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Abstract. In this paper, we introduce and study an implicit iterative method to

approximate a common solution of split equilibrium problem and fixed point problem

for a nonexpansive semigroup in real Hilbert spaces. Further, we prove that the nets

generated by the implicit iterative method converge strongly to the common solution

of split equilibrium problem and fixed point problem for a nonexpansive semigroup.

This common solution is the unique solution of a variational inequality problem and

is the optimality condition for a minimization problem. Furthermore, we justify our

main result through a numerical example. The results presented in this paper extend

and generalize the corresponding results given by Plubtieng and Punpaeng [S. Plubti-

eng, R. Punpaeng, Fixed point solutions of variational inequalities for nonexpansive

semigroups in Hilbert spaces, Math. Comput. Model. 48 (2008) 279–286] and Ciancia-

ruso et al. [F. Cianciaruso, G. Marino, L. Muglia, Iterative methods for equilibrium

and fixed point problems for nonexpansive semigroups in Hilbert space, J. Optim. The-

ory Appl. 146 (2010) 491–509].
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1. INTRODUCTION

Throughout the paper unless otherwise stated, let H1 and H2 be real Hilbert spaces
with inner product Æ Æ , Æ æ and norm i Æ i. Let C and Q be nonempty closed convex sub-
sets of H1 and H2, respectively.

In 1994, Blum and Oettli [2] introduced and studied the following equilibrium prob-
lem (in short, EP): Find x 2 C such that
Fðx; yÞP 0; 8y 2 C; ð1:1Þ

where F : C� C! R is a bifunction.

The EP (1.1) includes variational inequality problems, optimization problems, Nash
equilibrium problems, saddle point problems, fixed point problems, and complemen-
tary problems as special cases. In other words, EP (1.1) is an unify model for several
problems arising in science, engineering, optimization, economics, etc.

In the last two decades, EP (1.1) has been generalized and extensively studied in
many directions due to its importance; see, for example [14,16–19] and references there-
in, for the literature on the existence of solution of the various generalizations of EP
(1.1). Some iterative methods have been studied for solving various classes of equilib-
rium problems, see for example [4,10,13,20–23,30,31] and references therein. Recently,
some iterative methods for finding a common solution for system of equilibrium prob-
lems have been studied in the same space, see for example [9,28]. In general, the equi-
librium problems in systems lie in the different spaces. Therefore, in this paper, we
consider the following pair of equilibrium problems in different spaces, which is called
split equilibrium problem (in short, SEP) due to Moudafi [25]:

Let F1 : C� C! R and F2 : Q�Q! R be nonlinear bifunctions and A : H1 fi H2

be a bounded linear operator, then the split equilibrium problem (SEP) is to find x* 2 C
such that
F1ðx�; xÞP 0; 8x 2 C ð1:2Þ

and such that
y� ¼ Ax� 2 Q solves F2ðy�; yÞP 0; 8y 2 Q: ð1:3Þ

When looked separately, (1.2) is the equilibrium problem (EP) and we denoted its solu-
tion set by EP(F1). The SEP (1.2) and (1.3) constitutes a pair of equilibrium problems
which have to be solved so that the image y* = Ax* under a given bounded linear oper-
ator A, of the solution x* of the EP (1.2) in H1 is the solution of another EP (1.3) in
another space H2, we denote the solution set of EP (1.3) by EP(F2). The solution set
of SEP (1.2) and (1.3) is denoted by X = {p 2 EP(F1) : Ap 2 EP(F2)}.

SEP (1.2) and (1.3) generalize a multiple-set split feasibility problem. It also includes
as special case, the split variational inequality problem [7] which is the generalization of
split zero problems and split feasibility problems, see for detail [3,5–7,25,26].

Example 1.1. Let H1 ¼ H2 ¼ R, the set of all real numbers, with the inner product
defined by hx; yi ¼ xy; 8x; y 2 R. Let C= [0,2] and Q = (�1,0]; let F1 : C� C! R

and F2 : Q�Q! R be defined by F1(x,y) = x2 � y,"x,y 2 C and F2(u,v) =
(u + 6)(v � u)," u,v 2 Q and let, for each x 2 R, we define A(x) = �3x. It is easy to
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observe that EP ðF1Þ ¼ ½
ffiffiffi
2
p

; 2�;Að2Þ ¼ �6 and EP (F2) = {�6}. Hence
X :¼ {p 2 EP(F1) : Ap 2 EP(F2)} = {2} „ ;.

Next, we recall that a mapping T:H1 fi H1 is called a contraction, if there is a 2 (0,1)
such that
kTx� Tyk 6 akx� yk; 8x; y 2 H1:
If a = 1, T is called nonexpansive.
A family S:¼{T(s):0 6 s <1} of mappings from C into itself is called nonexpansive

semigroup on C if it satisfies the following conditions:

(i) T(0)x = x for all x 2 C;
(ii) T(s + t) = T(s)T(t) for all s,t P 0;
(iii) iT(s)x � T(s)yi 6 ix � yi for all x,y 2 C and s P 0;
(iv) for all x 2 C, s ´ T(s)x is continuous.

The set of all the common fixed points of a family S is denoted by Fix(S), i.e.,
FixðSÞ :¼ fx 2 C : TðsÞx ¼ x; 0 6 s <1g ¼
\

06s<1
FixðTðsÞÞ;
where Fix(T(s)) is the set of fixed points of T(s). It is well known that Fix(S) is closed
and convex.

The fixed point problem (in short, FPP) for a nonexpansive semigroup S is:
Find x 2 C such that x 2 FixðSÞ: ð1:4Þ

In 2006, Marino and Xu [24] considered the following implicit iterative scheme for a

nonexpansive mapping T:
xt ¼ tcfðxtÞ þ ðI� tBÞTxt;
where f is a contraction mapping with constant a and B:H1 fi H1 is a strongly positive
bounded linear self adjoint operator, i.e., if there exists a constant �c > 0 such that
hBx; xiP �ckxk2; 8x 2 H1;
with 0 < c < �c
a and t 2 (0,1) and proved that the net (xt) converges strongly to the un-

ique solution of the variational inequality
hðB� cfÞz; x� ziP 0; 8x 2 FixðTÞ;

which is the optimality condition for the minimization problem
min
x2FixðTÞ

1

2
hBx; xi � hðxÞ;
where h is the potential function for cf.
In 2008, Plubtieng and Punpaeng [27] introduced and studied the following implicit

iterative scheme to prove a strong convergence theorem for FPP (1.4):
xt ¼ tfðxtÞ þ ð1� tÞ 1
st

Z st

0

TðsÞxtds; ð1:5Þ
where (xt) is a continuous net and (st) is a positive real divergent net.
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Recently, Cianciaruso et al. [8] introduced and studied the following implicit itera-
tive scheme and obtained strong convergence theorem for EP (1.1) and FPP (1.4)
Fðut; yÞ þ 1
rt
hy� ut; ut � xti; 8y 2 C;

xt ¼ tcfðxtÞ þ ðI� tBÞ 1
st

R st
0
TðsÞutds;

(
ð1:6Þ
where (st) and (rt) are the continuous nets in (0,1).
Motivated by the work of Plubtieng and Punpaeng [27], Cianciaruso et al. [8],

Moudafi [25] and by the ongoing research in this direction, we suggest and analyze
an implicit iterative method for approximating a common solution of SEP (1.2) and
(1.3) and FPP (1.4) for a nonexpansive semigroup in real Hilbert spaces. Further, we
prove that the nets generated by the iterative scheme converge strongly to a common
solution of SEP (1.2) and (1.3) and FPP (1.4). Furthermore, we justify our main result
through a numerical example. The result presented in this paper generalizes the corre-
sponding results given in [8,27].

2. PRELIMINARIES

We recall some concepts and results which are needed in the sequel.

Definition 2.1. A mapping U : H1 fi H1 is said to be

(i) monotone, if
hUx�Uy; x� yiP 0; 8x; y 2 H1;
(ii) a-inverse strongly monotone (or, a-ism), if there exists a constant a > 0 such that
hUx�Uy; x� yiP akUx�Uyk2; 8x; y 2 H1;
(iii) firmly nonexpansive, if it is 1-ism.

Definition 2.2. A mapping U : H1 fi H1 is said to be averaged if and only if it can be
written as the average of the identity mapping and a nonexpansive mapping, i.e.,
U :¼ ð1� aÞIþ aV;
where a 2 (0,1) and V : H1 fi H1 is nonexpansive and I is the identity operator on H1.

We note that the averaged mappings are nonexpansive. Further, the firmly nonex-
pansive mappings are averaged.

The following are some key properties of averaged operators, see for instance [1,25].

Proposition 2.1. Let U : H1 fi H1 be a nonlinear mapping. Then:

(i) If U = (1 � a)D + aV, where D : H1 fi H1 is averaged, V : H1 fi H1 is nonex-
pansive and a 2 (0,1), then U is averaged;

(ii) The composite of finitely many averaged mappings is averaged;
(iii) If U is s-ism, then for c > 0, cU is s

c-ism;
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(iv) U is averaged if and only if, its complement I � U is s-ism for some s > 1
2
.

Definition 2.3. For every point x 2 H1, there exists a unique nearest point in C denoted
by PCx such that
kx� PCxk 6 kx� yk; 8y 2 C:
PC is called the metric projection ofH1 onto C. It is well known that PC is nonexpansive
mapping and is characterized by the following property:
hx� PCx; y� PCxi 6 0; 8x 2 H1; y 2 C: ð2:1Þ

It is well known that every nonexpansive operator T : H1 fi H1 satisfies, for all

(x,y) 2 H1 · H1, the inequality
hðx� TðxÞÞ � ðy� TðyÞÞ;TðyÞ � TðxÞi 6 ð1=2ÞkðTðxÞ � xÞ � ðTðyÞ � yÞk2
and therefore, we get, for all (x,y) 2 H1 · Fix(T),
hx� TðxÞ; y� TðxÞi 6 ð1=2ÞkTðxÞ � xk2; ð2:2Þ

see, e.g. [11, Theorem 2.3] and [12, Theorem 2.1].

Lemma 2.1 [15]. Assume that T is nonexpansive self mapping of a closed convex subset
C of a Hilbert space H1. If T has a fixed point, then I � T is demiclosed, i.e., whenever
{xn} is a sequence in C converging weakly to some x 2 C and the sequence {(I � T)xn}
converges strongly to some y, it follows that (I � T)x = y. Here I is the identity mapping
on H1.

Lemma 2.2 [29]. Let C be a nonempty bounded closed convex subset of a Hilbert space
H1 and let S:¼{T(s) : 0 6 s <1} be a nonexpansive semigroup on C. Then for t > 0
and for every 0 6 h <1,
lim
t!1

sup
x2C

1

t

Z t

0

TðsÞxds� TðhÞ 1

t

Z t

0

TðsÞxds
� �����

���� ¼ 0:
Lemma 2.3 [24]. Assume that B is a strong positive bounded linear self adjoint
operator on a Hilbert space H1 with coefficient �c > 0 and 0 < q 6 iBi�1. Then
kI� qBk 6 1� q�c.

Lemma 2.4 [24]. Let C be a nonempty closed convex subset of a real Hilbert space H1,
let f : H1 fi H1 be an a-contraction mapping and let B be a strongly positive bounded lin-
ear self adjoint operator with coefficient �c. Then for every 0 < c < �c

a ; ðB� cfÞ is strongly
monotone with coefficient ð�c� caÞ, i.e.,
hx� y; ðB� cfÞx� ðB� cfÞyiP ð�c� caÞkx� yk2:
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Assumption 2.1 [2]. Let F : C� C! R be a bifunction satisfying the following
assumptions:

(i) F(x,x) = 0, "x 2 C;
(ii) F is monotone, i.e., F(x,y) + F(y,x) 6 0, "x 2 C;
(iii) For each x,y,z 2 C, limsuptfi0 F(tz + (1 � t)x,y) 6 F(x,y);
(iv) For each x 2 C, y fi F(x,y) is convex and lower semicontinuous.

Lemma 2.5 [10]. Assume that F1 : C� C! R satisfying Assumption 2.1. For r> 0 and
for all x 2 H1, define a mapping TF1

r : H1 ! C as follows:
TF1
r x ¼ z 2 C : F1ðz; yÞ þ

1

r
hy� z; z� xiP 0; 8y 2 C

� �
:

Then the following hold:

(i) T F 1
r ðxÞ–; for each x 2 H1;

(ii) T F 1
r is single-valued;

(iii) T F 1
r is firmly nonexpansive, i.e.,
kTF1
r x� TF1

r yk2 6 hTF1
r x� TF1

r y; x� yi; 8x; y 2 H1;
(iv) Fix ðT F 1
r Þ ¼ EPðF 1Þ;

(v) EP (F1) is closed and convex.

Further, assume that F2 : Q�Q! R satisfying Assumption 2.1. For s> 0 and for
all w 2 H2, define a mapping TF2

s : H2 ! Q as follows:
TF2
s ðwÞ ¼ d 2 Q : F2ðd; eÞ þ

1

s
he� d; d� wiP 0; 8e 2 Q

� �
:

Then, we easily observe that TF2
s ðwÞ–; for each w 2 Q;TF2

s is single-valued and firmly
nonexpansive; EP(F2,Q) is closed and convex and Fix TF2

s

� 	
¼ EPðF2;QÞ, where

EP(F2,Q) is the solution set of the following equilibrium problem:
Find y* 2 Q such that F2(y

*,y) P 0, "y 2 Q.
We observe that EP(F2) ˝ EP(F2,Q). Further, it is easy to prove that X is closed and

convex set.

Lemma 2.6 [8]. Let F : C� C! R be a bifunction satisfying Assumption 2.1 hold and
let TF1

r be defined as in Lemma 2.5 for r > 0. Let x,y 2 H1 and r1,r2 > 0. Then:
kTF1
r2
y� TF1

r1
xk 6 ky� xk þ r2 � r1

r2










kTF1

r2
y� yk:
Lemma 2.7. The following inequality holds in a real Hilbert space H1:
kxþ yk2 6 kxk2 þ 2hy; xþ yi; 8x; y 2 H1:
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Notation 1. We use fi for strong convergence and N for weak convergence.
3. AN IMPLICIT ITERATIVE METHOD

In this section, we prove a strong convergence theorem based on the proposed implicit
iterative method for computing the approximate common solution of SEP (1.2) and
(1.3) and FPP (1.4) for a nonexpansive semigroup in real Hilbert spaces.

In the following theorem, we denote the identity operator on H1 as well as H2 by the
same symbol I.

Assume that X „ ;.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces and C ˝ H1 and Q ˝ H2 be
nonempty closed convex subsets. Let A:H1 fi H2 be a bounded linear operator. Assume
that F1 : C� C! R and F2 : Q�Q! R are the bifunctions satisfying Assumption 2.1
and F2 is upper semicontinuous in the first argument. Let S = {T(s) : 0 6 s <1} be a
nonexpansive semigroup on C such that Fix(S) \ X „ ;. Let f : H1 fi H1 be a
contraction mapping with constant a 2 (0,1) and B be a strongly positive bounded linear
self adjoint operator on H1 with constant �c > 0 such that 0 < c < �c

a < cþ 1
a. Assume (rt)

and (st) are the continuous nets of positive real numbers such that lim inft!0rt ¼ r > 0
and limt!0st ¼ þ1. Let the nets (ut) and (xt) be implicitly generated by
ut ¼ TF1
rt

xt þ dA� TF2
rt
� I

� 	
Axt

� 	
; ð3:1Þ

xt ¼ tcfðxtÞ þ ðI� tBÞ 1
st

Z st

0

TðsÞutds; ð3:2Þ
where d 2 (0,1/L), L is the spectral radius of the operator A*A and A* is the adjoint of
A. Then (xt) and (ut) converge strongly to z 2 Fix(S) \ X, where z =
PFix(S)\X(I � B + c f)z, which is the unique solution of the variational inequality
hðcf� BÞz; x� � zi 6 0; 8x� 2 FixðSÞ \ X: ð3:3Þ
Proof. We first show that (xt) is well defined. For t 2 (0,1) such that t < iBi�1, define a
mapping St:H1 fi H1 by Z
Stx ¼ tcfðxÞ þ ðI� tBÞ 1
st

st

0

TðsÞ TF1
rt

xþ dA� TF2
rt
� I

� 	
Ax

� 	� 	
ds; 8x 2 H1:
We claim that St is contractive with constant ð1� tð�c� caÞÞ. Indeed, since TF1
rt

and TF2
rt

both are firmly nonexpansive, they are averaged. For d 2 0; 1
L

� 	
, the mapping

Iþ dA� TF2
rt
� I

� 	
A

� 	
is averaged, see [25]. It follows from Proposition 2.1 (ii) that

the mapping TF1
rt

Iþ dA� TF2
rt
� I

� 	
A

� 	
is averaged and hence nonexpansive. Further,

for any x,y 2 H1, it follows from Lemma 2.3 that
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kStx� Styk 6 ktcfðxÞ þ ð1� tBÞ 1
st

Z st

0

TðsÞTF1
rt
ðxþ dA� TF2

rt
� I

� 	
AxÞds� tcfðyÞ

þ ð1� tBÞ 1
st

Z st

0

TðsÞTF1
rt

yþ dA� TF2
rt
� I

� 	
Ay

� 	
dsk 6 tckfðxÞ � fðyÞk

þ ð1� t�cÞ 1

st

Z st

0

TðsÞ TF1
rt

xþ dA� TF2
rt
� I

� 	
Ax

� 	�����
�TF1

rt
yþ dA� TF2

rt
� I

� 	
Ay

� 	�
ds
��

6 tcakx� yk
þ ð1� t�cÞ TF1

rt
Iþ dA� TF2

rt
� I

� 	
A

� 	
x

��
�TF1

rt
Iþ dA� TF2

rt
� I

� 	
A

� 	
y
��

6 tcakx� yk þ ð1� t�cÞkx� yk
¼ ð1� tð�c� caÞÞkx� yk:
Since 0 < ð1� tð�c� caÞÞ < 1, it follows that St is a contraction mapping. Therefore, by
Banach contraction principle, St has the unique fixed point xt, i.e., xt is the unique solu-
tion of the fixed point Eq. (3.2).

Next, we show that (xt) is bounded. Let p 2 Fix(S) \ X, we have
p ¼ TF1

rt
p;Ap ¼ TF2

rt
Ap and p = T(s)p.

We estimate
kut � pk2 ¼ TF1
rt

xt þ dA� TF2
rt
� I

� 	
Axt

� 	
� p

�� ��2
¼ TF1

rt
xt þ dA� TF2

rt
� I

� 	
Axt

� 	
� TF1

rt
p

�� ��2
6 kxt þ dA� TF2

rt
� I

� 	
Axt � pk2

6 kxt � pk2 þ d2 A� TF2
rt
� I

� 	
Axt

�� ��2 þ 2dhxt

� p;A� TF2
rt
� I

� 	
Axti: ð3:4Þ
Thus, we have
kut � pk2 6 kxt � pk2 þ d2h TF2
rt
� I

� 	
Axt;AA

� TF2
rt
� I

� 	
Axti þ 2dhxt

� p;A� TF2
rt
� I

� 	
Axti: ð3:5Þ
Now, we have
d2h TF2
rt
� I

� 	
Axt;AA

� TF2
rt
� I

� 	
Axti 6 Ld2h TF2

rt
� I

� 	
Axt; TF2

rt
� I

� 	
Axti

¼ Ld2k TF2
rt
� I

� 	
Axtk2: ð3:6Þ
Denoting K ¼ 2dhxt � p;A� TF2
rt
� I

� 	
Axti and using (2.2), we have
K ¼ 2dhxt � p;A� TF2
rt
� I

� 	
Axti ¼ 2dhAðxt � pÞ; TF2

rt
� I

� 	
Axti

¼ 2dhAðxt � pÞ þ TF2
rt
� I

� 	
Axt � TF2

rt
� I

� 	
Axt; TF2

rt
� I

� 	
Axti

¼ 2d hTF2
rt
Axt � Ap; TF2

rt
� I

� 	
Axti � k TF2

rt
� I

� 	
Axtk2

n o
6 2d

1

2
k TF2

rt
� I

� 	
Axtk2 � k TF2

rt
� I

� 	
Axtk2

� �
6 �dk TF2

rt
� I

� 	
Axtk2: ð3:7Þ
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Using (3.5), (3.6) and (3.7), we obtain
kut � pk2 6 kxt � pk2 þ dðLd� 1Þ TF2
rt
� I

� 	
Axt

�� ��2: ð3:8Þ

Since d 2 0; 1

L

� 	
, we obtain
kut � pk2 6 kxt � pk2: ð3:9Þ

Now, setting zt :¼ 1

st

R st
0
TðsÞutds, we obtain
kzt � pk ¼ 1

st

Z st

0

TðsÞutds� p

����
���� 6 1

st

Z st

0

kTðsÞut � TðsÞpkds 6 kut � pk

6 kxt � pk: ð3:10Þ
Further, we estimate
kxt � pk ¼ tcfðxtÞ þ ð1� tBÞ 1
st

Z st

0

TðsÞutds� p

����
����

6 tkcfðxtÞ � Bpk þ ð1� t�cÞ 1
st

Z st

0

kTðsÞut � TðSÞpkds

6 t½ckfðxtÞ � fðpÞk þ kcfðpÞ � Bpk� þ ð1� t�cÞkut � pk
6 tcakxt � pk þ tkcfðpÞ � Bpk þ ð1� t�cÞkxt � pk
6 ½1� tð�c� caÞ�kxt � pk þ tkcfðpÞ � Bpk

6
1

�c� ca
kcfðpÞ � Bpk: ð3:11Þ
Hence, the net (xt) is bounded and consequently, we deduce that the nets (ut), (zt) and
(f(xt)) are bounded.

Next, we have
kxt � ztk ¼ ktðcfðxtÞ � BztÞ þ ð1� tBÞðzt � ztÞk 6 tkcfðxtÞ � Bztk
! 0 as t! 0: ð3:12Þ
Next, we show that ixt � uti fi 0 as t fi 0. It follows from (3.8) and Lemma 2.7 that
kxt � pk2 6 ð1� t�cÞ2 1

st

Z st

0

TðsÞutds� p

����
����
2

þ 2thcfðxtÞ � Bpþ cfðpÞ

� cfðpÞ; xt � pi
6 ð1þ t2�c2 � 2t�cÞkut � pk2 þ 2tcakxt � pk2 þ 2thcfðpÞ � Bp; xt

� pi

6 ð1þ t2�c2Þkut � pk2 þ 2tcakxt � pk2 þ 2thcfðpÞ � Bp; xt � pi
6 kut � pk2 þ 2tcakxt � pk2 þ t�c2kxt � pk2 þ 2tkcfðpÞ
� Bpkkxt � pk

6 kxt � pk2 þ dðLd� 1Þk TF2
rt
� I

� 	
Axtk2 þ 2tcakxt � pk2

þ t�c2kxt � pk2 þ 2tkcfðpÞ � Bpkkxt � pk: ð3:13Þ
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Since (xt) is bounded, we may assume that .:¼sup0<t<1ixt � pi. Therefore, preceding
inequality reduces to
dð1� LdÞ TF2
rt
� I

� 	
Axt

�� ��2 6 t 2ca.2 þ �c2.2 þ 2kcfðpÞ � Bpk.
� �

:

Further, since d(1 � Ld) > 0, the preceding inequality implies that
lim
t!0
k TF2

rt
� I

� 	
Axtk ¼ 0: ð3:14Þ
Next, we have
kut � pk2 ¼ TF1
rt

xt þ dA� TF2
rt
� I

� 	
Axt

� 	
� p

�� ��2
¼ TF1

rt
xt þ dA� TF2

rt
� I

� 	
Axt

� 	
� TF1

rt
p

�� ��2
6 hut � p;xt þ dA� TF2

rt
� I

� 	
Axt � pi

¼ 1

2
kut � pk2 þ kxt þ dA� TF2

rt
� I

� 	
Axt � pk2

n
� ðut � pÞ � xt þ dA� TF2

rt
� I

� 	
Axt � p

� ��� ��2o
¼ 1

2
kut � pk2 þ kxt � pk2 � ut � xt � dA� TF2

rt
� I

� 	
Axt

�� ��2n o
¼ 1

2
kut � pk2 þ kxt � pk2 � kut � xtk2 þ d2kA� TF2

rt
� I

� 	
Axtk2

hn
� 2dhut � xt;A

� TF2
rt
� I

� 	
Axti

�

6

1

2
kut � pk2 þ kxt � pk2 � kut � xtk2 � d2kA� TF2

rt
� I

� 	
Axtk2

n
þ 2dkAðut � xtÞkk TF2

rt
� I

� 	
Axtk



:

Hence, we have
kut � pk2 6 kxt � pk2 � kut � xtk2 � d2kA� TF2
rt
� I

� 	
Axtk2 þ 2dkAðut

� xtÞkk TF2
rt
� I

� 	
Axtk

6 kxt � pk2 � kut � xtk2 þ 2dkAðut � xtÞk TF2
rt
� I

� 	
Axt

�� ��: ð3:15Þ
Since (xt) and (ut) are bounded and A is a bounded linear operator then the net
(A(ut � xt)) is bounded and hence, we may assume that l:¼sup0<t<1iA(ut � xt)i. It fol-
lows from (3.13) and (3.15) that
kxt � pk2 6 kut � pk2 þ 2tcakxt � pk2 þ t�c2kxt � pk2 þ 2tkcfðpÞ � Bpkkxt � pk
6 kxt � pk2 � kut � xtk2 þ 2dl TF2

rt
� I

� 	
Axt

�� ��þ tJ;
where J :¼ ð2caþ �c2Þ.2 þ 2kcfðpÞ � Bpk..
Therefore, from (3.14), we obtain
kxt � utk2 6 2dl TF2
rt
� I

� 	
Axt

�� ��þ tJ! 0; as t! 0:
Next, we have
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kTðsÞxt�xtk6 TðsÞxt�TðsÞ 1
st

Z st

0

TðsÞutds
����

����þ TðsÞ 1
st

Z st

0

TðsÞutds�
1

st

Z st

0

TðsÞutds
����

����
þ 1

st

Z st

0

TðsÞutds�xt

����
����

6 xt�
1

st

Z st

0

TðsÞutds
����

����þ TðsÞ 1
st

Z st

0

TðsÞutds�
1

st

Z st

0

TðsÞutds
����

����
þ 1

st

Z st

0

TðsÞutds�xt

����
����

6 2 xt�
1

st

Z st

0

TðsÞutds
����

����þ TðsÞ 1
st

Z st

0

TðsÞutds�
1

st

Z st

0

TðsÞutds
����

����: ð3:16Þ
We know xt and f(xt) are bounded. Let K :¼ w 2 C : w� p 6 1
�c�ca

��� ���cfðpÞ � Bp
��� ���n o

,

then K is a nonempty bounded closed convex subset of C which is T(s)-invariant for

each 0 6 s <1 and contains (xt). So without loss of generality, we may assume that

S:¼{T(s):0 6 s<1} is nonexpansive semigroup on K. By Lemma 2.2, we have
lim
st!1

TðsÞ 1
st

Z st

0

TðsÞutds�
1

st

Z st

0

TðsÞutds
����

���� ¼ 0: ð3:17Þ
Using (3.12), (3.16) and (3.17), we obtain
lim
t!0
kTðsÞxt � xtk ¼ 0: ð3:18Þ
Let t,t0 2 (0,iBi�1). Then, we have Z�

kxt � xt0k ¼ ðt� t0ÞcfðxtÞ þ t0cðfðxtÞ � fðxt0Þ þ ðt0 � tÞB

st

st

0

TðsÞutds
���
þ I� t0BÞ

1

st

Z st

0

TðsÞutds�
1

st0

Z st0

0

TðsÞut0ds
� �� ����

6 jt� t0jckfðxtÞ � fðpÞ þ fðpÞk þ t0cakxt � xt0k

þ jt0 � tj kBk
st

Z st

0

TðsÞutds� pþ p

����
����þ ðI� t0�cÞ

1

st

Z st

0

TðsÞutds
����

� 1

st0

Z st0

0

TðsÞut0ds
���� 6 jt� t0jðckfðxtÞ � fðpÞk þ ckfðpÞkÞ

þ t0cakxt � xt0k þ jt0 � tjkBk 1

st

Z st

0

TðsÞutds� p

����
����þ jt0 � tj kBk

st
kpk

þ ðI� t0�cÞ
1

st

Z st

0

TðsÞutds�
1

st0

Z st0

0

TðsÞut0ds
����

����
6 jt� t0j cakxt � pk þ ckfðpÞk þ kBk 1

st

Z st

0

TðsÞutds� p

����
����

� �

þ jt0 � tj kBk
st
kpk þ t0cakxt � xt0k

¼ þð1� t0�cÞ
1

st

Z st

0

TðsÞutds�
1

st

Z st

0

TðsÞut0ds
����

����
þ ð1� t0�cÞ

1

st

Z st

0

TðsÞut0ds�
1

st0

Z st0

0

TðsÞut0ds
����

����: ð3:19Þ
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Since 1
st

R st
0
TðsÞutds� p

��� ��� 6 kut � pk 6 kxt � pk 6 ., and if we denote
M :¼ ðcaþ kBkÞ.þ ckfðpÞk;

we obtain
kxt � xt0k 6 jt� t0jMþ jt0 � tj kBk
st
kpk þ t0cakxt � xt0k þ ð1� t0�cÞkut � ut0k

þ ð1� t0�cÞ
1

st
� 1

st0

� �Z st

0

TðsÞut0ds�
1

st0

Z st0

st

TðsÞut0ds
����

����
6 jt� t0jMþ jt0 � tj kBk

st
kpk þ t0cakxt � xt0k þ ð1� t0�cÞkut � ut0k

þ ð1� t0�cÞ
1

st
� 1

st0










stð.þ kpkÞ þ ð1� t0�cÞ

1

st0

Z st0

st

TðsÞut0ds
����

����: ð3:20Þ

Since the mapping TF1

rt
ðIþ dA�ðTF2

rt
� IÞAÞ is nonexpansive then it follows from

ut ¼ TF1
rt
ðxt þ dA�ðTF2

rt
� IÞAxtÞ, ut0 ¼ TF1

rt0
ðxt0 þ dA�ðTF2

rt0
� IÞAxt0Þ and Lemma 2.6 that
kut � ut0k 6 TF1
rt
ðxt þ dA� TF2

rt
� I

� 	
AxtÞ � TF1

rt
xt0 þ dA� TF2

rt
� I

� 	
Axt0

� 	�� ��
þ kTF1

rt
ðxt0 þ dA� TF2

rt
� I

� 	
Axt0Þ � TF1

rt0
xt0 þ dA� TF2

rt0
� I

� �
Axt0

� �
k

6 kxt � xt0k þ xt0 þ dA� TF2
rt
� I

� 	
Axt0

� 	
� xt0 þ dA� TF2

rt0
� I

� �
Axt0

� ���� ���
þ 1� rt0

rt










 TF1

rt
ðxt0 þ dA� TF2

rt
� I

� 	
Axt0Þ � xt0 þ dA� TF2

rt
� I

� 	
Axt0

� 	�� ��
6 kxt � xt0k þ dkAkkTF2

rt
Axt0 � TF2

rt0
Axt0k þ dt 6 kxt � xt0k

þ dkAk 1� rt0
rt










kTF2

rt
Axt0 � Axt0k þ dt ¼ kxt � xt0k þ dkAkrt þ dt;

ð3:21Þ
where
rt ¼ 1� rt0
rt










kTF2

rt
Axt0 � Axt0k
and
dt ¼ 1� rt0
rt










 TF1

rt
xt0 þ dA� TF2

rt
� I

� 	
Axt0

� 	
� xt0 þ dA� TF2

rt
� I

� 	
Axt0

� 	�� ��

Further, it follows from (3.14) that the net ðTF2

rt
Axt � AxtÞ is convergent and hence

bounded. Therefore, we may assume M1 :¼ sup0<t<1 TF2
rt
Axt � Axt

�� ��. Further, we can

observe that the net xt0 þ dA� TF2
rt
� I

� 	
Axt0

� 	
is also bounded and hence, we may as-

sume that M2 :¼ sup0<t<1 TF1
rt

xt0 þ dA� TF2
rt
� I

� 	
Axt0

� 	
� xt0 þ dA� TF2

rt
� I

� 	
Axt0

� 	�� ��.
Moreover, since (rt) is a continuous net of positive real numbers, we can choose a

neighborhood Ut0 and a positive number c in such a way that c < rt for t 2 Ut0 , then
(3.21) reduces to
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kut � ut0k 6 kxt � xt0k þ dkAkM1

c
þM2

c

� �
jrt � rt0 j: ð3:22Þ
It follows from (3.20) and (3.22) that
kxt � xt0k 6 jt� t0jMþ jt0 � tj kBk
st
kpk þ t0cakxt � xt0k þ ð1� t0�cÞkxt � xt0k

þ ð1� t0�cÞ
1

st
� 1

st0










stð.þ kpkÞ þ ð1� t0�cÞ

1

st0

Z st0

st

TðsÞut0ds
����

����
þ ð1� t0�cÞ dkAkM1

c
þM2

c

� �
jrt � rt0 j

6
1

�c� ca
jt� t0jMþ jt0 � tj kBk

st
kpkþ

�
1

st
� 1

st0










stð.þ kpkÞ

þ ð1� t0�cÞjst � st0 jð.þ kpkÞ þ ð1� t0�cÞ dkAkM1

c
þM2

c

� �
jrt � rt0 j:
The continuity of (rt) and (st) shows that (xt) is a continuous curve. The continuity of
(ut) is followed by (3.22).

Let {tn} be a sequence in (0,1) such that tn fi 0 as n fi1. Setting xn :¼ xtn ,
un :¼ utn ; sn :¼ stn , rn :¼ rtn . Since {xn} is a bounded sequence, there is a subsequence
fxnjg of {xn} which converges weakly to w 2 C. It follows from (3.18) and Lemma 2.1
that w 2 Fix(S). Further, we show that xnj ! w as j fi1. Indeed, for each n, we have
kxn � wk2 ¼ htncfðxnÞ; xn � wi þ ð1� tnBÞ
1

sn

Z sn

0

TðsÞunds� w;xn � w

� �

6 tnhcfðxnÞ � Bw; xn � wi þ ð1� tn�cÞ
1

sn

Z sn

0

TðsÞunds� w

����
����kxn � wk

6 tnhcfðxnÞ � Bw; xn � wi þ ð1� tn�cÞkxn � wk2

6 tncakxn � wk2 þ tnhcfðwÞ � Bw; xn � wi þ ð1� tn�cÞkxn � wk2

6 ½1� tnð�c� caÞ�kxn � wk2 þ tnhcfðwÞ � Bw; xn � wi

6
1

�c� ca
hcfðwÞ � Bw; xn � wi:
In particular, we have
kxnj � wk2 6 1

�c� ca
hcfðwÞ � Bw; xnj � wi: ð3:23Þ
Since xnj * w, it follows from (3.23) that xnj ! w as j fi1.
Next, we show that w 2 EP(F1). Since ut ¼ TF1

rt
xt then, we have unj ¼ TF1

rnj
xnj and,
F1ðunj ; yÞ þ
1

rnj
hy� unj ; unj � xnjiP 0; 8y 2 C:
It follows from the monotonicity of F1 that
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1

rnj
hy� unj ; unj � xnjiP F1ðy; unjÞ
and hence
y� unj ;
unj � xnj

rnj

� �
P F1ðy; unjÞ:
Since iun � xni fi 0 and xnj ! w, we get unj ! w. Further, since lim inftfi0rt = r > 0,
unj�xnj

rnj
! 0. It follows from Assumption 2.1 (iv) that 0 P F1(y,w),"w 2 C. For s with

0 < s 6 1 and y 2 C, let ys = s y + (1 � s)w. Since y 2 C, w 2 C, we get ys 2 C and
hence F1(ys,w) 6 0. So from Assumption 2.1 (i) and (iv) we have
0 ¼ F1ðys; ysÞ 6 sF1ðys; yÞ þ ð1� sÞF1ðys;wÞ 6 sF1ðys; yÞ:

Therefore 0 6 F1(ys,y). From Assumption 2.1 (iii), we have 0 6 F1(w,y). This implies
that w 2 EP(F1).

Next, we show that Aw 2 EP(F2). Since xnj ! w and A is a bounded linear operator,
Axnj ! Aw.

Now, setting vnj ¼ Axnj � TF2
rnj
Axnj . It follows that from (3.14) that limj!1vnj ¼ 0

and Axnj � vnj ¼ TF2
rnj
Axnj .

Therefore from Lemma 2.5, we have
F2ðAxnj � vnj ; zÞ þ
1

rnj
hz� ðAxnj � vnjÞ; ðAxnj � vnjÞ � AxnjiP 0; 8z 2 Q:
Since F2 is upper semicontinuous in the first argument, taking lim sup to above inequal-
ity as j fi1 and using lim inftfi0rt = r > 0, we obtain
F2ðAw; zÞP 0; 8z 2 Q;
which means that Aw 2 EP(F2) and hence w 2 X.
Next, we show that w 2 Fix(S) \ X solves the variational inequality (3.3). Since xt is

the unique solution of fixed point Eq. (3.2), we have
ðB� cfÞxt ¼ �
1

t
ðI� tBÞ xt �

1

st

Z st

0

TðsÞutds
� �

:

Hence, for any q 2 Fix(S) \ X, we obtain
hðB�cfÞxt;xt�qi¼�
1

t
ðI�tBÞ xt�

1

st

Z st

0

TðsÞTF1
rt
ðIþdA� TF2

rt
�I

� 	
AÞxtds

� �
;xt�q

� �

¼�1
t

1

st

Z st

0

I�TðsÞTF1
rt

IþdA� TF2
rt
�I

� 	
A

� 	
xt

���
� I�TðsÞTF1

rt
IþdA� TF2

rt
�I

� 	
A

� 	
q;xt�q

� �
ds
�

þ1

st
B

Z st

0

½xt�TðsÞut�ds;xt�q
� �

: ð3:24Þ
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Since the mapping U :¼ TðsÞTF1
rt
ðIþ dA� TF2

rt
� I

� 	
AÞ is nonexpansive then (I � U) is

monotone and hence
1

st

Z st

0

I�TðsÞTF1
rt
ðIþdA� TF2

rt
� I

� 	
A

� 	
xt� I�TðsÞTF1

rt
ðIþdA� TF2

rt
� I

� 	
A

� 	
q;xt�q

� �
dsP 0:
This together with (3.24), we have
hðB� cfÞxt; xt � qi 6 Bxt �
B

st

Z st

0

TðsÞutds; xt � q

� �
:

From (3.2), we have
Bxt �
B

st

Z st

0

TðsÞutds ¼ tB cfðxtÞ �
B

st

Z st

0

TðsÞutds
� �

:

Hence, we have
hðB� cfÞxt; xt � qi 6 t B cfðxtÞ �
B

st

Z st

0

TðsÞutds
� �

; xt � q

� �
:

Since the nets (xt),(zt),(ut) and (f(xt)) are bounded, on taking the limit t :¼ tnj ! 0, we
obtain
hðB� cfÞw;w� qi ¼ lim
j!1
hðB� cfÞxnj ; xnj � qi 6 0; ð3:25Þ
which implies w = PFix(S)\X(I + cf � B).
To show that the net xt converges strongly to w, we assume that there is a sequence

{sn} � (0,1) such that xsn ! q when sn fi 0 as n fi 1. Following the same steps of the
proof given above, we can prove q 2 Fix(S) \ X. Hence, it follows from (3.25) that
hðB� cfÞq; q� wi 6 0: ð3:26Þ

Interchanging the role of w and z, we obtain
hðB� cfÞw;w� qi 6 0: ð3:27Þ

Adding (3.26) and (3.27) yields
ð�c� caÞkw� qk2 6 hw� q; ðB� cfÞw� ðB� cfÞqi 6 0:
By Lemma 2.4, we have w = q and therefore xt fi q.
Thus, we have shown that each cluster point of (xt) equals w as t fi 0. Therefore

xt fi w and ut fi w as t fi 0, where w 2 Fix(S) \ X is the unique solution of the
variational inequality (3.2). This completes the proof. h

As the consequence of Theorem 3.1, we have the following strong convergence re-
sults for computing the approximate common solution of EP (1.1) and FPP (1.4) for
a nonexpansive semigroup in real Hilbert space.

Corollary 3.1 [8]. Let H be a real Hilbert space and C ˝ H be a nonempty closed convex
subset. Let F : C� C! R be a bifunction such that Assumption 2.1 hold. Let
S = {T(s):0 6 s<1} be a nonexpansive semigroup on C such that
Fix(S) \ EP(F) „ ;. Let f:H fi H be a contraction mapping with constant a 2 (0,1) and
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B be a strongly positive bounded linear self adjoint operator on H with constant �c > 0,
such that 0 < c < �c

a < cþ 1
a. Assume (rt) and (st) are the continuous nets of positive real

numbers such that lim inftfi0rt = r > 0 and limtfi0st = +1. Let the nets (ut) and (xt)
are generated by the implicit iterative scheme (1.6). Then xt and ut converge strongly to
z 2 Fix(S) \ EP(F), where z = PFix (S)\EP (F) (I + cf � B), which is the unique solution
of the variational inequality
hðcf� BÞz; x� � zi 6 0; 8x� 2 FixðSÞ \ EPðFÞ:
Proof. Taking H1 = H2 = H, A = 0, F1 = F and B = I in Theorem 3.1 then the con-
clusion of Corollary 3.1 is obtained. h

Further, we have the following consequence of Theorem 3.1.

Corollary 3.2 [27]. Let H be a real Hilbert space and C ˝ H be a nonempty closed
convex subset. Let S = {T(s):0 6 s<1} be a nonexpansive semigroup on C such that
Fix(S) „ ;. Let f:H fi H be a contraction mapping with constant a 2 (0,1) . Assume (st)
be a continuous net of positive real number such that limtfi0st = +1. Let the net (xt) be
generated by implicit scheme (1.5). Then xt converges strongly to z 2 Fix(S), where
z = PFix(S)f(z), which is the unique solution of the variational inequality
hðI� fÞz; x� � ziP 0; 8x� 2 FixðSÞ:
Proof. Taking H1 = H2 = H, ut = xt and F1 = F2 = 0 in Theorem 3.1 then the con-
clusion of Corollary 3.2 is obtained. h

Remark 3.1.

1. The algorithm considered in Theorem 3.1 is different from those considered in
[3,7,25,26] in the following sense:
(i) Implicit iterative algorithm has been considered instead of explicit iterative

algorithm
(ii) In our algorithm net (rt) has been considered in place of fixed r. Further, the

approach presented in this paper is different.

2. The use of implicit iterative method presented in this paper for the split monotone
variational inclusions considered in Moudafi [25] and Byrne et al. [3] needs further
research effort.
4. NUMERICAL EXAMPLE

Now, we give a numerical example which justifies Theorem 3.1.

Example 4.1. Let H1 ¼ H2 ¼ R, the set of all real numbers, with the inner product
defined by hx; yi ¼ xy; 8x; y 2 R, and induced usual norm ŒÆ Œ. Let C= [0, +1) and
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Q = (�1,0]; let F1 : C� C! R and F2 : Q�Q! R be defined by
F1(x,y) = (x � 2)(y � x),"x,y 2 C and F2(u,v) = (u + 4)(v � u), "u,v 2 Q; let for each
x 2 R, we define fðxÞ ¼ 1

8 x;AðxÞ ¼ �2x;BðxÞ ¼ 2x, and let, for each x 2 C, T(x) = x.
Let {tn} be a sequence in (0,1) such that tn fi 0 as n fi1. Setting xn :¼ xtn ; un :¼ utn ,
zn :¼ ztn ; rn :¼ rtn ¼ 1. Then there exist unique sequences fxng � R, {un} � C, and
{zn} � Q generated by the iterative schemes
zn ¼ TF2
rn
ðAxnÞ; un ¼ TF1

rn
xn þ

1

8
A�ðzn � AxnÞ

� �
; ð4:1Þ

xn ¼
1

nþ 2
ð2Þ 1

8
xn

� �
þ I� 1

nþ 2
B

� �
Tun; ð4:2Þ
where tn ¼ 1
nþ2 and rn = 1. Then {xn} converges strongly to 2 2 Fix(T) \ X.

Proof. It is easy to prove that the bifunctions F1 and F2 satisfy the Assumption 2.1 and
F2 is upper semicontinuous. A is a bounded linear operator on R with adjoint operator
A* and iAi = iA*i = 2. Hence d 2 0; 1

4

� 	
, so we can choose d ¼ 1

8
. Further, f is contrac-

tion mapping with constant a ¼ 1
5
and B is a strongly positive bounded linear self

adjoint operator with constant �c ¼ 1 on R. Therefore, we can choose c = 2 which sat-
isfies 0 < c < �c

a < cþ 1
a. Furthermore, it is easy to observe that Fix(T) = (0,1),

EP(F1) = {2}, and EP(F2) = {�4}. Hence X:¼{p 2 EP(F1):Ap 2 EP(F2)} = {2}. Con-
sequently, Fix(T) \ X = {2} „ ;. After simplification, schemes (4.1) and (4.2) reduce to
zn ¼ �ðxn þ 2Þ; un ¼
1

8
ð3xn þ 10Þ; ð4:3Þ

xn ¼
1

4ðnþ 2Þ xn þ 1� 2

nþ 2

� �
un; ð4:4Þ
which reduce to the following scheme:
0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

n−number of iteration

x n

Fig. 1 Convergence of iterative sequence {xn}.
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xn ¼
5
2

1
2
� 1

nþ2

h i
5
8
þ 1

2ðnþ2Þ

h i :

Following the proof of Theorem 3.1, we obtain that {zn} converges strongly to
�4 2 EP(F2) and {xn} and {un} converge strongly to w = 2 2 Fix(T) \ X as n fi1.

Next, using the software Matlab 7.0, we have Fig. 1 which shows that {xn}
converges strongly to 2.

The proof is completed. h
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