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Abstract.  In this paper, we introduce and study an implicit iterative method to
approximate a common solution of split equilibrium problem and fixed point problem
for a nonexpansive semigroup in real Hilbert spaces. Further, we prove that the nets
generated by the implicit iterative method converge strongly to the common solution
of split equilibrium problem and fixed point problem for a nonexpansive semigroup.
This common solution is the unique solution of a variational inequality problem and
is the optimality condition for a minimization problem. Furthermore, we justify our
main result through a numerical example. The results presented in this paper extend
and generalize the corresponding results given by Plubtieng and Punpaeng [S. Plubti-
eng, R. Punpaeng, Fixed point solutions of variational inequalities for nonexpansive
semigroups in Hilbert spaces, Math. Comput. Model. 48 (2008) 279-286] and Ciancia-
ruso et al. [F. Cianciaruso, G. Marino, L. Muglia, Iterative methods for equilibrium
and fixed point problems for nonexpansive semigroups in Hilbert space, J. Optim. The-
ory Appl. 146 (2010) 491-509].
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1. INTRODUCTION

Throughout the paper unless otherwise stated, let H, and H, be real Hilbert spaces
with inner product { -, - ) and norm || - |. Let C and Q be nonempty closed convex sub-
sets of H; and H,, respectively.

In 1994, Blum and Oettli [2] introduced and studied the following equilibrium prob-
lem (in short, EP): Find x € C such that

Flx,y) 20, WeC (L1)

where F': C x C — R is a bifunction.

The EP (1.1) includes variational inequality problems, optimization problems, Nash
equilibrium problems, saddle point problems, fixed point problems, and complemen-
tary problems as special cases. In other words, EP (1.1) is an unify model for several
problems arising in science, engineering, optimization, economics, etc.

In the last two decades, EP (1.1) has been generalized and extensively studied in
many directions due to its importance; see, for example [14,16—19] and references there-
in, for the literature on the existence of solution of the various generalizations of EP
(1.1). Some iterative methods have been studied for solving various classes of equilib-
rium problems, see for example [4,10,13,20-23,30,31] and references therein. Recently,
some iterative methods for finding a common solution for system of equilibrium prob-
lems have been studied in the same space, see for example [9,28]. In general, the equi-
librium problems in systems lie in the different spaces. Therefore, in this paper, we
consider the following pair of equilibrium problems in different spaces, which is called
split equilibrium problem (in short, SEP) due to Moudafi [25]:

Let Fi : Cx C— Rand F> : O x Q — R be nonlinear bifunctions and 4 : H; —» H>
be a bounded linear operator, then the split equilibrium problem (SEP) is to find x* € C
such that

Fi(x,x) >0, ¥xeC (1.2)
and such that
V' =Ax" € Q solves F>(y*,y) =2 0, VyeO. (1.3)

When looked separately, (1.2) is the equilibrium problem (EP) and we denoted its solu-
tion set by EP(F}). The SEP (1.2) and (1.3) constitutes a pair of equilibrium problems
which have to be solved so that the image y* = Ax" under a given bounded linear oper-
ator A, of the solution x~ of the EP (1.2) in H, is the solution of another EP (1.3) in
another space H,, we denote the solution set of EP (1.3) by EP(F,). The solution set
of SEP (1.2) and (1.3) is denoted by Q = {p € EP(F)) : Ap € EP(F,)}.

SEP (1.2) and (1.3) generalize a multiple-set split feasibility problem. It also includes
as special case, the split variational inequality problem [7] which is the generalization of
split zero problems and split feasibility problems, see for detail [3,5-7,25,26].

Example 1.1. Let H; = H, = R, the set of all real numbers, with the inner product
defined by (x,y) =xy,Vx,y € R. Let C = [0,2] and Q = (—00,0]; let F; : Cx C— R
and F»:0xQ — R be defined by Fi(x,p) =x>—pVxyeC and F(uy) =
(u + 6)(v —u),¥Y u,y € Q and let, for each x € R, we define A(x) = —3x. It is easy to
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observe that EP (F|) =[v2,2],42)=—-6 and EP (F,) = {—6}. Hence
Q:={peEP(F)):Ap € EP(F,)} = {2} #0.
Next, we recall that a mapping T:H, — H, is called a contraction, if there is o € (0,1)
such that
[Tx = Ty[| < allx—yll, Vx,y€H.
If « = 1, T is called nonexpansive.

A family S:={7(s):0 < s < oo} of mappings from C into itself is called nonexpansive
semigroup on C if it satisfies the following conditions:

() T(0)x = x for all x € C;

(@) T(s + 1) = T(s)T(¢) for all s,t = 0;
(i) || T(s)x — T(s)y|| < ||x — y|| for all x,y € C and 5 > 0;
(iv) for all x € C, s +— T(s)x is continuous.

The set of all the common fixed points of a family S is denoted by Fix(S), i.e.,
Fix($) :=={x € C: T(s)x=x,0<s < oo} = [ Fix(T(s)),

0<s<00

where Fix(7(s)) is the set of fixed points of 7(s). It is well known that Fix(S) is closed
and convex.
The fixed point problem (in short, FPP) for a nonexpansive semigroup S is:

Find x € C such that x € Fix(S). (1.4)

In 2006, Marino and Xu [24] considered the following implicit iterative scheme for a
nonexpansive mapping 7-

x, = tyf(x,) + (I —tB)Tx,,

where f'is a contraction mapping with constant o and B:H; — H; is a strongly positive
bounded linear self adjoint operator, i.e., if there exists a constant 3 > 0 such that

(Bx,x) = 77Hx||2, Vx € Hy,

with 0 <7y < % and ¢ € (0,1) and proved that the net (x,) converges strongly to the un-
ique solution of the variational inequality

((B—9yf)z,x—z) =20, Vxe Fix(7),

which is the optimality condition for the minimization problem

1
in ~(Bx,x) —h
fmin_ (Bx, x) — h(x),

where / is the potential function for yf.
In 2008, Plubtieng and Punpaeng [27] introduced and studied the following implicit
iterative scheme to prove a strong convergence theorem for FPP (1.4):

o= i) + (1 — )+ / " T(s)xds, (1.5)

St

where (x,) is a continuous net and (s;) is a positive real divergent net.



60 K.R. Kazmi, S.H. Rizvi

Recently, Cianciaruso et al. [8] introduced and studied the following implicit itera-
tive scheme and obtained strong convergence theorem for EP (1.1) and FPP (1.4)

{F(uz,y) oy =y = x,), Yy € G

xp = 1yf(x;) + (I = tB) + Jo! T(s)uyds, (16)

where (s;) and (r;) are the continuous nets in (0,1).

Motivated by the work of Plubtieng and Punpaeng [27], Cianciaruso et al. [§],
Moudafi [25] and by the ongoing research in this direction, we suggest and analyze
an implicit iterative method for approximating a common solution of SEP (1.2) and
(1.3) and FPP (1.4) for a nonexpansive semigroup in real Hilbert spaces. Further, we
prove that the nets generated by the iterative scheme converge strongly to a common
solution of SEP (1.2) and (1.3) and FPP (1.4). Furthermore, we justify our main result
through a numerical example. The result presented in this paper generalizes the corre-
sponding results given in [8,27].

2. PRELIMINARIES
We recall some concepts and results which are needed in the sequel.

Definition 2.1. A mapping U : H; — H; is said to be

(1) monotone, if
(Ux —Uy,x—y) 20, Vx,y€ Hy;

(i) a-inverse strongly monotone (or, a-ism), if there exists a constant oo > 0 such that
(Ux —Uy,x —y) = af]|Ux — Uy||2, Vx,y € Hy;

(iii) firmly nonexpansive, if it is 1-ism.

Definition 2.2. A mapping U: H, — H, is said to be averaged if and only if it can be
written as the average of the identity mapping and a nonexpansive mapping, i.c.,

U:=(1-a)l+oaV,
where o € (0,1) and V' : Hy — H, is nonexpansive and [/ is the identity operator on H.

We note that the averaged mappings are nonexpansive. Further, the firmly nonex-
pansive mappings are averaged.
The following are some key properties of averaged operators, see for instance [1,25].

Proposition 2.1. Let U : H; — H; be a nonlinear mapping. Then:

W) IfU=(l—a)D + oV, where D: H; — Hj is averaged, V : H; — H; is nonex-
pansive and o, € (0,1), then U is averaged,
(i1) The composite of finitely many averaged mappings is averaged;
(i) If U is t-ism, then for y > 0, yU is Fism;
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. . . . . _ . _ . . l
(iv) U is averaged if and only if, its complement I — U is t-ism for some © > 5.
Definition 2.3. For every point x € H, there exists a unique nearest point in C denoted
by Pcx such that

[l = Pex|] <

x—yll, vyec

Pcis called the metric projection of Hy onto C. It is well known that P is nonexpansive
mapping and is characterized by the following property:

(x = Pcx,y— Pcx) <0, VxeH, yeC. (2.1)

It is well known that every nonexpansive operator T: Hy — H, satisfies, for all
(x,y) € H X Hy, the inequality

(x=T(x) = (0 = T)), T) = T(x)) < (1/2)|(T(x) = x) = (T() = »)II°
and therefore, we get, for all (x,y) € H; x Fix(7),

(x = T(x),y = T(x)) < (1/2)]| T(x) = x|, (2.2)
see, e.g. [11, Theorem 2.3] and [12, Theorem 2.1].

Lemma 2.1 [15]. Assume that T is nonexpansive self mapping of a closed convex subset
C of a Hilbert space H;. If T has a fixed point, then I — T is demiclosed, i.e., whenever
{x,} is a sequence in C converging weakly to some x € C and the sequence {(I — T)x,}
converges strongly to some y, it follows that (I — T)x = y. Here I is the identity mapping
on H;.

Lemma 2.2 [29]. Let C be a nonempty bounded closed convex subset of a Hilbert space
H; and let S:={T(s) : 0 < s < oo} be a nonexpansive semigroup on C. Then for t > 0
and for every 0 < h < oo,

| [roms-noft [ row)| o

Lemma 2.3 [24]. Assume that B is a strong positive bounded linear self adjoint
operator on a Hilbert space H, with coefficient 3 >0 and 0 < p <|B|™!. Then
|7—pB| <1 py.

limsup
1—00 xeC

Lemma 2.4 [24]. Let C be a nonempty closed convex subset of a real Hilbert space H,,
let f: H;y — H; be an o-contraction mapping and let B be a strongly positive bounded lin-
ear self adjoint operator with coefficient 3. Then for every 0 < y < i, (B — yf) is strongly
monotone with coefficient (y — ya), i.e.,

(x =y, (B=)x = (B=2)y) = 7 —)|x |
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Assumption 2.1 [2]. Let F: Cx C— R be a bifunction satisfying the following
assumptions:

(1) F(x,x) =0, VxeC(;
(ii) Fis monotone, i.e., F(x,y) + F(y,x) <0, VxeC;
(iii) For each x,y,z € C, limsup,_,o F(tz + (1 — t)x,y) < F(x,p);
(iv) For each x € C, y — F(x,y) is convex and lower semicontinuous.

Lemma 2.5 [10]. Assume that F| : C x C — R satisfying Assumption 2.1. For r > 0 and
for all x € H,, define a mapping Tt : H, — C as follows:

1
Thx = {z € C: Fi(z,y) +;<y—z,z—x> =0, Vye C}.
Then the following hold:

(1) T (x)#0 for each x € H;;
(i) 75 is single-valued;
(iii) T% is firmly nonexpansive, i.e.,

T — Thy|? <(T)x = Thy,x —y), Vx, y € H;

(iv) Fix (Tf") = EP(F));
(v) EP (F)) is closed and convex.

Further, assume that F, : Q x Q — R satisfying Assumption 2.1. For s > 0 and for
all w € H,, define a mapping 7> : H, — Q as follows:

T (w) = {de Q: Fy(d,e) +§<e—d,d—w> > 0,Ve € Q}.

Then, we easily observe that 772 (w)#() for each w € Q; Tfl is single-valued and firmly
nonexpansive; EP(F,,0) is closed and convex and Fix (77*) = EP(F,,Q), where
EP(F,,0Q) is the solution set of the following equilibrium problem:

Find y* € Q such that F>(y",y) = 0, Vy € Q.

We observe that EP(F,) < EP(F,,Q). Further, it is easy to prove that Q is closed and
convex set.

Lemma 2.6 [8]. Let F: C x C — R be a bifunction satisfying Assumption 2.1 hold and
let Tf‘ be defined as in Lemma 2.5 for r > 0. Let x,y € H; and r;,r5 > 0. Then:

|5y = T8I <y = x|+ 2= 7y — .

Lemma 2.7. The following inequality holds in a real Hilbert space H;:

Ix + 217 < 16l +2(n,x + ), Vx, y € H.
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Notation 1. We use — for strong convergence and — for weak convergence.

3. AN IMPLICIT ITERATIVE METHOD

In this section, we prove a strong convergence theorem based on the proposed implicit
iterative method for computing the approximate common solution of SEP (1.2) and
(1.3) and FPP (1.4) for a nonexpansive semigroup in real Hilbert spaces.

In the following theorem, we denote the identity operator on H; as well as H» by the
same symbol 1.

Assume that Q # ().

Theorem 3.1. Let H; and H, be two real Hilbert spaces and C = H; and Q  H, be
nonempty closed convex subsets. Let A:H; — H; be a bounded linear operator. Assume
that F1 : Cx C — R and F> : Q X Q — R are the bifunctions satisfying Assumption 2.1
and F> is upper semicontinuous in the first argument. Let S = {T(s) : 0 < s < oo} be a
nonexpansive semigroup on C such that Fix(S)NQ=#0. Let f:H,— H; be a
contraction mapping with constant o. € (0,1) and B be a strongly positive bounded linear
self adjoint operator on H; with constant y > 0 such that 0 < y < g <7y+ i Assume (r,)
and (s,) are the continuous nets of positive real numbers such that liminf,_gr; =r >0
and lim,_os; = 4o00. Let the nets (u,) and (x,) be implicitly generated by

u, = Tf‘ (x,—i—éA*(sz —I)Ax,); (3.1
1 [

x, = tyf(x,) + (I — tB) - / T(s)u,ds, (3.2)
tJo

where 8 € (0,1/L), L is the spectral radius of the operator A" A and A" is the adjoint of
A. Then (x,) and (u,) converge strongly to z€ Fix(S)NQ, where z =
Privcs)na(l — B + v f)z, which is the unique solution of the variational inequality

((3f = B)z,x" —z) <0, Vx* € Fix(S)NQ. (3.3)

Proof. We first show that (x,) is well defined. For ¢ € (0,1) such that t < ||B||"", define a
mapping S;:H, — H; by
1
Six = tyf(x) + (I — tB)

S

/ T(s) (T (x + 64 (T — 1) Ax))ds, Vx € Hy.
0

We claim that S, is contractive with constant (1 — #(j — ya)). Indeed, since 7' and T}
both are firmly nonexpansive, they are averaged. For 0 € (O,%), the mapping
(I+04*(T> —1)A) is averaged, see [25]. It follows from Proposition 2.1 (ii) that
the mapping T,' (I + dA*(T}> — I)A4) is averaged and hence nonexpansive. Further,

for any x,y € Hy, it follows from Lemma 2.3 that
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1 [
ISux = Sl < lafo) + (1= 1B) [ T (e 647 (177 = 1) Ax)ds — ()
St 0

L(-m)t / T (v 04 (T — 1) Av)ds]| < 7f(x) — 0|

Ky

+(1-1)

’Sl / ") [T (x4 64" (T — 1) Ax)
=T (v + 04" (T2 — 1) Ay) ] ds|

< tyofx =y

+ (1= )| T (I + 64" (T — 1) A4)x

—TI (I+ 64" (T —1)A)y)|

< oafx =yl + (1= m)llx =l

= (1 =1y —ya))llx =yl

Since 0 < (1 — #(7 — ya)) < 1, it follows that S, is a contraction mapping. Therefore, by
Banach contraction principle, S; has the unique fixed point x,, i.e., x; is the unique solu-
tion of the fixed point Eq. (3.2).

Next, we show that (x,) is bounded. Let pe Fix(S)NQ, we have
p= Tf,‘p,Ap = Tfpr and p = T(s)p.

We estimate
lu, = plP* = || T5 (x, + 4" (T — ) dx,) — p)|’
= |78 (x4 04" (152 — D)) — T
< i + 047 (T = 1) A, — p|]
< lx = pl* + |4 (T — D) x| + 25(x,

—p, A (T;> — 1) Ax,). (3.4)
Thus, we have
e = pII> < I, — plI” + 8 (T — 1) Ax,, AA" (T — 1) Ax,) + 20(x,
—p, A (T} — I)Ax,>. (3.5)

Now, we have

ST — 1) Ax,, AA™ (T — 1) Ax,) < LO*((T? — 1) Ax,, (T — 1) Ax,)

= L&||(T> - ) Ax,|. (3.6)
Denoting A = 26(x, — p, A" (T}> — I) Ax,) and using (2.2), we have
A =26(x, — p, A" (T = 1) Ax,) = 26(A(x, — p), (T = I) Ax,)
=26(A(x, — p) + (T}> — ) Ax, — (T — 1) Ax,, (T}> — 1) Ax,)
X, —

r

=26 (T

{
<231

r

Ap, (T = 1) x) = |[(TF = ) x|}

—_—

A
(T8 — 1) Ax,|)” - ||(T7 - I)Ax,|2} < =0|(T — 1) Ax|. (3.7)
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Using (3.5), (3.6) and (3.7), we obtain

= pIP* < ||x = p|I* + (L6 — 1)||(T7 — 1) x| (3.8)
Since 6 € (0,1), we obtain
lu, = pI* < 1 = pl>. (3.9)

Now, setting z, ::% Jo' T(s)u,ds, we obtain
1 St 1 St
lze=pll= |~ | Tuds—p||<— [ [|T(s)u — T(s)pllds < |lu, — p||
St 0 St 0
< [lx = pll- (3.10)

Further, we estimate

tyf(x;) + (1 — tB) l /3/ T(s)u,ds — pH
0

X; — =
I = pl .

< tlyfix) — Byl + (1 - rv)slf / T — T(S)plds

< [l = f)ll + 12ATp) — Bpll] + (1 — &) [lu, — pl|
< myallx, = pll + t[pfp) — Bpll + (1 = 7)||lx, — pll

< [1 = 167 = )], — pll + lofip) — Bl

1
— 0
Hence, the net (x,) is bounded and consequently, we deduce that the nets (u,), (z;) and

(f(x,)) are bounded.
Next, we have

[l2¢ = zil| = [[e(uf(x0) = Bz,) + (1 = 1B)(z, = z,)|| < tl[2(x,) = Bz |

<

[/(p) — Bpl- (3.11)

~2I

—0ast—0. (3.12)
Next, we show that ||x, — u,]| — 0 as t — 0. It follows from (3.8) and Lemma 2.7 that
ol ’
o= plP < (0= P> [ s — || +206010x) — 8o+ 3100
tJo
=), x: = p)
< (1+ 297 = 200) s = pI* + 2ty x, — pl|* + 2e¢2/(p) — Bp, x:

-p)
< (14 29 Jus = plI* + 2e9al|x, — pl|* + 262/ (p) — Bp, x: — p)
< Nl = pl* + 2tyallx = pl* + 27 [1x, = plI* + 22012/ (p)
— Bp||[|x: — pl|
<l = pl* + (L8 = DT — 1) Ax | + 262, — p|?
|x, = plI* + 2¢]12(p) — Bpllllx: — pl. (3.13)

+ 17?
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Since (x,) is bounded, we may assume that Q:=supg<,<1|x, — p||. Therefore, preceding
inequality reduces to

81 = L8)[[(T% = 1) x| < 1[2900> + 7¢° + 20f(p) — Bplle].
Further, since (1 — LJ) > 0, the preceding inequality implies that
1}3&” (Tf2 —I)Ax/| = 0. (3.14)
Next, we have
e = pII* = |7 (v + 047 (T3 — 1) Ax) = plf
= || 77 (i + 647 (T2 = 1) Ax,) — TFp||*
< (u,—p,x, + 5A*(Tf;2 — I)Ax[ -p)
1
= {lw = pI + 1. + 84" (75 = ) A, — pIP
= p) = [+ 04" (T2 = 1), = p] |}
1
= > { =PI + Il = pIF = [fo =, = 4" (T2 — 1) |||

1 *
= E{Hur _PHZ + [|x; _P||2 - {H“r - x,||2 + 52”’4 (Tiz - I)AxtH2

—20{u, — x,,A*(Tf2 - I)Ax,)]}
R o P PR Coo P
1+ 20]| A, — ) [ (T2 — 1) A}
Hence, we have
e = pIP < Nl = pI* = llug = xi])* = 8|47 (TS = 1) Aol + 26| A,
_xt)”H(TrF,z —I)Ax,||
< lx _P”2 — |l — xt”z + 20|/ 4 (ur — xt)HH(TrF;Z - I)AX’H' (3.15)

Since (x;) and (u,) are bounded and A4 is a bounded linear operator then the net

(A(u, — x,)) is bounded and hence, we may assume that :=sup -, < {||4(u, — x,)||. It fol-
lows from (3.13) and (3.15) that

p P 2 p
lx: = plI* < llue — plI* + 2eyerl|x, — pl|” + &7 |x, — plI” + 2ell2/(p) — Bpllllx: — pll
<l = pIIP = e — x> + 20| (17> - N Ax,|| + 17,

where J == (2ya+7%)e” + 2[|7/(p) — Bplle.
Therefore, from (3.14), we obtain

1 — u||* < 281|| (T2 — 1) Ax,|| + tJ — 0, as t — 0.

Next, we have
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+HT(S)SL/OA T(s)u,dsfsi/ol T(s)u,ds

+ HT(S)l/OX’ T(s)u,dsfl/o..v/ T(s)u,ds

Sy 8

1T(s)x — x|l < H T(s)x, — T(s)slt /0 " T(syuds

[
+ 7/ T(s)u.ds — x,
St Jo
[
< x{,,/ T(s)uds
0

[
+ —/ T(s)u,ds — x,
0

S

1 St 1 St
<2 x,—f/ T(s)u,ds H . u,ds—f/ T(s)u,ds||.
0 r 0

S; S;

(3.16)

() - By }.

then K is a nonempty bounded closed convex subset of C which is 7{(s)-invariant for

We know x; and f(x,) are bounded. Let K := {w eC: ’

w — pH<

;*3(

each 0 < s < oo and contains (x,). So without loss of generality, we may assume that

S:={T(s):0 < s < oo} is nonexpansive semigroup on K. By Lemma 2.2, we have

. I I
lim ||T(s)— / T(s)u,ds — — / T(s)u,ds|| = 0. (3.17)
51700 St Jo St Jo
Using (3.12), (3.16) and (3.17), we obtain
lirr(}||T(s)x, — x| =0. (3.18)
11—
Let 1,t € (0,|B[™"). Then, we have
B

(1 —to)pf(xr) + toy(flx)) — flxyy) + (1o — 1) — T Yuyds

s
+ (I—ZOB) Ll / uds——/ ' u,ods]
tJo

< |t = wly[lfTx) = fp) + )l + toyal|xi — x|

1% — x|l =

N

B e
+ i —t| 1 B]] / T(s)u,ds — p —l—p’ + (I = 1ty) S—/ T(s)u,ds
0 t Jo
Lo
5 T(S)umds < |t =10l (A x) = A+ [/
I
e
= w4 o = 1B [ 76 = + 1 - 412
tJo
B 1 St 1 Sto
+ - toy)||— T(s)uds —— T(s)uy,ds
St Jo Sty Jo

| e
<=l (b =+l + 181 [ T6mas )
t

18]
+lto — 1| == lpll + toyallx — x|

t

[ [

— / T(s)u,ds — — / T(s)uy,ds
St Jo St Jo

[ 1 [

— T(s)u,ds —— T(s)u, ds||.

= +(1 - 1y)

+ (1= 17) (3.19)
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Since H Jo' T(s)u,ds — H < e — p|l < ||x = pl| < o, and if we denote
M := (W+ 1B1)e + I/l

we obtain

B _
v — x| < 17— ol M+ [t — ,|@||p|| Tty — x4 (1= o)t — ]

AW AL
+(1—t0y)‘(———>/ T(s)u,ods——/ T(s)uu, ds
Sy an 0 Sto St
<l wlp+ f - o120 Lo+ sl =l + (1 = o7l =
_ INIB! %o
=D = stect o)+ (= ap|[ - [ T (.20
t to to Jsy

Since the mapping 7' (I+ 0A*(T: rFf —I)A) is nonexpansive then it follows from
up =T (x, + 0A (T — 1) Ax,), uyy = T}Fr:) (x, + 5A*(T,,F; — I)4x,,) and Lemma 2.6 that
= gy || < || T5 (x4 647 (T2 — 1) Ax,) — Th' (x4, + 047 (T — 1) Ax,,) ||
TS (i + 04" (T = ) Ax)) = T8 (i, + 04" (T2 — 1) dx, ) |

<

= x|+ [ G+ 047 (T8 = D i) = (v, + 647 (T8 = 1) v, ) |

fo

U ey 0 (T8 1 Ay) — (s + 04" (T — 1) )|
t

< NIxe = x|+ AN T2 Az, — T2 Avxy || + 00 < lxe = x|

to

+ [l 4l|1 - IITFzAxm — Axy || + 00 = [l = x, || + 6| 4]|o, + 0,

(3.21)

—ITE A, — A |

5 = ‘1 - rrﬁ | T (x, + 8A° (T2 = 1) Ax,) — (3, + 0A4* (T — 1) Ax,, ) |
t

Further, it follows from (3.14) that the net (7/>Ax, — Ax,) is convergent and hence
bounded. Therefore, we may assume M := sup_,,||T,>Ax, — Ax,||. Further, we can
observe that the net (x,, + 64" (71> —I)Ax,)) is also bounded and hence, we may as-
sume that M := supg_,|| T} (x;, + 64" (T2 — 1) Ax,,) — (x4 + 647 (T2 — 1) Ax,,) |-
Moreover, since (r,) is a continuous net of positive real numbers, we can choose a

neighborhood U, and a positive number ¢ in such a way that ¢ < r, for ¢ € U, then
(3.21) reduces to
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M, M

=l < = ]+ [OA1%2 + 22 = (3.22)
It follows from (3.20) and (3.22) that

B _

=l < 1= 1o+ 1ty = 2 o s, — (0=t —
t
1 IN|B %o
P =)= Mot o+ 0 - )| - [ riuas
St Sgy Sty Js,

_ M, M
S L e

1
y—yo

1Bl

< =
St

1 1
|m+] se+ 21)

[|t—to|M+|t0—t| ——
S: o Sg

_ _ M M,
0=l = syl + I+ (1= 100 |oal 2 22 = ).

The continuity of (r,) and (s,) shows that (x,) is a continuous curve. The continuity of
(u,) is followed by (3.22).

Let {z,} be a sequence in (0,1) such that t, > 0 as n — oco. Setting x, := x,,,
Uy = Uy, Sy =S, Iy := Iy, Since {x,} is a bounded sequence, there is a subsequence
{xy} of {x,} which converges weakly to w € C. It follows from (3.18) and Lemma 2.1
that w € Fix(S). Further, we show that Xy, — w as j — oo. Indeed, for each n, we have

1 Sn
IIx, — w||2 = (t2f(xn), X0 — W) + <(1 —t,B)— /0 T(s)u,ds — w, x, — w>

Sﬂ

N

LX) — Bw,x, — w) + (1 = 1,7) I, — wl]

1 Sn
— / T(s)uuds — w
0

n

< Zﬂ<Vf(xn) - BW,XM - W> + (1 - Z,,?)Hx,, — WH2
< tyyol|x, — sz + tu{pfw) — Bw,x, —w) + (1 — 6,7)]|x, — w |2
< 11— 17— 12)]lls — I+ 1u(af() — B, 3, — )
1
<= Pfw) — Bw, x, — w).
L )

In particular, we have

1
Hxn/ - WHZ <
Y — yo

(f(w) = Bw, x,,; — w). (3.23)

Since x,, — w, it follows from (3.23) that x, — w as j — occ.
Next, we show that w € EP(F)). Since u; = T}'x, then, we have u, = T}'x,, and,
0

1
Fl(u,,,,y) +_<y - uﬂ/‘?“”j - xn,-> = 07 Vy eC.

Iy,
n;

It follows from the monotonicity of F; that
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1
r_<y — Uy Uy — xn,> = F (y7u’1j)
1y
and hence

U, — X,
<y_unj7 ,}" /> >F1(y7unj)'

nj

Since [u, — x,|| — 0 and x,, — w, we get u,, — w. Further, since lim inf,_or, = r > 0,
W%, 0. It follows from Assumption 2.1 (iv) that 0 > Fy(y,w),Vw € C. For t with
/’/‘

0<tg<landyeC lety, =7y + (1 —7w. Since ye C, w e C, we get y, € C and
hence Fi(y.;,w) < 0. So from Assumption 2.1 (i) and (iv) we have

0=F(y,y) <thi(y,y)+ (1 =10)F(,w) <tFi(y,))

Therefore 0 < Fi(y,,y). From Assumption 2.1 (iii), we have 0 < Fi(w,y). This implies
that w € EP(F)).

Next, we show that 4w € EP(F3). Since x,, — w and A4 is a bounded linear operator,
Ax,,. — Aw.

Now, setting v, = Ax,, — TFzAx,, It follows that from (3.14) that lim;_.v, =0
and Ax, — v, = T ZAxn,

Therefore from Lemma 2.5, we have

1
,2) +— Az — (Axy, — vy), (AXy, — V) — AX,) =0, Vz e Q.

In;

Fz (Axn,, — V,,/.
i

Since F, is upper semicontinuous in the first argument, taking lim sup to above inequal-
ity as j — oo and using lim inf,_,or; = r > 0, we obtain

F(Aw,z) 20, VzeQ,
which means that 4w € EP(F;) and hence w € Q.

Next, we show that w € Fix(S) N Q solves the variational inequality (3.3). Since x, is
the unique solution of fixed point Eq. (3.2), we have

(B —w‘)x:——l( zB){ —Sl’/o T(s)u,ds}

Hence, for any ¢ € Fix(S) N Q, we obtain

(B=y)x,xi—q)= —%<(1— tB) [x, —l/oﬂ T(s)T[ (I+6A" (T} —I)A)x,ds} 7xt—q>

St

:_% th/;[((l— T(s)T;) (I4+-0A" (T2 —1) A)x,
—(I=T(s)TI (I4+6A° (T> —1) ) q,x,— q)ds]
—|—l<B/OM [x,—T(s)u,}ds,x,—q>. (3.24)

St
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Since the mapping U := T(s)T}' (14 64*(T}> — I)A) is nonexpansive then (I — U) is

monotone and hence

l/" ((I=T() T (1464 (T2 —1)A)x, — (I—T(s) T (I1+6A"(T,> — 1) A) ¢, x, — q)ds = 0.
0

Sy

This together with (3.24), we have
B [
(B=2)xi,x; —q) < <Bxf - / T(s)u,ds,x; — q>.
t Jo
From (3.2), we have

5o =2 [ 1uds = 8315 -2 [ 1)

St ¢

Hence, we have

, B [
(8= —a) < B(ox) -2 [ Tomas)ox - q)
r Jo
Since the nets (x,),(z,),(u,) and (f(x,)) are bounded, on taking the limit 7 := 7,, — 0, we
obtain

((B=p)w,w —q) = lim((B — pf)x,;, x,;, — q) <0, (3.25)
J—o0

which implies w = Prixisyned + 3f — B).

To show that the net x, converges strongly to w, we assume that there is a sequence
{s,} =(0,1) such that x;, — ¢ when s, — 0 as n — oco. Following the same steps of the
proof given above, we can prove ¢ € Fix(S) N Q. Hence, it follows from (3.25) that

((B=2/)g,q—w) <O0. (3.26)
Interchanging the role of w and z, we obtain
((B=7f)jw,w —q) < 0. (3.27)

Adding (3.26) and (3.27) yields

G —y)|w— gl < (w—q,(B—2)w — (B—)q) < 0.

By Lemma 2.4, we have w = ¢ and therefore x;, — g¢.

Thus, we have shown that each cluster point of (x;) equals w as ¢t — 0. Therefore
x,—»wand u, > w as t— 0, where we Fix(S) N Q is the unique solution of the
variational inequality (3.2). This completes the proof. [

As the consequence of Theorem 3.1, we have the following strong convergence re-
sults for computing the approximate common solution of EP (1.1) and FPP (1.4) for
a nonexpansive semigroup in real Hilbert space.

Corollary 3.1 [8]. Let H be a real Hilbert space and C c H be a nonempty closed convex
subset. Let F:Cx C— R be a bifunction such that Assumption 2.1 hold. Let
S={T(s):.0< s <o0} be a nonexpansive semigroup on C such that
Fix(S) N EP(F) # (. Let f-H — H be a contraction mapping with constant « € (0,1) and
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B be a strongly positive bounded linear self adjoint operator on H with constant j > 0,
such that 0 <y < % <y+ i Assume (r,) and (s,) are the continuous nets of positive real
numbers such that lim inf,_or; = r > 0 and lim,_ys; = + oo. Let the nets (u;) and (x,)
are generated by the implicit iterative scheme (1.6). Then x; and u, converge strongly to
z € Fix(S) N EP(F), where z = Prix (synep (F) (I + 3f — B), which is the unique solution
of the variational inequality

((yf — B)z,x" —z) <0, Vx" € Fix(S) N EP(F).

Proof. Taking H; = H, = H, A = 0, F; = Fand B = Iin Theorem 3.1 then the con-
clusion of Corollary 3.1 is obtained. [I

Further, we have the following consequence of Theorem 3.1.

Corollary 3.2 [27]. Let H be a real Hilbert space and C < H be a nonempty closed
convex subset. Let S = {T(s):0 < s < oo} be a nonexpansive semigroup on C such that
Fix(S) # 0. Let f:H — H be a contraction mapping with constant o. € (0,1) . Assume (s,)
be a continuous net of positive real number such that lim,_,gs, = + oo. Let the net (x,) be
generated by implicit scheme (1.5). Then x; converges strongly to z € Fix(S), where
z = Priysf(2), which is the unique solution of the variational inequality

(I-fz,x"—z) =0, Vx* € Fix(S).

Proof. Taking H, = H, = H, u, = x, and F; = F> = 0 in Theorem 3.1 then the con-
clusion of Corollary 3.2 is obtained. [

Remark 3.1.

1. The algorithm considered in Theorem 3.1 is different from those considered in
[3,7,25,26] in the following sense:
(1) Implicit iterative algorithm has been considered instead of explicit iterative
algorithm
(i) In our algorithm net (r;) has been considered in place of fixed r. Further, the
approach presented in this paper is different.

2. The use of implicit iterative method presented in this paper for the split monotone

variational inclusions considered in Moudafi [25] and Byrne et al. [3] needs further
research effort.

4. NUMERICAL EXAMPLE
Now, we give a numerical example which justifies Theorem 3.1.

Example 4.1. Let H; = H, = R, the set of all real numbers, with the inner product
defined by (x,y) = xp,Vx,y € R, and induced usual norm |-]. Let C = [0, + o0) and
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O0=(—0]; let F:CxC—R and F,:0xQ0—R be defined by
Fi(x,y) = (x = 2)(y — x),Vx,y € C and F>(u,v) = (u + 4)(v — u), Yu,v € Q; let for each
x € R, we define f(x) =} x, A(x) = —2x, B(x) = 2x, and let, for each x € C, T(x) = x.
Let {#,} be a sequence in (0,1) such that 7, — 0 as n — oo. Setting x,, := x,,, u, = uy,,
Zp:=z,,Iy =1, = 1. Then there exist unique sequences {x,} C R, {u,} ¢ C, and
{z,} € O generated by the iterative schemes

1
zn =T (Ax,);  uy =T} {anrgA*(z,,—Ax,,)]; (4.1
- (2) : + | 1 1 BT (4.2)
xn_n+2 8xﬂ n+2 uﬂ? M
where ¢, = #2 and r, = 1. Then {x,} converges strongly to 2 € Fix(7) N Q.

Proof. It is casy to prove that the bifunctions F; and F, satisfy the Assumption 2.1 and
F, is upper semicontinuous. 4 is a bounded linear operator on R with adjoint operator
A" and |4 = [|47| = 2. Hence 6 € (0,1), so we can choose § = L. Further, fis contrac-
tion mapping with constant o« :% and B is a strongly positive bounded linear self
adjoint operator with constant 3 = 1 on R. Therefore, we can choose y = 2 which sat-
isfies 0 <y < ; <y +i Furthermore, it is easy to observe that Fix(7) = (0,00),
EP(F)) = {2}, and EP(F,) = {—4}. Hence Q:={p € EP(F}):Ap € EP(F,)} = {2}. Con-
sequently, Fix(7) N Q = {2} # (). After simplification, schemes (4.1) and (4.2) reduce to

1

8
1 2

X, = mxn + (1 — M)Mn, (44)

which reduce to the following scheme:

Zp=—(x,+2); u,=-3x,+10); (4.3)

400 600 800 1000
n—-number of iteration

Fig. 1 Convergence of iterative sequence {x,}.
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s [1 _ L}

212 n+2
e

[E + 2(n+2):|

Following the proof of Theorem 3.1, we obtain that {z,} converges strongly to
—4 € EP(F,) and {x,} and {u,} converge strongly to w = 2 € Fix(T) N Q as n — oc.

Next, using the software Matlab 7.0, we have Fig. 1 which shows that {x,}
converges strongly to 2.

The proof is completed. [
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