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Gravitational field of Schwarzschild soliton
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Abstract.  The aim of this paper is to study the gravitational field of Schwarzschild
soliton. Use of characteristic of A-tensor is given to determine the kinds of gravitational
fields. Through the cases of two and three dimension for Schwarzschild soliton, the
Gaussian curvature is expressed in terms of eigen values of the characteristic equation.
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1. INTRODUCTION

In 1982, Hamilton [5] introduced the Ricci flow
gy _
ot

to study compact three-manifolds with positive Ricci curvature and he called Eq. (1.1)

as evolution equation. Hamilton proved many important and remarkable theorems for

the Ricci flow, and laid the foundation for the program to approach the Poincare’s
conjecture and Thurstons geometrization conjecture via the Ricci flow. Further the
idea was extended to Ricci soliton by pulling back the solutions of Ricci flow along

a /-dependent diffeomorphism. The Ricci soliton is a manifold (M, g;) whose metric
tensor for a vector field ¢ on it satisfies the equation

—2R; (1.1)

1
Ry —£:8; = kg (12)
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Here k is a constant and R;; is the Ricci tensor for metric g;. The soliton is gradient if
& = V¢, for some function ¢ and steady if £k = 0. If k£ < 0 the soliton is called an ex-
pander; if £ > 0 it is a shrinker.

For the four dimensional case Akbar and Woolger [3] have given a local k=0
soliton, named as Schwarzschild soliton. Further the Ricci soliton for Lorentzian
signature has been studied by Ali and Ahsan [2] and they have explored the case of
Riesner-Nordstrom metric as a soliton. The metric of the Schwarzschild soliton is
obtained by deforming the original Schwarzschild metric for a proper substitution of
functions and vector fields, for which the new metric tensor satisfies Eq. (1.2). The
Schwarzschild soliton is given by the following equation

2 r* = 2mr V2 2 2 2 2 ) 2
ds” = _(T> dr +dr= + (r* = 2mr)(d0° + sin” 0d¢~) (1.3)
Motivated by the all important role of Ricci soliton in differential geometry and
relativity, we have studied this concept for the spacetime of general relativity. We
have chosen the Schwarzschild metric and studied its soliton in detail. By using
the 6-dimensional formalism, the characteristic values of A-tensor (i.e. Ryp — Ag45)
have been given in this paper and an example of canonical form of the system is shown.
Further the cases of 2 and 3-dimension for Schwarzschild soliton are discussed, in
which Gaussian curvature is calculated and its dependence on characteristic value of
A-tensor is shown. Finally the geometry of Schwarzschild metric and Schwarzschild
soliton was discussed.

2. SCHWARZSCHILD SOLITON

Eq. (1.3) for signature (1, 1, 1, —1) can also be written in the following form

V2
22
ﬂ) Py

o (2.1)

ds* = dr* + (r* — Zmr)(dO2 + sin20d(/)2) — <

The components of the potential for the gravitation or the metric tensor for Schwarzs-
child metric (2.1) in spherical coordinates x* = (r, 0, ¢, ) are given by

1 0 0 0
0 2 —2mr 0 0
gi(x) =10 0 (2 — 2mr) sin® 0 0 (22)
NN
0 0 0 — (2s3)

or

V2
22
egn=1, gn = —2mr, gy = (”2 72mr)sin2 0, 844 = (rmr> (2.3)
r

The Christoffel symbols, can be calculated from the formula [1]

; ; 1 ,(0g;, Ogy Og
In i il / k kl
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Thus the non-zero components of the Christoffel symbols for metric (2.1), by using Eq.
(2.3) are

I, =(m—r), Ty = (m—r)sin°0

V2
2 2_2 " _
r, = V2m (r ml) 7 Ffzzrézi

2= 2mr r? = 2mr
2 : 3 3 r—m (2.5)
I'5; = —sinfcosl, I'j; =173, = 72— omr
V2m

While Riemann tensor for the Schwarzschild soliton (2.1) can be calculated from the
formula [1]

1( & il &g ik g g i
Rju=5 | 5 s L . (rpry - Tyry) 26
M2 <8x/8xk oxiox oo ook | T 8m Lkl T Lk (2:6)
and the non-zero components of Riemann tensor, by using Eq. (2.3) are
2
m
R =
R P
V2
2m 2 —2mr
Risa = 2 2m)? < 3 ) [m+ V2(m —r)]
R2323 = —m2 SiIl2 0
Ros — —2m(m —r) (1¥* = 2mr V2 2.7)
e (r2 — 2mr) r?
m? sin” 0
Ryyy — 20 7
BT o
Roves — —\2m(m — r)sin® 0 (1 — 2mr V2
W (r? — 2mr) r?

We now use the 6-dimensional formalism in the pseudo-Euclidean space R® by making
the identification [4]

ij: 23 31 12 14 24 34

(2.8)
A: 1 2 3 4 5 6
We also make use of the identification as
Zi&i1 — Ziu8jk = ijki — &4B (2.9)

where 4,B=1,2,3,4,5,6 and g; are the components of the metric tensor at an arbi-
trary point (x*) of the Schwarzschild soliton, whose metric is given by Eq. (2.1). The
new metric tensor g,5(A4,B=1,2,3,4,5,6) is symmetric and non-singular.

The non-zero components of the metric tensor g,, for Eq. (2.1) in 6-dimensional
formalism, by using formulation (2.9) are as
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g, (x*) = (1 - 2mr)2 sin® 0, g,,(x*) = (> — 2mr)sin® 0

rr —2mr v2
g3 (xX*) = (P = 2mr), gyu(x*) = _<r—2)
V2 (2.10)
o = 2mr
2 _ 2 V2
Zos(X*) = —(r2 — 2mr) sin’ Q(F}’izmr)

Similarly, we can transform the components of the Riemann tensor as R — Rs.
Thus, for example R}y, can be written as Rj; [using identification (2.8)]. The non-zero
components of the tensor R,p under the identification (2.8) are

Ry (x*) = —m’sin® 0
. mPsin0 } m?
Rald®) = 2 e B = a0y
V2
2m 2 —2mr
Ray(x%) = m—+V2(m—r
4 (2 — 2mr)’ ( r? ) [ ( )} (2.11)

)

Res() =~y (2

o —V2m(m —r)sin® 0 (1 — 2mr V2
Reo(x7) = (r2 — 2mr) 2

Further we use all these values to find a canonical form of the A-tensor R,p — Ag ;5.
Next, we will be interested in eigen values for the Schwarzschild soliton (2.1), that is
the solutions of the characteristic equation |R,p — Ag,5| = 0. By using Egs. (2.10)
and (2.11) easily, we calculate these eigen values and those are given by

2

A(r) = 7~ 2m)?
) = s = ()
(' _22 ) (2.12)
M=  —2mr? " +Valm =)
\ ﬁ_\/zm(mfr)_ .
A5(r) = (r?— 2mr)2 = 4(r)

iy i=1,2,3,4,5,6, are the solution of the character equation |R4p — Ag 5| = 0 which
depend on m and r. In other words we can say that for 4; [equation (2.12)], the
determinant of A-tensor R,z — Ag,p 1S zero. Thus we can transform the system in
canonical form for values of /; as
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100 0 0 0
010 0 0 0
001 0 0 0
=10 00 -1 0 0
000 0 —1 0
000 0 0 —I
and (2.13)
a0 0 0 0 0
0 () 0 0 0 0
0 0 i) 0 0 0
RA/B/:
0 0 0 - 0 0
0o 0 0 0 —is() 0
0 0 0 0 0 —2(r)

Thus in our case (for Schwarzschild soliton) the gravitational field determined by
J- tensor is of the type G;[(1)(1)(11)(11)] in Segre symbols. From Eq. (2.13), we note
that even if mass m = 0, the Schwarzschild soliton is flat.

21.CaseI-0=0or0=n

When taking # = 0 or 0 = n that is df = 0, the Schwarzschild soliton, given by Eq.
(2.1), reduces to the form

. ) 2 —2mr\ Y’ 5
I =dr — [ ——— )
ds* = d . di (2.14)

Eq. (2.14) is a 2-dimensional surface now. The metric tensor *g in coordinates
xP = (r, 1) is given by

1 0
“g(xl) = [0 _(_zz)ﬁ] (2.15)

here i, j = 1,4. Thus the hypersurface for 0 = 0 or 0 = = (i.e., *H, or *H,) degenerates
to two dimensional surface. The non-zero component of Riemann curvature tensor for
Eq. (2.14) is unique and given by

“Riga(x) = 2 P = 2mr) " {m +V2(m—r) (2.16)
s B (r?— Zmr)2 r '
so the Gaussian curvature *K for surface *H, or *H, is
2m
* p _ _
K() = =2 [m+ V2(m = r)] (2.17)

Egs. (2.12) and (2.17) show that curvature of the 2-dimensional surface of the
Schwarzschild soliton is related to the eigen value A4(r).
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22.Case Il -2m<r<oo, 0<O<mand ¢ =0

For this case, Eq. (2.1) reduces to

2 —2mr\"?
ds* = dr* + (¥ — 2mr)d0* — (T) ar’ (2.18)
The metric tensor **g; for Eq. (2.18) in coordinate x” = (r, 0, 1) is given by
1 0 0
2 J—
g () = 0 (r*—2mr) 0 (2.19)
5 V2
0 0 _ (r —rgmr>

The non-zero components of the Riemann curvature tensor for the metric (2.18) are as
following
2

Fx v m
Rl = 5
V2
I } 2m 2 —2mr
Raaalo) = (> = 2mr)’ ( r? > {m +V2m =) (2.20)
" o —=\2m(m—r) (rP = 2mr V2
Raa(¥') = (r? — 2mr) r?

So for the 3-dimensional space (2.18), the Gaussian curvature at each point
x" = (r,0,1) is given by the following three physical quantities

**R2424(x"") _ \/Em(m — I’)

K () =
1) Qo (r2 — 2mr)’
T Ru( -
() = R 2 m+ Vam - r)] (2.21)
814l (r2 = 2mr)
“Ry() = Rl)
) 812 (2 = 2mr)’

Here "g,, denotes the sub-matrix of **g; corresponding to x! = r. Itis clear from Egs.
(2.12) and (2.21) that the curvature of the 3-dimensional space of Schwarzschild soliton
can be expressed in terms of a A-tensor which happens to be the solutions (eigen-values)
of the characteristic equation |R 3 — Ag,5| = 0.

3. DiscussioN

In this paper we worked out on gravitational field of Schwarzschild soliton by using
characteristic of A-tensor R,z — Ag,5, We have also discussed 2 and 3-dimensional
cases. It is seen that Schwarzschild soliton, given by Akbar and Woolger [3] has a
different geometry than that of Schwarzschild metric which is studied by Borgiel [4].
We see that the gravitational field for Schwarzschild soliton is of type
Gi[(H)(1)(11)(11)] [Eq. (16)] in Segre symbols while Borgiel has given type
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G[(1111)(11)] for Schwarzschild metric. For Schwarzschild soliton, not only does the
Gaussian curvature differ with that of Schwarzschild metric but also the dependence of
curvature on eigen values of A-tensor R,z — Ag, is not similar. Thus the deformation
in metric (along a A-dependent diffeomorphism) of a spacetime is cause for change in
geometry or gravitational field.
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