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Abstract. The purpose of this paper is to study the growth and fixed points of
meromorphic solutions and their derivatives to complex higher order linear differential
equations whose coefficients are meromorphic functions. Our results extend the previous
results due to Peng and Chen, Xu and Zhang and others.
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1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper, we shall assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna value distribution theory of meromorphic functions
(see [11,17]). In addition, we will use notations σ (f), σ2 (f) to denote respectively the order
and the hyper-order of growth of a meromorphic function f (z), λ (f), λ (f), τ (f) to denote
respectively the exponents of convergence of the zero-sequence, the sequence of distinct
zeros and the sequence of distinct fixed points of f (z). See [2,11,14,17] for notations and
definitions.

Consider the second order linear differential equation

f ′′ +A1 (z) eP (z)f ′ +A0 (z) eQ(z)f = 0, (1.1)
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where P (z), Q (z) are nonconstant polynomials, A1 (z), A0 (z) (≢0) are entire functions
such that σ (A1) < degP (z), σ (A0) < degQ (z). Gundersen showed in [9, p. 419] that
if degP (z) ≠ degQ (z), then every nonconstant solution of (1.1) is of infinite order.
If degP (z) = degQ (z), then (1.1) may have nonconstant solutions of finite order. For
instance f (z) = ez + 1 satisfies f ′′ + ezf ′ − ezf = 0.

In [3], Chen and Shon investigated the case when degP (z) = degQ (z) and proved the
following results.

Theorem A ([3]). Let Aj (z) (≢0) (j = 0, 1) be meromorphic functions with σ (Aj) <
1 (j = 0, 1), a, b be complex numbers such that ab ≠ 0 and arg a ≠ arg b or a = cb
(0 < c < 1). Then every meromorphic solution f (z) ≢ 0 of the equation

f ′′ +A1 (z) eazf ′ +A0 (z) ebzf = 0 (1.2)

has infinite order.

In the same paper, Chen and Shon investigated the fixed points of solutions, their 1st and
2nd derivatives and the differential polynomials and obtained.

Theorem B ([3]). Let Aj (z) (j = 0, 1), a, b, c satisfy the additional hypotheses of
Theorem A. Let d0, d1, d2 be complex constants that are not all equal to zero. If f (z) ≢ 0 is
any meromorphic solution of Eq. (1.2), then:

(i) f, f ′, f ′′ all have infinitely many fixed points and satisfy

λ (f − z) = λ (f ′ − z) = λ (f ′′ − z) = ∞,

(ii) the differential polynomial

g (z) = d2f
′′ + d1f

′ + d0f

has infinitely many fixed points and satisfies λ (g − z) = ∞.

In [13], Peng and Chen investigated the order and hyper-order of solutions of some second
order linear differential equations and proved the following result.

Theorem C ([13]). Let Aj (z) (≢0) (j = 1, 2) be entire functions with σ (Aj) < 1, a1, a2

be complex numbers such that a1a2 ≠ 0, a1 ≠ a2 (suppose that |a1| 6 |a2|). If arg a1 ≠ π
or a1 < −1, then every solution f (≢0) of the differential equation

f ′′ + e−zf ′ + (A1e
a1z +A2e

a2z) f = 0

has infinite order and σ2 (f) = 1.

Recently, Xu and Zhang investigated the order, the hyper-order and fixed points of
meromorphic solutions of some second order linear differential equations and proved the
following results.

Theorem D ([16]). Suppose that Aj (z) (≢0) (j = 0, 1, 2) are meromorphic functions and
σ (Aj) < 1, and a1, a2 are two complex numbers such that a1a2 ≠ 0, a1 ≠ a2 (suppose
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that |a1| 6 |a2|). Let a0 be a constant satisfying a0 < 0. If arg a1 ≠ π or a1 < a0, then
every meromorphic solution f (≢0) whose poles are of uniformly bounded multiplicities of
the equation

f ′′ +A0e
a0zf ′ + (A1e

a1z +A2e
a2z) f = 0 (1.3)

has infinite order and σ2 (f) = 1.

Theorem E ([16]). Let Aj (z) aj satisfy the additional hypotheses of Theorem D. If ϕ (≢0)
is a meromorphic function whose order is less than 1, then every meromorphic solution
f (≢0) whose poles are of uniformly bounded multiplicities of Eq. (1.3) satisfies

λ (f − ϕ) = λ (f ′ − ϕ) = λ (f ′′ − ϕ) = ∞.

The main purpose of this paper is to extend and improve the results of Theorems D, E to
some higher order linear differential equations. The present article may be understood as an
extension and improvement of the recent article of the authors [10]. In fact we will prove the
following results.

Theorem 1.1. Let Aj (z) (≢0) (j = 0, 1, 2) and Bl (z) (l = 2, . . . , k − 1) be meromorphic
functions with

max {σ (Aj) (j = 0, 1, 2) , σ (Bl) (l = 2, . . . , k − 1)} < 1,

a1, a2 be complex numbers such that a1a2 ≠ 0, a1 ≠ a2 (suppose that |a1| 6 |a2|). Let a0

be a constant satisfying a0 < 0. If arg a1 ≠ π or a1 < a0, then every meromorphic solution
f (≢0) whose poles are of uniformly bounded multiplicities of the equation

f (k) +Bk−1f
(k−1) + · · · +B2f

′′ +A0e
a0zf ′ + (A1e

a1z +A2e
a2z) f = 0 (1.4)

satisfies σ (f) = +∞ and σ2 (f) = 1.

Example 1.1. Consider the differential equation

f ′′′ +
4
z
f ′′ +


− 1
z

− 1
2
z − 1


e−zf ′

+


1
z

− 1
2
z + 2


e−2z + e−3z


f = 0, (1.5)

where B2 (z) = 4
z , A0 (z) = − 1

z − 1
2z − 1, a0 = −1, A1 (z) = 1

z − 1
2z + 2, a1 = −2,

A2 (z) = 1, a2 = −3, a1 < a0. Obviously, the conditions of Theorem 1.1 are satisfied. The
meromorphic function f (z) = 1

z2 e
e−z

, with σ (f) = +∞ and σ2 (f) = 1, is a solution of
(1.5).

Motivated by Theorem E, we try to consider the relation between small functions with
meromorphic solutions of Eq. (1.4). Indeed, such relationship on higher order differential
equations is more difficult than that of second order differential equations. Moreover, the
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method used in the proof of Theorem E can not deal with the case of higher order linear
differential equations.

Theorem 1.2. Let Aj (z) (j = 0, 1, 2) , Bl (z) (l = 2, . . . , k − 1), a0, a1, a2 satisfy the
additional hypotheses of Theorem 1.1. If ϕ (≢0) is a meromorphic function with order
σ (ϕ) < 1, then every meromorphic solution f (≢0) whose poles are of uniformly bounded
multiplicities of Eq. (1.4) satisfies

λ (f − ϕ) = λ (f ′ − ϕ) = λ (f ′′ − ϕ) = ∞.

Example 1.2. Let ϕ (z) = − 1
z2 . The function ϕ (z) is a meromorphic function with order

σ (ϕ) = 0 < 1. We have for the solution f (z) = 1
z2 e

e−z

of (1.5)

λ (f − ϕ) = λ


1
z2
ee−z

+
1
z2


= λ


ee−z

+ 1


= +∞,

λ (f ′ − ϕ) = λ


1
z2
ee−z

′

+
1
z2


= λ


− 2
z3
ee−z

+
1
z2


−e−z


ee−z

+
1
z2


= λ


− 2
z

− e−z


ee−z

+ 1


= +∞,

λ (f ′′ − ϕ) = λ


1
z2
ee−z

′′

+
1
z2


= λ


− 2
z3

− e−z

z2


ee−z

′

+
1
z2


= λ


6
z4

+


1
z2

+
4
z3

+
e−z

z2


e−z


ee−z

+
1
z2


= λ


6
z2

+


1 +
4
z

+ e−z


e−z


ee−z

+ 1


= +∞.

By setting ϕ (z) = z in Theorem 1.2, we obtain the following corollary.

Corollary 1.1. Let Aj (z) (j = 0, 1, 2), Bl (z) (l = 2, . . . , k − 1), a0, a1, a2 satisfy the
additional hypotheses of Theorem 1.1. If f (≢0) is any meromorphic solution whose poles
are of uniformly bounded multiplicities of Eq. (1.4), then f , f ′ f ′′ all have infinitely many
fixed points and satisfy

τ (f) = τ (f ′) = τ (f ′′) = ∞.

2. PRELIMINARY LEMMAS

We define the linear measure of a set E ⊂ [0,+∞) by m(E) =
 +∞
0

χE(t)dt and the

logarithmic measure of a set F ⊂ (1,+∞) by lm(F ) =
 +∞
1

χF (t)
t dt, where χH is the

characteristic function of a set H .

Lemma 2.1 ([8]). Let f be a transcendental meromorphic function with σ (f) = σ < +∞.
Let ε > 0 be a given constant, and let k, j be integers satisfying k > j > 0. Then, there
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exists a set E1 ⊂


− π
2 ,

3π
2


with linear measure zero, such that, if ψ ∈


− π

2 ,
3π
2


\ E1, then

there is a constant R0 = R0 (ψ) > 1, such that for all z satisfying arg z = ψ and |z| > R0,
we havef (k) (z)

f (j) (z)

 6 |z|(k−j)(σ−1+ε)
. (2.1)

Lemma 2.2 ([3,12]). Consider g (z) = A (z) eaz , where A (z) ≢ 0 is a meromorphic
function with order σ (A) = α < 1, a is a complex constant, a = |a| eiϕ (ϕ ∈ [0, 2π)).
Set E2 = {θ ∈ [0, 2π) : cos (ϕ+ θ) = 0}, then E2 is a finite set. Then for any given
ε (0 < ε < 1 − α) there is a set E3 ⊂ [0, 2π) that has linear measure zero such that if
z = reiθ, θ ∈ [0, 2π) � (E2 ∪ E3), then we have when r is sufficiently large:

(i) If cos (ϕ+ θ) > 0, then

exp {(1 − ε) rδ (az, θ)} 6 |g (z)| 6 exp {(1 + ε) rδ (az, θ)} . (2.2)

(ii) If cos (ϕ+ θ) < 0, then

exp {(1 + ε) rδ (az, θ)} 6 |g (z)| 6 exp {(1 − ε) rδ (az, θ)} , (2.3)

where δ (az, θ) = |a| cos (ϕ+ θ) .

Lemma 2.3 ([13]). Suppose that n > 1 is a natural number. Let Pj (z) = ajnz
n +

· · · (j = 1, 2) be nonconstant polynomials, where ajq (q = 1, . . . , n) are complex numbers
and a1na2n ≠ 0. Set z = reiθ, ajn = |ajn| eiθj , θj ∈


− π

2 ,
3π
2


, δ (Pj , θ) =

|ajn| cos (θj + nθ). Then there is a set E4 ⊂


− π
2n ,

3π
2n


that has linear measure zero such

that if θ1 ≠ θ2, then there exists a ray arg z = θ with θ ∈


− π
2n ,

π
2n


\ (E4 ∪ E5), satisfying

either

δ (P1, θ) > 0, δ (P2, θ) < 0 (2.4)

or

δ (P1, θ) < 0, δ (P2, θ) > 0, (2.5)

where E5 =

θ ∈


− π

2n ,
3π
2n


: δ (Pj , θ) = 0


is a finite set, which has linear measure zero.

Remark 2.1 ([13]). We can obtain, in Lemma 2.3, if θ ∈


− π
2n ,

π
2n


\ (E4 ∪ E5) is replaced

by θ ∈


π
2n ,

3π
2n


\ (E4 ∪ E5), then it has the same result.

Lemma 2.4 ([3]). Let f (z) be a transcendental meromorphic function of order σ (f) = α <
+∞. Then for any given ε > 0, there is a set E6 ⊂


− π

2 ,
3π
2


that has linear measure zero

such that if θ ∈


− π
2 ,

3π
2


�E6, then there is a constant R1 = R1 (θ) > 1, such that for all

z satisfying arg z = θ and |z| > R1, we have

exp


−rα+ε


6 |f (z)| 6 exp

rα+ε


. (2.6)



Hyper-order and fixed points of meromorphic solutions of higher order linear differential equations 101

Lemma 2.5 ([6, p. 30]). Let n > 1, P1, P2, . . . , Pn be nonconstant polynomials with degree
d1, d2, . . ., dn. Suppose that when i ≠ j, deg (Pi − Pj) = max {di, dj }. Set A (z) =n

j=1Bj (z) ePj(z), where Bj (z) (≢0) are meromorphic functions satisfying σ (Bj) < dj .
Then σ (A) = max16j6n{dj }.

Using mathematical induction, we can easily prove the following lemma.

Lemma 2.6. Let f (z) = g (z) /d (z), where g (z) is a transcendental entire function, and let
d (z) be the canonical product (or polynomial) formed with the non-zero poles of f (z). Then
we have

f (n) =
1
d


g(n) +Dn,n−1g

(n−1) +Dn,n−2g
(n−2) + · · · +Dn,1g

′ +Dn,0g


(2.7)

and

f (n)

f
=
g(n)

g
+Dn,n−1

g(n−1)

g
+Dn,n−2

g(n−2)

g
+ · · · +Dn,1

g′

g
+Dn,0, (2.8)

where Dn,j are defined as a sum of finite numbers of terms of the type


(j1···jn)

Cjj1···jn


d′

d

j1

· · ·

d(n)

d

jn

,

Cjj1···jn
are constants, and j + j1 + 2j2 + · · · + njn = n.

Lemma 2.7 ([1]). Let A0, A1, . . . , Ak−1, F ≢ 0 be finite order meromorphic functions. If
f (z) is an infinite order meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · · +A1f

′ +A0f = F,

then f satisfies λ (f) = λ (f) = σ (f) = ∞.

The following lemma, due to Gross [7], is important in the factorization and uniqueness
theory of meromorphic functions, playing an important role in this paper as well.

Lemma 2.8 ([7,17]). Suppose that f1(z), f2(z), . . . , fn (z) (n > 2) are meromorphic
functions and g1(z), g2(z), . . . , gn (z) are entire functions satisfying the following
conditions:

(i)
n

j=1 fj (z) egj(z) ≡ 0;

(ii) gj (z) − gk (z) are not constants for 1 6 j < k 6 n;

(iii) For 1 6 j 6 n and 1 6 h < k 6 n, T (r, fj) = o

T

r, egh(z)−gk(z)


(r → ∞,

r ∉ E7), where E7 is a set of finite linear measure.
Then fj (z) ≡ 0 (j = 1, . . . , n).

Lemma 2.9 ([15]). Suppose that f1(z), f2(z), . . . , fn (z) (n > 2) are meromorphic func-
tions and g1(z), g2(z), . . . , gn (z) are entire functions satisfying the following conditions:

(i)
n

j=1 fj (z) egj(z) ≡ fn+1;
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(ii) If 1 6 j 6 n + 1 and 1 6 k 6 n, then the order of fj is less than the order of egk(z).
If n > 2, 1 6 j 6 n + 1 and 1 6 h < k 6 n, then the order of fj is less than the order of
egh −gk .

Then fj (z) ≡ 0 (j = 1, 2, . . . , n+ 1).

Lemma 2.10 ([8]). Let f(z) be a transcendental meromorphic function, and let α > 1 be
a given constant. Then there exist a set E8 ⊂ (1, ∞) with finite logarithmic measure and
a constant B > 0 that depends only on α and i, j (0 6 i < j 6 k), such that for all z
satisfying |z| = r ∉ [0, 1] ∪ E8, we havef (j)(z)

f (i)(z)

 6 B


T (αr, f)

r
(logα r) log T (αr, f)

j−i

. (2.9)

Lemma 2.11 ([9]). Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone non-
decreasing functions such that ϕ (r) 6 ψ (r) for all r ∉ E9 ∪ [0, 1], where E9 ⊂ (1,+∞)
is a set of finite logarithmic measure. Let γ > 1 be a given constant. Then there exists an
r1 = r1 (γ) > 0 such that ϕ (r) 6 ψ (γr) for all r > r1.

Lemma 2.12 ([4]). Let A0, A1, . . . , Ak−1 (k > 2) be meromorphic functions such that σ =
max {σ (Aj) , j = 0, . . . , k − 1}. Then every transcendental meromorphic solution f whose
poles are of uniformly bounded multiplicity of the differential equation

f (k) +Ak−1f
(k−1) + · · · +A1f

′ +A0f = 0

satisfies σ2 (f) 6 σ.

3. PROOF OF THEOREM 1.1

First of all we prove that Eq. (1.4) can’t have a meromorphic solution f ≢ 0 with
σ (f) < 1. Assume a meromorphic solution f ≢ 0 with σ (f) < 1. Rewrite (1.4) as

A0f
′ea0z +A1fe

a1z +A2fe
a2z = −


f (k) +Bk−1f

(k−1) + · · · +B2f
′′

. (3.1)

For a2 ≠ a0, by (3.1) and Lemma 2.5, we have

1 = σ {A0f
′ea0z +A1fe

a1z +A2fe
a2z }

= σ


−

f (k) +Bk−1f

(k−1) + · · · +B2f
′′


< 1.

This is a contradiction. For a2 = a0, by (3.1) and Lemma 2.5, we have

(i) If A0f
′ +A2f ≢ 0, then

1 = σ {(A0f
′ +A2f) ea0z +A1fe

a1z }

= σ


−

f (k) +Bk−1f

(k−1) + · · · +B2f
′′


< 1.

This is a contradiction.
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(ii) If A0f
′ +A2f ≡ 0, then

1 = σ {A1fe
a1z } = σ


−

f (k) +Bk−1f

(k−1) + · · · +B2f
′′


< 1.

This is a contradiction. Therefore σ (f) > 1.

First step. We prove that σ (f) = +∞. Assume that f ≢ 0 is a meromorphic solution whose
poles are of uniformly bounded multiplicities of Eq. (1.4) with 1 6 σ (f) = σ < +∞. From
Eq. (1.4), we know that the poles of f (z) can occur only at the poles of Aj (j = 0, 1, 2) and
Bl (l = 2, . . . , k − 1). Note that the multiplicities of poles of f are uniformly bounded, and
thus we have [5]

N (r, f) 6 M1N (r, f) 6 M1


2

j=0

N (r,Aj) +
k−1
l=2

N (r,Bl)


6 M max {N (r,Aj) (j = 0, 1, 2), N (r,Bl) (l = 2, . . . , k − 1)} ,

where M1 and M are some suitable positive constants. This gives λ


1
f


6 α =

max {σ (Aj) (j = 0, 1, 2), σ (Bl) (l = 2, . . . , k − 1)} < 1. Let f = g/d, d be the canonical

product formed with the nonzero poles of f (z), with σ (d) = λ (d) = λ


1
f


= β 6 α < 1,

g be an entire function and 1 6 σ (g) = σ (f) = σ < ∞. Substituting f = g/d into (1.4), by
Lemma 2.6 we can get

g(k)

g
+ [Bk−1 +Dk,k−1]

g(k−1)

g
+ [Bk−2 +Bk−1Dk−1,k−2 +Dk,k−2]

g(k−2)

g

+ · · · +


B2 +Dk,2 +

k−1
i=3

BiDi,2


g′′

g
+


A0e

a0z +Dk,1 +
k−1
i=2

BiDi,1


g′

g

+A0D1,0e
a0z +

k−1
i=2

BiDi,0 +Dk,0 +A1e
a1z +A2e

a2z = 0. (3.2)

By Lemma 2.4, for any given ε (0 < ε < 1 − α), there is a setE6 ⊂


− π
2 ,

3π
2


that has linear

measure zero such that if θ ∈


− π
2 ,

3π
2


�E6, then there is a constant R1 = R1 (θ) > 1,

such that for all z satisfying arg z = θ and |z| > R1, we have

|A0 (z)| 6 exp

rα+ε


, |Bl (z)| 6 exp


rα+ε


(l = 2, . . . , k − 1). (3.3)

By Lemma 2.1, for any given ε

0 < ε < min


|a2|−|a1|

|a2|+|a1| , 1 − α


, there exists a set E1 ⊂
− π

2 ,
3π
2


of linear measure zero, such that if θ ∈


− π

2 ,
3π
2


\ E1, then there is a constant

R0 = R0 (θ) > 1, such that for all z satisfying arg z = θ and |z| = r > R0, we haveg(j) (z)
g (z)

 6 rk(σ−1+ε), j = 1, . . . , k, (3.4)d(j) (z)
d (z)

 6 rk(β−1+ε), j = 1, . . . , k (3.5)
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and

|Dk,j | =




(j1···jk)

Cjj1···jk


d′

d

j1 d′′

d

j2

· · ·

d(k)

d

jk


6


(j1···jk)

|Cjj1···jk
|
d′

d

j1 d′′

d

j2 · · ·
d(k)

d

jk

6


(j1···jk)

|Cjj1···jk
| rj1(β−1+ε)r2j2(β−1+ε) · · · rkjk(β−1+ε)

=


(j1···jk)

|Cjj1···jk
| r(j1+2j2+···+kjk)(β−1+ε). (3.6)

By j1 + · · · + kjk = k − j 6 k and (3.6), we have

|Dk,j | 6 Mrk(β−1+ε), (3.7)

where M > 0 is a some constant. Let z = reiθ, a1 = |a1| eiθ1 , a2 = |a2| eiθ2 ,
θ1, θ2 ∈


− π

2 ,
3π
2


.

Case 1. arg a1 ≠ π, which is θ1 ≠ π.

(i) Assume that θ1 ≠ θ2. By Lemmas 2.2 and 2.3, for the above ε, there is a ray arg z = θ such
that θ ∈


− π

2 ,
π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6) (where E4 and E5 are defined as in Lemma 2.3,

E1 ∪ E4 ∪ E5 ∪ E6 is of linear measure zero), and satisfying

δ (a1z, θ) > 0, δ (a2z, θ) < 0

or

δ (a1z, θ) < 0, δ (a2z, θ) > 0.

When δ (a1z, θ) > 0, δ (a2z, θ) < 0, for sufficiently large r, we get

|A1e
a1z | > exp {(1 − ε) δ (a1z, θ) r} , (3.8)

|A2e
a2z | 6 exp {(1 − ε) δ (a2z, θ) r} < 1. (3.9)

By (3.8) and (3.9) we have

|A1e
a1z +A2e

a2z | > |A1e
a1z | − |A2e

a2z | > exp {(1 − ε) δ (a1z, θ) r} − 1

> (1 − o (1)) exp {(1 − ε) δ (a1z, θ) r} . (3.10)

By (3.2), we get

|A1e
a1z +A2e

a2z | 6

g(k)

g

+ |Bk−1 +Dk,k−1|
g(k−1)

g


+ |Bk−2 +Bk−1Dk−1,k−2 +Dk,k−2|

g(k−2)

g

+ · · ·
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+

B2 +Dk,2 +
k−1
i=3

BiDi,2


g′′

g

+


|A0| |ea0z | +

Dk,1 +
k−1
i=2

BiDi,1


 g′

g


+ |A0D1,0| |ea0z | +

k−1
i=2

|BiDi,0| + |Dk,0| . (3.11)

Since θ ∈


− π
2 ,

π
2


, it follows that |ea0z | = ea0r cos θ < 1. Substituting (3.3), (3.4), (3.7) and

(3.10) into (3.11), we obtain

(1 − o (1)) exp {(1 − ε) δ (a1z, θ) r} 6 M1r
M2 exp


rα+ε


, (3.12)

where M1 > 0 and M2 > 0 are some constants. By δ (a1z, θ) > 0 and α + ε < 1 we know
that (3.12) is a contradiction. When δ (a1z, θ) < 0, δ (a2z, θ) > 0, using a proof similar to
the above, we can also get a contradiction.

(ii) Assume that θ1 = θ2. By Lemma 2.3, for the above ε, there is a ray arg z = θ such that
θ ∈


− π

2 ,
π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6) and δ (a1z, θ) > 0. Since |a1| 6 |a2|, a1 ≠ a2 and

θ1 = θ2, it follows that |a1| < |a2|, thus δ (a2z, θ) > δ (a1z, θ) > 0. For sufficiently large r,
we have by Lemma 2.2

|A1e
a1z | 6 exp {(1 + ε) δ (a1z, θ) r} , (3.13)

|A2e
a2z | > exp {(1 − ε) δ (a2z, θ) r} . (3.14)

By (3.13) and (3.14) we get

|A1e
a1z +A2e

a2z | > |A2e
a2z | − |A1e

a1z |
> exp {(1 − ε) δ (a2z, θ) r} − exp {(1 + ε) δ (a1z, θ) r}
= exp {(1 + ε) δ (a1z, θ) r} [exp {ηr} − 1] , (3.15)

where

η = (1 − ε) δ (a2z, θ) − (1 + ε) δ (a1z, θ) .

Since 0 < ε < |a2|−|a1|
|a2|+|a1| , it follows that

η = (1 − ε) |a2| cos (θ2 + θ) − (1 + ε) |a1| cos (θ1 + θ)
= (1 − ε) |a2| cos (θ1 + θ) − (1 + ε) |a1| cos (θ1 + θ)
= [(1 − ε) |a2| − (1 + ε) |a1|] cos (θ1 + θ)
= [|a2| − |a1| − ε (|a2| + |a1|)] cos (θ1 + θ) > 0.

Then, from (3.15), we get

|A1e
a1z +A2e

a2z | > (1 − o (1)) exp {[(1 + ε) δ (a1z, θ) + η] r} . (3.16)

Since θ ∈


− π
2 ,

π
2


, it follows that |ea0z | = ea0r cos θ < 1. Substituting (3.3), (3.4), (3.7) and

(3.16) into (3.11), we obtain

(1 − o (1)) exp {[(1 + ε) δ (a1z, θ) + η] r} 6 M1r
M2 exp


rα+ε


. (3.17)

By δ (a1z, θ) > 0, η > 0 and α+ ε < 1 we know that (3.17) is a contradiction.
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Case 2. a1 < a0, which is θ1 = π.

(i) Assume that θ1 ≠ θ2, then θ2 ≠ π. By Lemma 2.3, for the above ε, there is a ray arg z = θ
such that θ ∈


− π

2 ,
π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6) and δ (a2z, θ) > 0. Because cos θ > 0, we

have δ (a1z, θ) = |a1| cos (θ1 + θ) = − |a1| cos θ < 0. For sufficiently large r, we obtain by
Lemma 2.2

|A1e
a1z | 6 exp {(1 − ε) δ (a1z, θ) r} < 1, (3.18)

|A2e
a2z | > exp {(1 − ε) δ (a2z, θ) r} . (3.19)

By (3.18) and (3.19) we obtain

|A1e
a1z +A2e

a2z | > |A2e
a2z | − |A1e

a1z | > exp {(1 − ε) δ (a2z, θ) r} − 1
> (1 − o (1)) exp {(1 − ε) δ (a2z, θ) r} . (3.20)

Since θ ∈


− π
2 ,

π
2


, it follows that |ea0z | = ea0r cos θ < 1. Substituting (3.3), (3.4), (3.7) and

(3.20) into (3.11), we obtain

(1 − o (1)) exp {(1 − ε) δ (a2z, θ) r} 6 M1r
M2 exp


rα+ε


. (3.21)

By δ (a2z, θ) > 0 and α+ ε < 1 we know that (3.21) is a contradiction.

(ii) Assume that θ1 = θ2, then θ1 = θ2 = π. By Lemma 2.3, for the above ε, there is a
ray arg z = θ such that θ ∈


π
2 ,

3π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6), then cos θ < 0, δ (a1z, θ) =

|a1| cos (θ1 + θ) = − |a1| cos θ > 0, δ (a2z, θ) = |a2| cos (θ2 + θ) = − |a2| cos θ > 0.
Since |a1| 6 |a2|, a1 ≠ a2 and θ1 = θ2, it follows that |a1| < |a2|, thus δ (a2z, θ) >
δ (a1z, θ), for sufficiently large r, we get (3.13), (3.14) and (3.16) hold. Since θ ∈


π
2 ,

3π
2


,

it follows that |ea0z | = ea0r cos θ > 1. Substituting (3.3), (3.4), (3.7) and (3.16) into (3.11),
we obtain

(1 − o (1)) exp {[(1 + ε) δ (a1z, θ) + η] r} 6 M1r
M2 exp


rα+ε


ea0r cos θ. (3.22)

Thus

(1 − o (1)) exp {γr} 6 M1r
M2 exp


rα+ε


, (3.23)

where γ = (1 + ε) δ (a1z, θ)+η−a0 cos θ. Since η > 0, cos θ < 0, δ (a1z, θ) = − |a1| cos θ,
a1 < a0, it follows that

γ = − (1 + ε) |a1| cos θ − a0 cos θ + η = − [(1 + ε) |a1| + a0] cos θ + η

> − [− (1 + ε) a0 + a0] cos θ + η = εa0 cos θ + η > 0.

By α+ ε < 1, we know that (3.23) is a contradiction. Concluding the above proof, we obtain
σ (f) = σ (g) = +∞.

Second step. We prove that σ2 (f) = 1. By

max {σ (A0e
a0z) , σ (A1e

a1z +A2e
a2z) , σ (Bl) (l = 2, . . . , k − 1)} = 1

and Lemma 2.12, we obtain σ2 (f) 6 1. By Lemma 2.10, we know that there exists a set
E8 ⊂ (1,+∞) with finite logarithmic measure and a constant B > 0, such that for all z
satisfying |z| = r ∉ [0, 1] ∪ E8, we getf (j)(z)

f(z)

 6 B [T (2r, f)]j+1 (j = 1, . . . , k) . (3.24)
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By (1.4), we have

A1e
a1z +A2e

a2z = −

f (k)

f
+Bk−1

f (k−1)

f
+ · · · +B2

f ′′

f
+A0e

a0z f
′

f


. (3.25)

Case 1. arg a1 ≠ π.

(i) (θ1 ≠ θ2) In first step, we have proved that there is a ray arg z = θ where θ ∈
− π

2 ,
π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6), satisfying

δ (a1z, θ) > 0, δ (a2z, θ) < 0 or δ (a1z, θ) < 0, δ (a2z, θ) > 0.

(a) When δ (a1z, θ) > 0, δ (a2z, θ) < 0, for sufficiently large r, we get (3.10) holds.
Substituting (3.3), (3.10) and (3.24) into (3.25), we obtain for all z = reiθ satisfying
|z| = r ∉ [0, 1] ∪ E8, θ ∈


− π

2 ,
π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6)

(1 − o (1)) exp {(1 − ε) δ (a1z, θ) r} 6 M0 exp

rα+ε


[T (2r, f)]k+1

, (3.26)

whereM0 > 0 is a some constant. Since δ (a1z, θ) > 0, α+ε < 1, then by using Lemma 2.11
and (3.26), we obtain σ2 (f) > 1, hence σ2 (f) = 1.
(b) When δ (a1z, θ) < 0, δ (a2z, θ) > 0, using a proof similar to the above, we can also get
σ2 (f) = 1.
(ii) (θ1 = θ2) In first step, we have proved that there is a ray arg z = θ where θ ∈

− π
2 ,

π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6), satisfying δ (a2z, θ) > δ (a1z, θ) > 0 and for sufficiently

large r, we get (3.16) holds. Substituting (3.3), (3.16) and (3.24) into (3.25), we obtain for all
z = reiθ satisfying |z| = r ∉ [0, 1] ∪ E8, θ ∈


− π

2 ,
π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6)

(1 − o (1)) exp {[(1 + ε) δ (a1z, θ) + η] r} 6 M1 exp

rα+ε


[T (2r, f)]k+1

, (3.27)

where M1 > 0 is a some constant. Since δ (a1z, θ) > 0, η > 0, α + ε < 1, then by using
Lemma 2.11 and (3.27), we obtain σ2 (f) > 1, hence σ2 (f) = 1.
Case 2. a1 < a0.
(i) (θ1 ≠ θ2) In first step, we have proved that there is a ray arg z = θ where θ ∈

− π
2 ,

π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6), satisfying δ (a2z, θ) > 0 and δ (a1z, θ) < 0 and for

sufficiently large r, we get (3.20) holds. Using the same reasoning as in second step (Case 1
(i)), we can get σ2 (f) = 1.
(ii) (θ1 = θ2) In first step, we have proved that there is a ray arg z = θ where θ ∈

π
2 ,

3π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6), satisfying δ (a2z, θ) > δ (a1z, θ) > 0 and for sufficiently

large r, we get (3.16) holds. Substituting (3.3), (3.16) and (3.24) into (3.25), we obtain for all
z = reiθ satisfying |z| = r ∉ [0, 1] ∪ E8, θ ∈


π
2 ,

3π
2


\ (E1 ∪ E4 ∪ E5 ∪ E6)

(1 − o (1)) exp {[(1 + ε) δ (a1z, θ) + η] r}

6 M2 exp

rα+ε


ea0r cos θ [T (2r, f)]k+1

, (3.28)

where M2 > 0 is a some constant. Thus

(1 − o (1)) exp {γr} 6 M2 exp

rα+ε


[T (2r, f)]k+1

, (3.29)

where γ = (1 + ε) δ (a1z, θ) + η − a0 cos θ. Since γ > 0, α + ε < 1, then by using
Lemma 2.11 and (3.29), we obtain σ2 (f) > 1, hence σ2 (f) = 1. Concluding the above
proof, we obtain σ2 (f) = 1. The proof of Theorem 1.1 is complete.
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4. PROOF OF THEOREM 1.2

Assume f (≢0) is a meromorphic solution whose poles are of uniformly bounded
multiplicities of Eq. (1.4), then σ (f) = +∞ by Theorem 1.1. Set g0 (z) = f (z) − ϕ (z).
Then g0 (z) is a meromorphic function and σ (g0) = σ (f) = ∞. Substituting f = g0 + ϕ
into (1.4), we have

g
(k)
0 +Bk−1g

(k−1)
0 + · · · +B2g

′′
0 +A0e

a0zg′
0 + (A1e

a1z +A2e
a2z) g0

= −

ϕ(k) +Bk−1ϕ

(k−1) + · · · +B2ϕ
′′ +A0e

a0zϕ′ + (A1e
a1z +A2e

a2z)ϕ

. (4.1)

We can rewrite (4.1) in the following form

g
(k)
0 + h0,k−1g

(k−1)
0 + · · · + h0,2g

′′
0 + h0,1g

′
0 + h0,0g0 = h0, (4.2)

where

h0 = −

ϕ(k) +Bk−1ϕ

(k−1) + · · · +B2ϕ
′′ +A0e

a0zϕ′ + (A1e
a1z +A2e

a2z)ϕ

.

We prove that h0 ≢ 0. In fact, if h0 ≡ 0, then

ϕ(k) +Bk−1ϕ
(k−1) + · · · +B2ϕ

′′ +A0e
a0zϕ′ + (A1e

a1z +A2e
a2z)ϕ = 0.

Hence, ϕ is a solution of Eq. (1.4) with σ (ϕ) = +∞ by Theorem 1.1, it is a contradiction.
Hence, h0 ≢ 0 is proved. By Lemma 2.7 and (4.2) we know that λ (g0) = λ (f − ϕ) =
σ (g0) = σ (f) = ∞.

Now we prove that λ (f ′ − ϕ) = ∞. Set g1 (z) = f ′ (z) − ϕ (z). Then g1 (z) is a
meromorphic function and σ (g1) = σ (f ′) = σ (f) = ∞. Set R (z) = A1e

a1z + A2e
a2z

and G (z) = A0e
a0z . Differentiating both sides of Eq. (1.4), we have

f (k+1) +Bk−1f
(k) +


B′

k−1 +Bk−2


f (k−1) +


B′

k−2 +Bk−3


f (k−2) + · · ·

+ (B′
3 +B2) f ′′′ + (B′

2 +G) f ′′ + (G′ +R) f ′ +R′f = 0. (4.3)

By (1.4), we obtain

f = − 1
R


f (k) +Bk−1f

(k−1) + · · · +B2f
′′ +Gf ′


. (4.4)

Substituting (4.4) into (4.3), we have

f (k+1) +

Bk−1 − R′

R


f (k) +


B′

k−1 +Bk−2 − Bk−1
R′

R


f (k−1)

+

B′

k−2 +Bk−3 − Bk−2
R′

R


f (k−2) + · · · +


B′

3 +B2 − B3
R′

R


f ′′′

+

B′

2 +G − B2
R′

R


f ′′ +


G′ +R − G

R′

R


f ′ = 0. (4.5)

We can write (4.5) in the form

f (k+1) + h1,k−1f
(k) + h1,k−2f

(k−1) + · · · + h1,2f
′′′ + h1,1f

′′ + h1,0f
′ = 0, (4.6)
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where

h1,0 = G′ +R − G
R′

R
,

h1,1 = B′
2 +G − B2

R′

R
,

h1,i = B′
i+1 +Bi − Bi+1

R′

R
, (i = 2, . . . , k − 2) ,

h1,k−1 = Bk−1 − R′

R
.

Substituting f (j+1) = g
(j)
1 + ϕ(j) (j = 0, . . . , k) into (4.6), we get

g
(k)
1 + h1,k−1g

(k−1)
1 + h1,k−2g

(k−2)
1 + · · · + h1,2g

′′
1 + h1,1g

′
1 + h1,0g1 = h1, (4.7)

where

h1 = −

ϕ(k) + h1,k−1ϕ

(k−1) + h1,k−2ϕ
(k−2) + · · · + h1,2ϕ

′′ + h1,1ϕ
′ + h1,0ϕ


.

We can get

h1,i (z) =
Ni (z)
R (z)

, (i = 0, 1, . . . , k − 1) , (4.8)

where

N0 = G′R+R2 − GR′, (4.9)

N1 = B′
2R+GR − B2R

′, (4.10)

Ni =

B′

i+1 +Bi


R − Bi+1R

′, (i = 2, . . . , k − 2) , (4.11)

Nk−1 = Bk−1R − R′. (4.12)

Now we prove that h1 ≢ 0. In fact, if h1 ≡ 0, then h1
ϕ ≡ 0. Hence, by (4.8) we get

ϕ(k)

ϕ
R+

ϕ(k−1)

ϕ
Nk−1 +

ϕ(k−2)

ϕ
Nk−2 + · · · +

ϕ′′

ϕ
N2 +

ϕ′

ϕ
N1 +N0 = 0. (4.13)

Obviously, ϕ(j)

ϕ (j = 1, . . . , k) are meromorphic functions with σ


ϕ(j)

ϕ


< 1. By (4.9)–

(4.12) we can rewrite (4.13) in the form

f1e
(a1+a0)z + f2e

(a2+a0)z + f3e
a1z + f4e

a2z

+ 2A1A2e
(a1+a2)z +A2

1e
2a1z +A2

2e
2a2z = 0, (4.14)

where fj (j = 1, 2, 3, 4) are meromorphic functions with σ (fj) < 1. Set I = {a1 + a0, a2 +
a0, a1, a2, a1 + a2, 2a1, 2a2}. If arg a1 ≠ π or a1 < a0, then a1 ≠ ca0 (0 < c 6 1). By the
conditions of Theorem 1.1, it is clear that 2a1 ≠ a1 + a0, a1, a1 + a2, 2a2 and 2a2 ≠ a2,
a1 + a2, 2a1.

(i) If 2a1 ≠ a2 + a0, a2, then we write (4.14) in the form

A2
1e

2a1z +


β∈Γ1

αβe
βz = 0,
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where Γ1 ⊆ I \ {2a1}. By Lemmas 2.8 and 2.9, we get A1 ≡ 0, which is a contradiction.

(ii) If 2a1 = a2 + a0, then 2a2 ≠ β for all β ∈ I \ {2a2}, hence we write (4.14) in the form

A2
2e

2a2z +


β∈Γ2

αβe
βz = 0,

where Γ2 ⊆ I \ {2a2}. By Lemmas 2.8 and 2.9, we get A2 ≡ 0, which is a contradiction.

(iii) If 2a1 = a2, then 2a2 ≠ β for all β ∈ I \ {2a2}, hence we write (4.14) in the form

A2
2e

2a2z +


β∈Γ3

αβe
βz = 0,

where Γ3 ⊆ I \ {2a2}. By Lemmas 2.8 and 2.9, we get A2 ≡ 0, which is a contradiction.
Hence, h1 ≢ 0 is proved. By Lemma 2.7 and (4.7) we know that λ (g1) = λ (f ′ − ϕ) =
σ (g1) = σ (f) = ∞.

Now we prove that λ (f ′′ − ϕ) = ∞. Set g2 (z) = f ′′ (z) − ϕ (z). Then g2 (z) is a
meromorphic function and σ (g2) = σ (f ′′) = σ (f) = ∞. Differentiating both sides of Eq.
(4.3), we have

f (k+2) +Bk−1f
(k+1) +


2B′

k−1 +Bk−2


f (k) +


B′′

k−1 + 2B′
k−2 +Bk−3


f (k−1)

+

B′′

k−2 + 2B′
k−3 +Bk−4


f (k−2) + · · · + (B′′

4 + 2B′
3 +B2) f (4)

+ (B′′
3 + 2B′

2 +G) f ′′′ + (B′′
2 + 2G′ +R) f ′′

+ (G′′ + 2R′) f ′ +R′′f = 0. (4.15)

By (4.4) and (4.15), we have

f (k+2) +Bk−1f
(k+1) +


2B′

k−1 +Bk−2 − R′′

R


f (k)

+

B′′

k−1 + 2B′
k−2 +Bk−3 − Bk−1

R′′

R


f (k−1)

+ · · · +

B′′

4 + 2B′
3 +B2 − B4

R′′

R


f (4) +


B′′

3 + 2B′
2 +G − B3

R′′

R


f ′′′

+

B′′

2 + 2G′ +R − B2
R′′

R


f ′′ +


G′′ + 2R′ − G

R′′

R


f ′ = 0. (4.16)

Now we prove that G′ +R − GR′

R ≢ 0. Suppose that G′ +R − GR′

R ≡ 0, then we have

f1e
(a1+a0)z + f2e

(a2+a0)z + 2A1A2e
(a1+a2)z +A2

1e
2a1z +A2

2e
2a2z = 0, (4.17)

where fj (j = 1, 2) are meromorphic functions with σ (fj) < 1. Set K =
{a1 + a0, a2 + a0, a1 + a2, 2a1, 2a2}. If arg a1 ≠ π or a1 < a0, then a1 ≠ ca0 (0 < c 6 1).
By the conditions of Theorem 1.1, it is clear that 2a1 ≠ a1 + a0, a1 + a2, 2a2 and
2a2 ≠ a1 + a2, 2a1.

(i) If 2a1 ≠ a2 + a0, then we write (4.17) in the form

A2
1e

2a1z +


β∈Γ1

αβe
βz = 0,
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where Γ1 ⊆ K \ {2a1}. By Lemmas 2.8 and 2.9, we get A1 ≡ 0, which is a contradiction.

(ii) If 2a1 = a2 + a0, then 2a2 ≠ a1 + a0, a2 + a0, a1 + a2, 2a1. Hence, we write (4.17) in
the form

A2
2e

2a2z +


β∈Γ2

αβe
βz = 0,

where Γ2 ⊆ K\ {2a2}. By Lemmas 2.8 and 2.9, we get A2 ≡ 0, which is a contradiction.
Hence, G′ +R − GR′

R ≢ 0 is proved. Set

ψ (z) = G′R+R2 − GR′ and φ (z) = G′′R+ 2R′R − GR′′. (4.18)

By (4.5) and (4.18), we get

f ′ =
−R
ψ (z)


f (k+1) +


Bk−1 − R′

R


f (k) +


B′

k−1 +Bk−2 − Bk−1
R′

R


f (k−1)

+

B′

k−2 +Bk−3 − Bk−2
R′

R


f (k−2) + · · · +


B′

3 +B2 − B3
R′

R


f ′′′

+

B′

2 +G − B2
R′

R


f ′′

. (4.19)

Substituting (4.18) and (4.19) into (4.16), we obtain

f (k+2) +


Bk−1 − φ

ψ


f (k+1) +


2B′

k−1 +Bk−2 − R′′

R
− φ

ψ


Bk−1 − R′

R


f (k)

+


B′′

k−1 + 2B′
k−2 +Bk−3 − Bk−1

R′′

R
− φ

ψ


B′

k−1 +Bk−2 − Bk−1
R′

R


f (k−1)

+ · · · +


B′′

4 + 2B′
3 +B2 − B4

R′′

R
− φ

ψ


B′

4 +B3 − B4
R′

R


f (4)

+


B′′

3 + 2B′
2 +G − B3

R′′

R
− φ

ψ


B′

3 +B2 − B3
R′

R


f ′′′

+


B′′

2 + 2G′ +R − B2
R′′

R
− φ

ψ


B′

2 +G − B2
R′

R


f ′′ = 0. (4.20)

Set E1 = B′′
3 +2B′

2, Ei = B′′
i+2 +2B′

i+1 +Bi (i = 2, . . . , k − 3), Ek−2 = 2B′
k−1 +Bk−2

and Fi = B′
i+2 + Bi+1 (i = 1, . . . , k − 3). Ei (i = 1, . . . , k − 2), Fi (i = 1, . . . , k − 3) are

meromorphic functions with σ (Ei) < 1, σ (Fi) < 1. We can write Eq. (4.20) in the form

f (k+2) + h2,k−1f
(k+1) + h2,k−2f

(k) + · · ·

+h2,2f
(4) + h2,1f

′′′ + h2,0f
′′ = 0, (4.21)

where

h2,0 = B′′
2 + 2G′ +R − B2

R′′

R
− φ (z)
ψ (z)


B′

2 +G − B2
R′

R


,

h2,1 = E1 +G − B3
R′′

R
− φ (z)
ψ (z)


F1 − B3

R′

R


,

h2,i = Ei − Bi+2
R′′

R
− φ (z)
ψ (z)


Fi − Bi+2

R′

R


, (i = 2, . . . , k − 3) ,
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h2,k−2 = Ek−2 − R′′

R
− φ (z)
ψ (z)


Bk−1 − R′

R


,

h2,k−1 = Bk−1 − φ (z)
ψ (z)

.

Substituting f (j+2) = g
(j)
2 + ϕ(j) (j = 0, . . . , k) into (4.21) we get

g
(k)
2 + h2,k−1g

(k−1)
2 + h2,k−2g

(k−2)
2 + · · · + h2,1g

′
2 + h2,0g2 = h2, (4.22)

where

h2 = −

ϕ(k) + h2,k−1ϕ

(k−1) + h2,k−2ϕ
(k−2) + · · · + h2,2ϕ

′′ + h2,1ϕ
′ + h2,0ϕ


.

We can get

h2,i =
Li (z)
ψ (z)

, (i = 0, 1, . . . , k − 1) , (4.23)

where

L0 (z) = B′′
2G

′R+B′′
2R

2 − B′′
2GR

′ + 2G′2R+ 3G′R2 − 2GG′R′ +R3

− 3GR′R − B2G
′R′′ − B2R

′′R − B′
2G

′′R − G′′GR+B2G
′′R′

− 2B′
2R

′R+ 2B2R
′2 +B′

2GR
′′ +G2R′′, (4.24)

L1 (z) = E1G
′R+ E1R

2 − E1GR
′ +G′GR+GR2 − G2R′ − B3G

′R′′

− B3R
′′R − F1G

′′R+B3G
′′R′ − 2F1R

′R+ 2B3R
′2 + F1GR

′′, (4.25)

Li = EiG
′R+ EiR

2 − EiGR
′ − Bi+2G

′R′′ − Bi+2R
′′R − FiG

′′R

+Bi+2G
′′R′ − 2FiR

′R+ 2Bi+2R
′2 + FiGR

′′, (i = 2, . . . , k − 3) , (4.26)

Lk−2 = Ek−2G
′R+ Ek−2R

2 − Ek−2GR
′ − G′R′′ − R′′R − Bk−1G

′′R+G′′R′

− 2Bk−1R
′R+ 2R′2 +Bk−1GR

′′, (4.27)

Lk−1 = Bk−1G
′R+Bk−1R

2 − Bk−1GR
′ − G′′R − 2R′R+GR′′. (4.28)

Therefore

−h2

ϕ
=

1
ψ


ϕ(k)

ϕ
ψ +

ϕ(k−1)

ϕ
Lk−1 + · · · +

ϕ′′

ϕ
L2 +

ϕ′

ϕ
L1 + L0


. (4.29)

Now we prove that h2 ≢ 0. In fact, if h2 ≡ 0, then −h2
ϕ ≡ 0. Hence, by (4.29) we have

ϕ(k)

ϕ
ψ +

ϕ(k−1)

ϕ
Lk−1 +

ϕ(k−2)

ϕ
Lk−2 + · · · +

ϕ′′

ϕ
L2 +

ϕ′

ϕ
L1 + L0 = 0. (4.30)

Obviously, ϕ(j)

ϕ (j = 1, . . . , k) are meromorphic functions with σ


ϕ(j)

ϕ


< 1. By (4.18) and

(4.24)–(4.28), we can rewrite (4.30) in the form

f1e
(a1+a0)z + f2e

(a2+a0)z + f3e
(a1+2a0)z + f4e

(a2+2a0)z

+ f5e
2a1z + f6e

2a2z + f7e
(a1+a2)z
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+ f8e
(2a1+a0)z + f9e

(2a2+a0)z + f10e
(a1+a2+a0)z +A3

1e
3a1z +A3

2e
3a2z

+ 3A2
1A2e

(2a1+a2)z + 3A1A
2
2e

(a1+2a2)z = 0, (4.31)

where fj (j = 1, . . . , 10) are meromorphic functions with σ (fj) < 1. Set J = {a1+a0, a2+
a0, a1 + 2a0, a2 + 2a0, 2a1, 2a2, a1 + a2, 2a1 + a0, 2a2 + a0, a1 + a2 + a0, 3a1, 3a2, 2a1 +
a2, a1 + 2a2}. If arg a1 ≠ π or a1 < a0, then a1 ≠ ca0 (0 < c 6 1). By the conditions of
Theorem 1.1, it is clear that 3a1 ≠ a1 +a0, a1 +2a0, 2a1, 2a1 +a0, 3a2, 2a1 +a2, a1 +2a2

and 3a2 ≠ 2a2, 3a1, 2a1 + a2, a1 + 2a2.

(i) If 3a1 ≠ a2 + a0, a2 + 2a0, 2a2, a1 + a2, 2a2 + a0, a1 + a2 + a0, then we write (4.31)
in the form

A3
1e

3a1z +


β∈Γ1

αβe
βz = 0,

where Γ1 ⊆ J \ {3a1}. By Lemmas 2.8 and 2.9, we get A1 ≡ 0, which is a contradiction.

(ii) If 3a1 = γ such that γ ∈ {a2 + a0, a2 + 2a0, 2a2, a1 + a2, 2a2 + a0, a1 + a2 + a0}, then
3a2 ≠ β for all β ∈ J \ {3a2}. Hence, we write (4.31) in the form

A3
2e

3a2z +


β∈Γ2

αβe
βz = 0,

where Γ2 ⊆ J \ {3a2}. By Lemmas 2.8 and 2.9, we get A2 ≡ 0, it is a contradiction. Hence,
h2 ≢ 0 is proved. By Lemma 2.7 and (4.22), we have λ (g2) = λ (f ′′ − ϕ) = σ (g2) =
σ (f) = ∞. The proof of Theorem 1.2 is complete.
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