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Abstract. In this article we study the problem

∆2u −


1 + λ


RN

|∇u|2 dx


∆u + V (x)u = |u|p−2

u in RN ,

where ∆2 := ∆(∆) is the biharmonic operator, λ > 0 is a parameter, p ∈ (2, 2∗), and
V (x) ∈ C(RN , R). Under appropriate assumptions on V (x), the existence of ground state
solutions and a least energy sign-changing solution is obtained by combining the variational
methods and the Nehari method.
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1. INTRODUCTION AND MAIN RESULTS

Consider the following fourth order elliptic equation of Kirchhoff type

∆2u −


a + λb


RN

|∇u|2dx


∆u + V (x)u = |u|p−2u in RN , (1.1)
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where a, b > 0, are constants, λ > 0 is a parameter, 2 < p < 2∗ (2∗ = 2N
N −4 if N > 4

and 2∗ = +∞ if N ≤ 4 is the critical Sobolev exponent), and V is a nonnegative potential
function.

Problem (1.1) is a nonlocal problem because of the so-called nonlocal term
RN |∇u|2dx


∆u involved in Eq. (1.1). The appearance of a nonlocal term in the equation

causes some mathematical difficulties. This makes the study of problem (1.1) particularly
interesting. If V (x) = 0, replace RN by a bounded smooth domain Ω ⊂ RN and |u|p−2u
by a generalized nonlinearity f(x, u) and set u = ∆u = 0 on ∂Ω and λ = 1, then problem
(1.1) is reduced to the following fourth order elliptic equation of Kirchhoff type∆2u −


a + b


Ω

|∇u|2dx


∆u = f(x, u) in Ω ,

u = ∆u = 0 on ∂Ω .
(1.2)

Problem (1.2) is related to the stationary analogue of the following Kirchhoff equation

∆2u + utt −


a + b


Ω

|∇u|2dx


∆u = f(x, u). (1.3)

In one and two dimensions, (1.3) is used to describe some phenomena in different physical
and engineering fields because it is regarded as a good approximation for describing nonlinear
vibrations of beams or plates (see [3,6,1]). In [13,14], Ma applied the variational methods
to study the existence and multiplicity of solutions for a nonlocal fourth order equation of
Kirchhoff type:u(4) − M

 1

0

|u′ |2dx


u′′ = h(x)f(x, u),

u(0) = u(1) = u′′(0) = u′′(1) = 0.

(1.4)

Replacing h(x)f(x, u) by h(x)f(x, u, u′) in (1.4), Ma [15] studied the existence of
positive solutions by using the fixed point theorems in cones of ordered Banach spaces.
Recently, Wang et al. [18] studied the existence of nontrivial solutions for the fourth order
elliptic equation∆2u − λ


a + b


Ω

|∇u|2 dx


∆u = f(x, u) in Ω ,

u = ∆u = 0 on ∂Ω ,

(1.5)

where λ is a positive parameter, and f : Ω × R → R is locally Lipschitz continuous. The
authors show that there exists a λ∗ such that the fourth order elliptic equation has nontrivial
solutions for 0 < λ < λ∗ by using the mountain pass techniques and the truncation method.
More recently, Avci et al. [2], studied the following fourth order elliptic equation of Kirchhoff
type

∆2u −


a + b


Ω

|∇u|2dx


∆u + cu = f(u), in RN , (1.6)

where c > 0 is a constant and N > 4. By using variational methods and truncation, they
proved the existence of positive solutions for (1.6). Replacing |u|p−2u by the generalized
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form f(x, u), Xu and Chen [21] obtained infinitely many negative nontrivial solutions for
(1.1) in R3 with λ = 1 by using genus theory. In [22] Xu and Chen have established the
existence and multiplicity of solutions for (1.1) in R3 by using variational methods.

Inspired by the above facts, more precisely by [12], the aim of this paper is to study the
existence of nontrivial solutions and least energy sign-changing solutions of problem (1.1).
To the best of our knowledge, there has been no work concerning this case up to now. For the
sake of simplicity, we consider the problem (1.1) with a = b = 1, that is,

∆2u −


1 + λ


RN

|∇u|2dx


∆u + V (x)u = |u|p−2u in RN . (1.7)

Before stating our main result, we introduce the following notations. Let p ∈ R with
1 ≤ p < +∞ and

Lp(RN ) =


u : RN → R measurable and


RN

|u|pdx < +∞


,

with the norm

∥u∥Lp := ∥u∥p =


RN

|u|pdx

 1
p

.

Then Lp(RN ) is a reflexive separable Banach space.
Let C∞

0 (RN ) be the collection of smooth functions with compact support in RN . For
m = 1, 2, and a multi-index α = (α1, α2, . . . , αN ) ∈ NN with |α| =

N
i=1 αi and

Dαu = ∂|α|u
∂α1x1∂α2x2...∂αN xN

, let

Hm(RN ) :=

u ∈ L2(RN ) | Dαu ∈ L2(RN ), |α| ≤ m


.

The space H := H2(RN ) equipped with the inner product and norm

⟨u, v⟩H =


RN

(∆u∆v + ∇u∇v + uv)dx, ∥u∥H = ⟨u, u⟩
1
2
H ,

is a Hilbert space. Now, let the following assumptions hold:

(V ) V (x) ∈ C(RN , R) satisfies infx∈RN V (x) ≥ V0 > 0, where V0 is a constant. Moreover,
for every M > 0, meas{x ∈ RN : V (x) ≤ M } < ∞, where meas(.) denotes the
Lebesgue measure in RN .

Set

E =


u ∈ H2(RN ) :


RN

V (x)u2dx < +∞


,

with the inner product and norm

⟨u, v⟩ =


RN

(∆u∆v + ∇u∇v + V (x)uv)dx, ∥u∥ = ⟨u, u⟩ 1
2 ,

where ∥.∥ is equivalent to the norm ∥.∥H . Then, E is a Hilbert space. Furthermore, E is
continuously embedded in Lp(RN ) for 2 ≤ p ≤ 2∗ under the condition (V ), that is, there
exists γp > 0 such that

∥u∥p ≤ γp∥u∥, ∀u ∈ E.
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Moreover, we have the following compactness results.

Lemma 1.1 ([7], Lemma 2.1). Under assumption (V ) the continuous embedding E ↩→
Ls(RN ) is compact for 2 ≤ s < 2∗.

Remark 1.2. Since the problem (1.1) is defined in RN which is unbounded, the lack of
compactness of the Sobolev embedding becomes more delicate by using variational tech-
niques. To overcome the lack of compactness, the condition (V ), which was first introduced
by Bartsch and Wang in [4], is always assumed to preserve the compactness of embedding
of the working space. Furthermore, it is well known that assumption (V ) implies a coercive
condition on the potential V (x), which was first introduced by Rabinowitz in [16].

SetE =

u ∈ L2(RN ):∇u ∈ L2(RN )


,

with the inner product and norm

⟨u, v⟩ E =


RN

∇u∇vdx, ∥u∥ E = ⟨u, u⟩ 1
2 .

Then, the embedding E ↩→ E is continuous, furthermore, the functional Υ : E → R, defined
by Υ(u) =


RN |∇u|2dx, is weakly lower semicontinuous on E (see [20, Lemma 2]).

We say that u ∈ E is a weak solution of problem (1.1) if

⟨u, ϕ⟩ + λ


RN

|∇u|2dx


RN

∇u∇ϕdx =


RN

|u|p−2uϕdx, ∀ϕ ∈ C∞
0 (RN ), (1.8)

where ⟨u, ϕ⟩ =


RN (∆u∆ϕ + ∇u∇ϕ + V (x)uϕ)dx. Define the energy functional Iλ:
E → R by

Iλ(u) =
1
2

∥u∥2 +
λ

4
∥u∥4E − 1

p
∥u∥p

p. (1.9)

Then, Iλ is well defined on E, moreover, the functional Φ : E → R, defined by

Φ(u) =
1
p


RN

|u|pdx,

belongs to C1(E, R) (see [19], Chapter 1), and

⟨Φ′(u), v⟩ =


RN

|u|p−2uvdx, ∀u, v ∈ E.

Therefore, Iλ ∈ C1(E, R) and

⟨I ′
λ(u), v⟩ = ⟨u, v⟩ + λ


RN

|∇u|2dx


RN

∇u∇vdx −


RN

|u|p−2uvdx, (1.10)

where ⟨u, v⟩ =


RN (∆u∆v + ∇u∇v + V (x)uv)dx. Consequently, seeking a weak solution
of problem (1.7) is equivalent to finding a critical point of the functional Iλ.

Throughout this paper, we denote u+ = max{u(x), 0} and u− = min{u(x), 0} then u =
u+ + u−. C, Ci denote positive constants, and → (⇀) denotes strong (weak) convergence.
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Definition 1.3. (i) If u ∈ E is a weak solution of (1.1) and I(u) = inf{I(v) : v is a
nontrivial solution of (1.1)}, we call u the ground state solution of (1.1).

(ii) If u ∈ E is a weak solution of (1.1) with u± ≠ 0, then we call u a sign-changing solution
of (1.1). Furthermore if u is a sign-changing solution of (1.1) with I(u) = inf{I(v) :
v is a sign-changing solution of (1.1)}, then we call u the least energy sign-changing
solution of (1.1).

The principle of the Nehari method is to seek a minimizer of the energy functional I over
the Nehari manifold N defined by

N = {u ∈ E | u ≠ 0, ⟨I ′(u), u⟩ = 0} . (1.11)

Let

c = inf
u∈N

I(u). (1.12)

Now, we are ready to state the main results of this paper.

Theorem 1.4. Assume that (V ) holds and p ∈ (2, 4]. Then, there exists λ0 > 0 such that for
all λ ∈ (0, λ0), problem (1.7) has a positive ground state solution u ∈ N .

Theorem 1.5. Let N ± be given by (3.1). Suppose that p ∈ (4, 2∗), λ > 0 and condition (V )
holds. Then the problem (1.7) has a least energy sign-changing solution u ∈ N ±, which has
exactly two nodal domains.

Theorem 1.6. Under the assumptions of Theorem 1.5, c > 0 is achieved and

I(u) > c,

where u is the least energy sign-changing solution obtained in Theorem 1.5.

Remark 1.7. In fact our results still hold for a > 0 and b > 0 (i.e. problem (1.1)).

Remark 1.8. Theorem 1.6 indicates that the energy of any sign-changing solution of (1.1) is
strictly larger than the ground state energy.

Remark 1.9. Under the assumptions of Theorem 1.5, by using almost the same procedure
in [12] (or in [10,8,17]), we can prove that the problem (1.1) has a ground state solution v
with I(v) = c, when p ∈ (4, 2∗). Therefore, Theorem 1.5 not only includes but also improves
this result.

2. EXISTENCE OF GROUND STATE SOLUTION

To prove Theorem 1.4, we state the following mountain pass theorem (see [19, Theorem
1.17]).
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Proposition 2.1 ([19]). Let X be a Banach space, I ∈ C1(X, R), c ∈ R, e ∈ X and r > 0
be such that ∥e∥ > r and

b := inf
∥u∥=r

I(u) > I(0) ≥ I(e).

If I satisfies the Palais–Smale condition at the level c ∈ R ((PS)c-condition for short), then
c is a critical value of I .

Recall that a sequence {un} ⊂ E is said to be a Palais–Smale sequence at the level c ∈ R
((PS)c-sequence for short) if I(un) → c and I ′(un) → 0. I is said to satisfy the (PS)c

condition if any (PS)c-sequence has a convergent subsequence.

Lemma 2.2. If {un} ⊂ E is a bounded sequence with I ′
λ(un) → 0, then {un} ⊂ E has a

convergent subsequence.

Proof. Since {un} ⊂ E is bounded, passing to a subsequence we may assume that un ⇀ u
in E, then Lemma 1.1 implies that un → u in Lp(RN ) for p ∈ [2, 2∗). Note that

⟨I ′
λ(un) − I ′

λ(u), un − u⟩

=


RN

|∆(un − u)|2dx +


1 + λ


RN

|∇u|2dx


RN

|∇(un − u)|2dx

− λ


RN

|∇u|2dx −


RN

|∇un|2dx


RN

∇u∇(un − u)dx

−


RN

(|un|p−2un − |u|p−2u)(un − u)dx +


RN

V (x)|un − u|2dx

≥ ∥un − u∥2 − λ


RN

|∇u|2dx −


RN

|∇un|2dx


RN

∇u∇(un − u)dx

−


RN

(|un|p−2un − |u|p−2u)(un − u)dx.

We then get

∥un − u∥2 ≤ ⟨I ′
λ(un) − I ′

λ(u), un − u⟩

+ λ


RN

|∇u|2dx −


RN

|∇un|2dx


RN

∇u∇(un − u)dx

+


RN

(|un|p−2un − |u|p−2u)(un − u)dx. (2.1)

By the Hölder inequality, we have
RN

(|un|p−2un − |u|p−2u)(un − u)dx ≤


RN

(|un|p−1 + |u|p−1)(un − u)dx

≤


∥un∥p−1
p + ∥u∥p−1

p


(∥un − u∥p)

→ 0 as n → ∞. (2.2)
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On the other hand, the continuity of the embedding E ↩→ E and the boundedness of un

implies that

λ


RN

|∇u|2dx −


RN

|∇un|2dx


RN

∇u∇(un − u)dx → 0 as n → ∞. (2.3)

It follows from (2.1)–(2.3) that ∥un − u∥ → 0. This completes the proof. �

Proof of Theorem 1.4. First, for u ∈ E \ {0} with ∥u∥ = ρ small enough and p ∈ (2, 4],
one has

Iλ(u) =
1
2

∥u∥2 +
λ

4
∥u∥4E − 1

p
∥u∥p

p

≥ 1
2

∥u∥2 − γp

p
∥u∥p

= ρ2


1
2

− γp

p
ρp−2


= α > 0.

On the other hand, we have I0(tu) → −∞ as t → ∞, since p ∈ (2, 4], which implies
that there exist λ0 > 0 and e ∈ E \ {0} such that Iλ(e) < 0 for all λ ∈ (0, λ0).
Therefore, Iλ satisfies the mountain pass geometry. Moreover, by Lemma 2.2, Iλ satisfies the
(PS)-condition, then, by applying Proposition 2.1, problem (1.7) has a ground state solution
provided λ ∈ (0, λ0) and p ∈ (2, 4]. Next, to obtain the positive solution, we may consider
the following functional

I+
λ (u) =

1
2

∥u∥2 +
λ

4
∥u∥4E − 1

p


RN

|u+|ppdx,

and repeat the above steps to conclude that problem (1.7) has a nontrivial nonnegative solution
provided λ ∈ (0, λ0) and p ∈ (2, 4]. Then it follows from the Maximum Principle that this
nonnegative solution is positive. �

3. EXISTENCE OF LEAST ENERGY SIGN-CHANGING SOLUTION

In this section, without loss of generality, we may assume that λ = 1 and denote I1 := I .
Motivated by [12], in order to get a least energy sign-changing solution of problem (1.1), we
shall seek a minimizer of the energy functional I under the following constraint:

N ± = {u ∈ E, u± ≠ 0 and ⟨I ′(u), u+⟩ = 0 = ⟨I ′(u), u− ⟩}, (3.1)

and then we show that the minimizer is a least energy sign-changing solution of (1.7).
For each u ∈ N ± and p ∈ (4, 2∗) we have the following decompositions

I(u) = I(u+) + I(u−) +
1
2

∥u+∥2E ∥u− ∥2E , (3.2)

⟨I ′(u), u+⟩ = ⟨I ′(u+), u+⟩ + ∥u+∥2E ∥u− ∥2E , (3.3)

⟨I ′(u), u− ⟩ = ⟨I ′(u−), u− ⟩ + ∥u− ∥2E ∥u+∥2E , (3.4)

I(u) = I(u) − 1
4

⟨I ′(u), u⟩ =
1
4

∥u∥2 +


1
4

− 1
p


∥u∥p

p. (3.5)
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For u ∈ E with u± ≠ 0, we define the function βu : R2
+ → R by βu(t, s) = I(tu+ + su−).

Then, we prove the following lemma.

Lemma 3.1. For each u ∈ E with u± ≠ 0, there exists a unique (tu, su) ∈ R × R with
tu, su > 0 such that tuu+ + suu− ∈ N ±, moreover

I(tuu+ + suu−) = max{I(tu+ + su−) : t, s ≥ 0}.

Proof. For u ∈ E with u± ≠ 0, by definition of βu(t, s) we have

βu(t, s) = I(tu+ + su−)

= I(tu+) + I(su−) +
t2s2

2
∥u+∥2E ∥u− ∥2E

=
t2

2
∥u+∥2 +

t4

4
∥u+∥4E − |t|p

p
∥u+∥p

p +
s2

2
∥u− ∥2

+
s4

4
∥u− ∥4E − |s|p

p
∥u− ∥p

p +
t2s2

2
∥u+∥2E ∥u− ∥2E .

By a simple computation we get

∇βu(t, s) = ⟨I ′(tu+ + su−), u+⟩, ⟨I ′(tu+ + su−), u− ⟩

=


1
t

⟨I ′(tu+ + su−), tu+⟩, 1
s

⟨I ′(tu+ + su−), su− ⟩


:= (thu(t, s), sku(t, s)) ,

where

hu(t, s) = ∥u+∥2 + t2∥u+∥4E + s2∥u+∥2E ∥u− ∥2E − |t|p−2∥u+∥p
p, (3.6)

ku(t, s) = ∥u− ∥2 + s2∥u− ∥4E + t2∥u+∥2E ∥u− ∥2E − |s|p−2
u−p

p
. (3.7)

Then, tu+ + su− ∈ N ± if and only if the pair (t, s) is a critical point of βu with t, s > 0.
So, the problem is reduced to investigating the existence of a unique solution of the following
system

∥u+∥2 + t2∥u+∥4E + s2∥u+∥2E ∥u− ∥2E − tp−2∥u+∥p
p = 0,

∥u− ∥2 + s2∥u− ∥4E + t2∥u+∥2E ∥u− ∥2E − sp−2∥u− ∥p
p = 0.

(3.8)

Let u ∈ E with u± ≠ 0, and s ≥ 0 fixed. We have

hu(t, s) = ∥u+∥2 + t2∥u+∥4E + s2∥u+∥2E ∥u− ∥2E − tp−2∥u+∥p
p,

which implies that hu(t, s) > 0 for t ≥ 0 sufficiently small and hu(t, s) → −∞ as t → +∞,
then there exists a ts > 0 such that hu(ts, s) = 0. We claim ts is unique. Suppose to the
contrary that there exist 0 < t1 < t2 such that hu(t1, s) = hu(t2, s) = 0. Then

1

t
2
1

∥u+∥2 + ∥u+∥4E +
s2

t
2
1

∥u+∥2E ∥u− ∥2E = t
p−4
1 ∥u+∥p

p,
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and

1

t
2
2

∥u+∥2 + ∥u+∥4E +
s2

t
2
2

∥u+∥2E ∥u− ∥2E = t
p−4
2 ∥u+∥p

p.

Since p > 4 and 0 < t1 < t2 we get

0 <


1

t
2
1

− 1

t
2
2


∥u+∥2 + s2∥u+∥2E ∥u− ∥2E


=

t
p−4
1 − t

p−4
2


∥u+∥p

p < 0, (3.9)

which is absurd. Therefore, there exists a unique ts > 0 such that hu(ts, s) = 0. We define
the map ηt(s) = ts, where ts satisfies the properties as mentioned before with s instead of
s. Then, by the above argument ηt : R+ → (0, +∞) is well defined and ηt(s) > 0 for all
s ∈ R+. Furthermore, we have

∂βu

∂t
(ηt(s), s) = ηt(s)hu(ηt(s), s) = 0,

that is,

∥u+∥2 + η2
t (s)∥u+∥4E + s2∥u+∥2E ∥u− ∥2E = ηp−2

t (s)∥u+∥p
p. (3.10)

The function ηt has the following properties:
(a) ηt is continuous. In fact, if sn → s as n → +∞, we prove that {ηt(sn)} is bounded.

Arguing by contradiction, suppose that there exists a subsequence (still denoted by sn), such
that ηt(sn) → +∞ as n → +∞. Then, for some n large enough, we have ηt(sn) ≥ sn.
From (3.10) we get,

1
η2

t (sn)
∥u+∥2 + ∥u+∥4E +

s2
n

η2
t (sn)

∥u+∥2E ∥u− ∥2E = ηp−4
t (sn)∥u+∥p

p. (3.11)

Passing to the limit as n → +∞ with p > 4, we obtain ∥u+∥4E = +∞, which is absurd. So
{ηt(sn)} is bounded. Therefore, there exists a t > 0 such that, up to a subsequence, one has

ηt(sn) → t.

Moreover, by passing to the limit as n → +∞ in (3.10) with sn instead of s we get

∥u+∥2 + t
2∥u+∥4E + s2∥u+∥2E ∥u− ∥2E = t

p−2 u+
p

p
,

which implies that

∂βu

∂t
(t, s) = 0.

As a result, t = ηt(s) implies that ηt is continuous.
(b) There exists C1 > 0 large enough such that ηt(s) < s for all s ≥ C1. In fact, suppose

by contradiction that there exists a sequence {sn} such that ηt(sn) ≥ sn for all n ∈ N. Then,
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from (3.10) we have

1
η2

t (sn)
∥u+∥2 + ∥u+∥4E +

s2
n

η2
t (sn)

∥u+∥2E ∥u− ∥2E = ηp−4
t (sn)∥u+∥p

p,

which implies that

ηp−4
t (sn)∥u+∥p

p ≤ 1
η2

t (sn)
∥u+∥2 + ∥u∥2E ∥u+∥2E .

Since p − 4 > 0, passing to the limit as n → +∞ we obtain +∞ ≤ C which is a
contradiction. Hence, there exists C1 > 0 large enough such that ηt(s) < s for all s ≥ C1.

By (b) there exist C1 > 0 such that ηt(s) ≤ s and µs(t) ≤ t respectively when t, s > C1.
Let

C2 = max{ max
s∈[0,C1]

ηt(s), max
t∈[0,C1]

µs(t)}.

Let C = max{C1, C2}. We define F : K → R2
+ by F (t, s) = (ηt(s), µs(t)) where

K = [0, C] × [0, C] is a bounded closed convex subset of R2
+. It is clear that F is continuous

and for all (t, s) ∈ K we have
ηt(s) ≤ s ≤ C, s > C1,
ηt(s) ≤ C2 ≤ C, s ≤ C1.

Thus, ηt(s) ≤ C. Analogously, we have µs(t) ≤ C. Therefore, F (K) ⊂ K. Then, the
Brouwer fixed point theorem implies that there exists (tu, su) ∈ [0, C] × [0, C] such that

(ηt(s), µs(t)) = (tu, su).

Moreover, tu, su > 0, because ηt and µs are positive by construction, and

∂βu

∂t
(tu, su) =

∂βu

∂s
(tu, su) = 0.

It remains to show the uniqueness of (tu, su). Assume that v ∈ N ±, then

∇βv(1, 1) =


∂βv

∂t
(1, 1),

∂βv

∂s
(1, 1)


=


⟨I ′(v+ + v−), v+⟩, ⟨I ′(v+ + u−), v− ⟩


= (0, 0) ,

which means that (1, 1) is a critical point of βv . Now, we shall show that (1, 1) is the unique
critical point of βv with positive coordinates. Assume that (t, s) is a critical point of βv .
Without loss of generality, we assume that 0 < t ≤ s. Then

∥v+∥2 + t
2∥v+∥4E + s2∥v+∥2E ∥v− ∥2E = t

p−2∥v+∥p
p, (3.12)

and

∥v− ∥2 + s2∥v− ∥4E + t
2∥v+∥2E ∥v− ∥2E = sp−2∥v− ∥p

p. (3.13)
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By (3.13) and t
s ≤ 1 we get

1
s2 ∥v− ∥2 + ∥v∥2E ∥v+∥2E ≥ sp−4∥v+∥p

p. (3.14)

On the other hand, since v ∈ N ± we have

∥v− ∥2 + ∥v∥2E ∥v+∥2E = ∥v− ∥p
p. (3.15)

Combining (3.14) and (3.15) we get
1
s2 − 1


∥v− ∥2 ≥


sp−4 − 1


∥v− ∥p

p. (3.16)

If s > 1 we get a contradiction in (3.16) by a similar argument as in (3.9). Therefore,
0 < t ≤ s ≤ 1. Now we prove that t ≥ 1. In fact, from (3.12) and 1 ≤ s

t
, we have

1

t
2 ∥v+∥2 + ∥v∥2E ∥v+∥2E ≤ t

p−4∥v+∥p
p. (3.17)

On the other hand, since v ∈ N ±, we have

∥v+∥2 + ∥v∥2E ∥v+∥2E = ∥v+∥p
p. (3.18)

Combining (3.17) and (3.18) we get
1

t
2 − 1


∥v+∥2 ≤


t
p−4 − 1


∥v+∥p

p. (3.19)

If t < 1 we get a contradiction in (3.19) by a similar argument as in (3.9), therefore t ≥ 1.
Consequently, t = s = 1, which implies that (1, 1) is the unique critical point of βv with
positive coordinates. Now, let u ∈ E with u± ≠ 0, and (tu, su), (tu, su) two critical points
of βu with tu, su, tu, su > 0. Then

u = tuu+ + suu− ∈ N ±, u = tuu+ + suu− ∈ N ±.

Let

v+ = tuu+, v− = suu−, tu =
tu
tu

, su =
su

su
. (3.20)

Then, tuv+ + suv− = tuu+ + suu− ∈ N ± and v = v+ + v− = tuu+ + suu− ∈ N ±. But
we have proved above that if v ∈ N ±, then the unique critical point of βv with positive
coordinates is (1, 1). Hence tu = su = 1, which implies that tu = tu and su = su,
therefore, (tu, su) is unique. Finally, we prove that the unique critical point (tu, su) of βu

corresponds to the unique maximum point of βu. In fact, since p > 4 for (t, s) ∈ R2
+

such that |(t, s)| > 0 small enough, βu(t, s) > 0 and lim|(t,s)|→+∞ βu(t, s) = −∞.
Note that βu(t, s) = βu(|t|, |s|), which implies that there exists (tu, su) ∈ R2

+ such that
βu(tu, su) = max(t,s)∈R2

+
βu(t, s). So, to complete the proof we need to check that the
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maximum of βu cannot be achieved on the boundary of R2
+. Without loss of generality, we

may assume that su = 0. Then, for s > 0 sufficiently small, we have

βu(tu, 0) ≥ βu(tu, s)

= βu(tu, 0) +
s2

2
∥u− ∥2 +

s4

4
∥u− ∥4E +

t2us2

2
∥u+∥2E ∥u− ∥2E − |s|p

p
∥u− ∥p

p

≥ βu(tu, 0) + s2∥u− ∥2 − |s|p

p
∥u− ∥p

p

> βu(tu, 0),

which is a contradiction. Therefore, su > 0. Similarly, we prove that tu > 0. Hence
βu(tu, su) = I(tuu+ + suu−) = max{I(tu+ + su−) : t, s ≥ 0}, which completes the
proof. �

Lemma 3.2. For all u ∈ N ± and p ∈ (4, 2∗), there exists C > 0 such that ∥u∥p
p ≥ C.

Furthermore

c = inf
u∈N ±

I(u) > 0. (3.21)

Proof. Arguing by contradiction, suppose that there exists a sequence {un} ⊂ N ± such
that ∥un∥p

p → 0 as n → +∞. Then ∥u+
n ∥p

p ≤ ∥un∥p
p → 0 as n → +∞. It follows from

⟨I ′(un), u+
n ⟩ = 0 that ∥u+

n ∥ → 0 as n → +∞. On the other hand, by using the Sobolev
embedding inequality and ⟨I ′(un), u+

n ⟩ = 0 again, we have

∥u+
n ∥2 + ∥un∥2E ∥u+

n ∥2E = ∥u+
n ∥p

p ≤ C∥u+
n ∥p.

Then

∥u+
n ∥2 ≤ ∥u+

n ∥p
p ≤ C∥u+

n ∥p,

which implies that there exists C > 0 such that ∥u+
n ∥ ≥ C since p ∈ (4, 2∗). By passing to

the limit as n → +∞, we obtain 0 < C ≤ limn→+∞ ∥u+
n ∥ = 0, which is absurd. Therefore,

there exists C > 0 such that ∥u∥p
p ≥ C for all u ∈ N ± and p ∈ (4, 2∗). Now, for u ∈ N ±,

we have from (3.5)

I(u) = I(u) − 1
4

⟨I ′(u), u⟩

=
1
4

∥u∥2 +


1
4

− 1
p


∥u∥p

p

≥ 1
4
C +


1
4

− 1
p


C ′ = α > 0.

Hence c ≥ α > 0. �

Lemma 3.3. For c defined in (3.15), if there exists u ∈ N ± such that I(u) = c, then u is a
weak solution of problem (1.7).

Proof. The proof of this lemma is almost the same as that of Lemma 2.5 in [12] (see also [9,
5,11]). So we omit it here. �
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Next, we shall prove that the minimizer u for (3.21) is achieved and it is indeed a least
energy sign-changing solution of (1.7) using Lemmas 3.1 and 3.3.

Proof of Theorem 1.5. Let {un} ⊂ N ± be a minimizing sequence of c, i.e., I(un) → c as
n → +∞. Going if necessary to a subsequence, we may assume that I(un) ≤ 2c for all
n ∈ N. Then, we have

2c ≥ I(un) − 1
4

⟨I ′(un), un⟩ =
1
4

∥un∥2 +


1
4

− 1
p


∥un∥p

p,

and

∥un∥2 ≤ 8c; ∥un∥p
p ≤ 8p

p − 4
c,

which implies that, {un} is a bounded sequence of E. Therefore, by Lemma 1.1, there exists
u ∈ E such that un ⇀ u and u±

n ⇀ u± in E as n → +∞, u±
n ⇀ u± in E as n → +∞

and u±
n → u± in Ls(RN) as n → +∞ for 2 ≤ s < 2∗. Moreover, by Lemma 3.2 there

exists C > 0 such that ∥u±
n ∥ ≥ C and ∥u±

n ∥p
p ≥ C, which implies that u± ≠ 0. Now, by

Lemma 3.1 there exists t+, s− > 0 such that u = t+u+ + s−u− ∈ N ±. Without loss of
generality we may assume that t+ ≥ s− > 0. Since {un} ⊂ N ± we have

∥u+
n ∥2 + ∥un∥2E ∥u+

n ∥2E = ∥u+
n ∥p

p,

and by the weak lower semicontinuity of the norm, we obtain

∥u+∥2 + ∥u∥2E ∥u+∥2E ≤ ∥u+∥p
p. (3.22)

On the other hand, since t+u+ + s−u− ∈ N ±, we have

∥u+∥2 + t2+∥u+∥4E + s2
− ∥u− ∥2E ∥u+∥2E = tp−2

+ ∥u+∥p
p.

But t+ ≥ s−, thus

1
t2+

∥u+∥2 + ∥u∥2E ∥u+∥2E ≥ tp−4
+ ∥u+∥p

p. (3.23)

Combining (3.22) and (3.23), we get
1 − 1

t2+


∥u+∥2 ≤


1 − tp−4

+


∥u+∥p

p,

which implies that t+ ≤ 1 since p ∈ (4, 2∗). Therefore, 0 < s− ≤ t+ ≤ 1. It follows from
(3.5) and the weak lower semicontinuity of the norm that

c ≤ I(u) = I(t+u+ + s−u−) − 1
4

⟨I ′(t+u+ + s−u−), t+u+ + s−u− ⟩

=
t2+
4

∥u+∥2 +


1
4

− 1
p


tp+∥u+∥p

p +
s2

−
4

∥u− ∥2 +


1
4

− 1
p


sp

− ∥u− ∥p
p

≤ 1
4

∥u+∥2 +


1
4

− 1
p


∥u+∥p

p +
1
4

∥u− ∥2 +


1
4

− 1
p


∥u− ∥p

p
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=
1
4

∥u∥2 +


1
4

− 1
p


∥u∥p

p

≤ lim inf
n→+∞


1
4

∥un∥2 +


1
4

− 1
p


∥un∥p

p


= lim inf

n→+∞
I(un) = c.

By the above inequality we deduce that t+ = s− = 1. Thus u = u and I(u) = c. Then, by
Lemma 3.3 we conclude that u = u+ + u− ∈ N ± is a weak solution of (1.7). That is, a least
energy sign-changing solution of problem (1.7).

Now, we show that u has exactly two nodal domains. Assume by contradiction that

u = u1 + u2 + u3,

with

ui ≠ 0, u1(x) ≥ 0, u2(x) ≤ 0, and supp(ui) ∩ supp(uj) = ∅,

for i ≠ j, i, j = 1, 2, 3, and

⟨I ′(u), ui⟩ = 0, for i = 1, 2, 3.

Set v = u1 + u2, then v+ = u1 and v− = u2, i.e., v± ≠ 0. So, Lemma 3.1 implies that there
is a unique pair (tu, su) of positive numbers such that tuv+ + suv− ∈ N ±, which means
that tuu1 + suu2 ∈ N ±. Noting that ⟨I ′(u), ui⟩ = 0, for i = 1, 2, 3, we have tu, su ∈ (0, 1],
therefore

c ≤ I(tuu1 + suu2) ≤ I(u) − 1
4

∥u3∥2 −


1
4

− 1
p


∥u3∥p

p < c.

This is a contradiction, hence u has exactly two nodal domains. �

Proof of Theorem 1.6. Let N and c be given by (1.11) and (1.12) respectively, then, by using
almost the same procedure in [12] (or in [10,8,17]), we can prove that, for each v ∈ E with
v ≠ 0, there exists a unique tv > 0 such that tvv ∈ N , c > 0 and there exists v ∈ N such
that I(v) = c. Then Lemma 2.5 in [12] implies that v is a weak solution of (1.7), that is, a
ground state solution of problem (1.7). From Theorem 1.4, we know that the problem (1.7)
has a least energy sign-changing solution u. Suppose that u = u+ + u−. Since u+ ≠ 0 there
exists t+ > 0 such that t+ u+ ∈ N , then by Proposition 2.1, we get

c ≤ I(t+u+) = I(t+u+ + 0u−) < I(u+ + u−) = c.

That is I(u) > c, which implies that c cannot be achieved by a sign-changing function. This
completes the proof. �
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[6] H. Berger, A new approach to the analysis of large deflections of plates, Appl. Mech. 22 (1955) 465–472.
[7] S. Chen, Y. Liu, X. Wu, Existence and multiplicity of nontrivial solutions for a class of modified nonlinear

fourth-order elliptic equations on RN , Appl. Math. Comput. 248 (2014) 593–601.
[8] Y. Chen, X. Tang, Ground state solutions for p-Laplacian equations, Austral. Math. Soc. 97 (1) (2014) 48–62.
[9] Y. Huang, Z. Liu, On a class of Kirchhoff type problems, Arch. Math. 102 (2014) 127–139.

[10] G. Li, X. Tang, Nehari-type ground state solutions for Schrödinger equations including critical exponent, Appl.
Math. Lett. 37 (2014) 101–106.

[11] Z. Liu, Z. Wang, On the Ambrosetti–Rabinowitz superlinear condition, Adv. Nonlinear Stud. 4 (2004) 561–572.
[12] J. Liu, Y. Wang, Z. Yang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Part.

Diff. Equa. 29 (2004) 879–901.
[13] T. Ma, Existence results for a model of nonlinear beam on elastic bearings, Appl. Math. Lett. 13 (5) (2000)

11–15.
[14] T. Ma, Existence results and numerical solutions for a beam equation with nonlinear boundary conditions,

Appl. Numer. Math. 47 (2) (2003) 189–196.
[15] T. Ma, Positive solutions for a nonlocal fourth order equation of Kirchhoff type, Discrete Contin. Dyn. Syst.

(Suppl.) (2007) 694–703.
[16] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270–291.
[17] X. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv.

Nonlinear. Stud. 14 (2014) 361–373.
[18] F. Wang, M. Avci, Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type, J. Math.

Anal. Appl. 409 (1) (2014) 140–146.
[19] M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996.
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