutions for a Navier boundary value problem involving the p-biharmonic, Nonlinear Anal. 72 (2010) 1339-1347.
[27] H. Liu, N. Su, Existence of three solutions for a p-biharmonic problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 15 (3) (2008) 445-452.
[28] S. Marano, D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to the Neumann-type problem involving the p-Laplacian, J. Differ. Equ. 182 (2002) 108-120.
[29] P. Omari, F. Zanolin, An elliptic problem with arbitrarily small positive solutions, Nonlinear Differ. Equ. Electron. J. Differ. Equ. Conf. 05 (2000) 301-308.
[30] P. Omari, F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Commun. Partial Differ. Equ. 21 (5-6) (1996).
[31] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000) 401-410.
[32] B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the p Laplacian, Bull. London Math. Soc. 33 (3) (2001) 331-340.
[33] J. Simon, Regularitè de la solution d'une equation non lineaire dans R^{N}, in: P. Bénilan, J. Robert (Eds.), Journes d'Analyse Non Linaire (Proc. Conf., Besanon, 1977), Lecture Notes in Mathematics, vol. 665, Springer, Berlin, Heidelberg, New York, 1978, pp. 205-227.
[34] H.T. Tehrani, Infinitely many solutions for indefinite semilinear elliptic equations without symmetry, Commun. Partial Differ. Equ. 21 (1996) 541-557.
[35] E. Zeidler, Nonlinear Functional Analysis and Its Applications, vol. II, Berlin, Heidelberg, New York, 1985.

[^0]: * Tel.: +98 831427 4569; fax: +988314274569 .

 E-mail addresses: s.heidarkhani@razi.ac.ir, sh.heidarkhani@yahoo.com Peer review under responsibility of King Saud University.

