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Abstract. It is well known that the Euclidean space (Rn, ⟨, ⟩), the n-sphere Sn(c) of
constant curvature c and Euclidean complex space form (Cn, J, ⟨, ⟩) are examples of spaces
admitting conformal vector fields and therefore conformal vector fields are used in obtaining
characterizations of these spaces. In this article, we study the conformal vector fields on a
Riemannian manifold and present the existing results as well as some new results on the
characterization of these spaces. Taking clue from the analytic vector fields on a complex
manifold, we define ϕ-analytic conformal vector fields on a Riemannian manifold and study
their properties as well as obtain characterizations of the Euclidean space (Rn, ⟨, ⟩) and the
n-sphere Sn(c) of constant curvature c using these vector fields.
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1. INTRODUCTION

Characterizations of important spaces such as the Euclidean space Rn, the Euclidean
sphere Sn, and the complex projective spaceCPn, is an important problem in differential ge-
ometry and was taken up by several authors (cf. [1–8,10–12,14,13,9,15–23], [26,24,27–32]).
In most of these characterizations conformal vector fields play a notable role. Conformal
vector fields are important objects for studying the geometry of several kinds of manifolds.

A smooth vector field ξ on a Riemannian manifold (M, g) is said to be a conformal
vector field if its flow consists of conformal transformations or, equivalently, if there exists a
smooth function f on M (called the potential function of the conformal vector field ξ) that
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satisfies £ξ g = 2fg, where £ξ g is the Lie derivative of g with respect ξ. We say that ξ is
a nontrivial conformal vector field if ξ is a non-Killing vector field (ξ is a Killing vector
field if the potential function f = 0 or, equivalently, the flow of ξ consists of isometries
of the Riemannian manifold). If, in addition, ξ is a closed vector field (or is a gradient of a
smooth function), then ξ is said to be a closed conformal vector field (or a gradient conformal
vector field). If ξ is a gradient conformal vector field with ξ = ∇ρ for a smooth function
ρ on the Riemannian manifold (M, g), then we get the Poisson equation ∆ρ = nf . Thus
the geometry of gradient conformal vector fields on a Riemannian manifold is related to the
Poisson equation on the Riemannian manifold. The role of differential equations in studying
the geometry of a Riemannian manifold was initiated by the pioneering work of Obata
(cf. [21–23]). The work of Obata is about characterizing specific Riemannian manifolds by
second order differential equations. His main result is: a necessary and sufficient condition for
an n-dimensional complete and connected Riemannian manifold (M, g) to be isometric to the
n-sphere Sn(c) is that there exists a non constant smooth function f on M that satisfies the
differential equation Hf = −cfg, where Hf is the Hessian of the smooth function f . Then
Tashiro [30] has shown that the Euclidean spaces Rn are characterized by the differential
equation Hf = cg, and Tanno [28] obtained a similar characterization of spheres.

Recently Garcia-Rio et al. [15,16] have introduced the Laplace operator ∆ acting on
smooth vector fields on a Riemannian manifold (M, g) and generalized the result of Obata
using the differential equation satisfied by a vector field to characterize the n-sphere Sn(c)
(cf. Theorem 3.5 in [16]). These authors have also proved that the differential equation

∆Z = −cZ, c =
S

n(n − 1)
,

where Z is a smooth vector field on an n-dimensional compact Einstein manifold (M, g) of
constant scalar curvature S > 0, (that is Z is the eigenvector of the Laplace operator ∆), is a
necessary and sufficient condition for M to be isometric to the n-sphere Sn(c) (cf. Theorem
6 in [15]).

The geometry of conformal vector fields is naturally divided in two classes, the geometry
of gradient conformal vector fields and the geometry of conformal vector fields which are
not closed. The initial work on the subject of conformal vector fields was originated with
the geometry of closed or gradient conformal vector fields. Riemannian manifolds admitting
closed conformal vector fields or gradient conformal vector fields, have been investigated
in [6,10,17–19,21–23,29–32] and it has been observed that there is a close relationship
between the potential functions of gradient conformal vector fields and Obata’s differential
equation.

There are many examples of gradient conformal vector fields, on the n-dimensional sphere
Sn(c). If N is the unit normal vector field on Sn(c), in the Euclidean space Rn+1 with
Euclidean metric ⟨, ⟩, then for any constant vector field Z on the Euclidean space Rn+1

its restriction to Sn(c) can be expressed as Z = ξ + fN , where f = ⟨Z,N⟩ is a smooth
function and ξ is a vector field on Sn(c). Then it is straightforward to show that ξ is a gradient
conformal vector field on Sn(c) with potential function −

√
cf . Other classes of conformal

vector gradient vector fields are provided by warped product spaces. For instance, consider
an (n − 1)-dimensional Riemannian manifold (M, g) and an open interval I ⊂ R and set
M = I × M with projections π1 : M → I and π2 → M . Then for a positive function
f : I → R, we get the Riemannian manifold (M, g) called the warped product manifold,
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where the warped product metric g is given by

g(X,Y ) = (dπ1X.dπ1Y ) + (f ◦ π1)2g(dπ2X, dπ2Y ).

If ∂t is the unit vector field on I , then ξ = (f ◦ π1)∂t is a gradient conformal vector field
on the warped product space (M, g) with potential function f

′ ◦ π1 (cf. [24], Proposition
35, p. 206). The Euclidean space (Rn, ⟨, ⟩) provides many examples of conformal vector
fields, a trivial example being the position vector field ξ, which is a gradient conformal vector
field. On a complex Euclidean space (Cn, ⟨, ⟩) (Euclidean complex space form) with standard
complex structure J , the vector field ξ = ψ+Jψ is a conformal vector field that is not closed.
Similarly, on the Euclidean space (Rn, ⟨, ⟩) with Euclidean coordinates x1, . . . , xn, the vector
field

ξ = ψ −

ψ,

∂

∂xi


∂

∂xj
+

ψ,

∂

∂xj


∂

∂xi
,

where i, j are two fixed indices with i ≠ j, is a conformal vector field that is not closed. On
the odd-dimensional unit sphere S2n−1 in Cn there are many conformal vector fields which
are not closed. Each constant vector field Z on Cn with tangential component ZT to S2n−1

gives a conformal vector field u = ξ + ZT on S2n−1 that is not a closed conformal vector
field, where ξ is the Reeb vector field given by the Sasakian structure on the odd-dimensional
sphere S2n−1.

The above set of examples suggests that on the spaces Sn(c), the Euclidean space
(Rn, ⟨, ⟩) and the complex space form (Cn, ⟨, ⟩) there are many conformal vector fields.
Therefore a natural question is raised: ‘could there be characterizations of these spaces using
the conformal vector fields?’ The aim of this paper is to report on the progress of the geometry
of conformal vector fields in answering this question and to introduce some new results in
this subject.

2. PRELIMINARIES

Let (M, g) be an n-dimensional Riemannian manifold with Lie algebra X(M) of smooth
vector fields on M . A vector field ξ ∈ X(M) is said to be a conformal vector field if

£ξ g = 2fg (2.1)

for a smooth function f ∈ C∞(M), called the potential function, where £ξ is the Lie
derivative with respect to ξ. Using Koszul’s formula (cf. [1,5]), we immediately obtain the
following for a vector field ξ on M

2g(∇Xξ, Y ) = (£ξ g) (X,Y ) + dη(X,Y ), X, Y ∈ X(M), (2.2)

where η is the 1-form dual to ξ, that is, η(X) = g(X, ξ), X ∈ X(M). Define a skew
symmetric tensor field ϕ of type (1, 1) on M by

dη(X,Y ) = 2g(ϕX, Y ), X,Y ∈ X(M). (2.3)

Then using Eqs. (2.1)–(2.3), we immediately get

∇Xξ = fX + ϕX , X ∈ X(M). (2.4)

For a conformal vector field ξ, the skew symmetric tensor field ϕ in the above equation is
called the associate tensor field of the conformal vector field.
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We shall denote by ∆ the Laplace operator acting on smooth functions onM and by λ1 the
first nonzero eigenvalue of the Laplace operator ∆. For a smooth function h ∈ C∞(M) on
the Riemannian manifold (M, g), we denote by ∇h the gradient of h and by Ah the Hessian
operator Ah : X(M) → X(M) defined by Ah(X) = ∇X ∇h. On an n-dimensional compact
Riemannian manifold (M, g) that admits a conformal vector field ξ, using the skew symmetry
of the tensor field ϕ, Eq. (2.4) gives divξ = nf and consequently we have

M

f = 0, (2.5)

which gives
M

∥∇f∥2 ≥ λ1


M

f2. (2.6)

Note that the smooth 2-form given by g(ϕX, Y ) is closed, and therefore we have

g ((∇ϕ)(X,Y ), Z) + g ((∇ϕ)(Y,Z), X) + g ((∇ϕ)(Z,X), Y ) = 0, (2.7)

where the covariant derivative is (∇ϕ)(X,Y ) = ∇XϕY − ϕ(∇XY ), X,Y ∈ X(M).
Moreover, we compute the curvature tensor field R(X,Y )ξ, using Eq. (2.4), to arrive at

R(X,Y )ξ = X(f)Y − Y (f)X + (∇ϕ)(X,Y ) − (∇ϕ)(Y,X).

Using the above equation in Eq. (2.7) and the skew-symmetry of the tensor field ϕ, we get

g (R(X,Y )ξ + Y (f)X − X(f)Y, Z) + g ((∇ϕ)(Z,X), Y ) = 0,

that is,

(∇ϕ)(X,Y ) = R(X, ξ)Y + Y (f)X − g(X,Y )∇f , X,Y ∈ X(M). (2.8)

The Ricci operator Q is a symmetric (1, 1)-tensor field that is defined by

g(QX,Y ) = Ric(X,Y ), X, Y ∈ X(M),

where Ric is the Ricci tensor of the Riemannian manifold. Choosing a local orthonormal
frame {e1, ..en} on M , and using

Q(X) =


R(X, ei)ei

in Eq. (2.8), we compute
(∇ϕ)(ei, ei) = −Q(ξ) − (n − 1)∇f . (2.9)

A Riemannian manifold (M, g) is said to be an Einstein manifold if Q = λI , where λ is
a constant called the Einstein constant. The smooth function S = TrQ is called the scalar
curvature of the Riemannian manifold, which is a constant on an Einstein manifold. We have
the following for the gradient of the scalar curvature S of the Riemannian manifold

1
2

∇S =


(∇Q)(ei, ei). (2.10)
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Let (M, g) be an n-dimensional Riemannian manifold with Lie algebra X(M) of smooth
vector fields on M . Garcia-Rio et. al [16] have initiated the study of the Laplace operator
∆ : X(M) → X(M), defined by

∆X =
n

i=1


∇ei

∇ei
X − ∇∇ei

ei
X


,

where ∇ is the Riemannian connection and {e1, . . . , en} is a local orthonormal frame on
M . This operator is a self adjoint elliptic operator with respect to the inner product ⟨, ⟩ on
XC(M), the set of compactly supported vector fields in X(M), defined by

⟨X,Y ⟩ =


M

g(X,Y ), X,Y ∈ XC(M).

A vector field X is said to be an eigenvector of the Laplace operator ∆ if there is a constant
µ such that ∆X = −µX . On a compact Riemannian manifold (M, g), using the properties
of ∆ with respect to the inner product ⟨, ⟩, it is easy to conclude that the eigenvalue µ ≥ 0.
For example consider the n-sphere Sn(c) of constant curvature c as a hypersurface of the
Euclidean space Rn+1 with unit normal vector field N . Take a constant vector field Z on
Rn+1, which can be expressed as Z = ξ + fN , where ξ is the tangential component of Z to
Sn(c) and f = ⟨Z,N⟩ is the smooth function on Sn(c), ⟨, ⟩ being the Euclidean metric on
Rn+1. Then it is easy to show that ∆ξ = −cξ.

Let (M ; J ; g) be a 2n-dimensional Kaehler manifold with complex structure J and
Hermitian metric g. We denote by ∇ the Levi-Civita connection on M . Then we have

∇XJY = J∇XY , g(JX, JY ) = g(X,Y ), X,Y ∈ X(M). (2.11)

The Riemannian curvature tensor fieldR and the Ricci tensor fieldRic of a Kaehler manifold
(M ; J ; g) satisfy

R(JX, JY ; JZ, JW ) = R(X,Y ;Z,W ), Ric(JX, JY ) = Ric(X,Y ). (2.12)

A Kaehler manifold of constant holomorphic sectional curvature c is called a complex space
form and it is denoted by M(c). The curvature tensor field of a complex space form M(c)
has the expression

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY + 2g(X, JY )JZ} . (2.13)

Now we state the following useful lemmas.

Lemma 2.1 ([13]). Let ξ be a conformal vector field on an n-dimensional compact Rieman-
nian manifold (M, g) with potential function f . Then,

M

g(∇f, ξ) = −n


M

f2,

where ∇f is the gradient of the function f .
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Lemma 2.2 ([7,12]). Let ξ be a conformal vector field on a compact Riemannian manifold
(M, g) with potential function f . Then,

M

g(∇S, ξ) = 2


M

fS and


M

Ric(∇f, ξ) =


M


n − 2

2
Sf2 +

S

2
g(∇f, ξ)


,

where S is the scalar curvature.

Lemma 2.3 ([13]). Let ξ be a conformal vector field on a compact Riemannian manifold
(M, g) with potential function f . Then,

M


Ric(ξ, ξ) − n(n − 1)f2 − ∥ϕ∥2


= 0.

Lemma 2.4 ([11]). Let ξ be a conformal vector field on a compact Riemannian manifold
(M, g) with potential function f . Then,

M


(n − 1) ∥∇f∥2 +

n − 2
2

Sf2 +
S

2
g(∇f, ξ)


= 0,

where S is the scalar curvature.

Lemma 2.5 ([9]). Let (M, g) be a Riemannian manifold and f be a smooth function defined
on M . Then the Hessian operator Af satisfies

(∇Af ) (ei, ei) = Q(∇f) + ∇(∆f),

where {e1, . . . , en} is a local orthonormal frame, ∆ is the Laplace operator on M and
(∇Af ) (X,Y ) = ∇XAf (Y ) − Af (∇XY ), X,Y ∈ X(M).

Lemma 2.6 (Bochner’s Formula [1,9]). Let (M, g) be a compact Riemannian manifold and
f be a smooth function defined on M . Then

M


Ric(∇f, ∇f) + ∥Af ∥2 − (∆f)2


= 0.

Recall that, given a (1, 1) tensor field A on a Riemannian manifold (M, g), we define the
divergence of A, divA ∈ X(M), by

g(divA,X) =


g ((∇A)(ei, X), ei) , X ∈ X(M).

Lemma 2.7 ([14]). Let ξ be a conformal vector field on a 2n-dimensional Kaehler manifold
(M,J, g) with potential function f and associated tensor field ϕ. Then,

2(n − 1)∇f = divϕ − div(JϕJ) − J∇(TrJϕ).

Lemma 2.8 ([14]). Let ρ be a smooth function on a Kaehler manifold (M,J, g). Then
div(J∇ρ) = 0.
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3. CLOSED CONFORMAL VECTOR FIELDS

In this section, we study the geometry of a Riemannian manifold (M, g) that admits a
gradient conformal vector field ξ. Note that if the Riemannian manifold is simply connected,
then a closed conformal vector field is a gradient conformal vector field. As the unit sphere
Sn(c) admits many gradient conformal vector fields one naturally expects to use gradient
conformal vector fields to characterize spheres among compact Riemannian manifolds. We
shall give the sketches of proofs of some results of the author for the sake of convenience of
the readers. A classical result in this direction is proved by Tanno and Weber (cf. [28]), and
is the following:

Theorem 3.1 ([29]). Let (M, g) be a connected compact Riemannian manifold with constant
scalar curvature S > 0. ThenM is isometric to a sphere if it admits a closed conformal vector
field ξ that vanishes at some point of M .

Now we prove the following result:

Theorem 3.2 ([10]). Let (M, g) be an n-dimensional compact and connected Riemannian
manifold whose Ricci curvature satisfies

0 < Ric ≤ (n − 1)


2 − nc

λ1


c

for a constant c and the first nonzero eigenvalue λ1 of the Laplace operator. Then the
Riemannian manifold (M, g) admits a nonzero gradient conformal vector field if and only
if it is isometric to Sn(c).

Proof. Suppose the compact connected Riemannian manifold (M, g) admits a nonzero
gradient conformal vector field ξ with potential function f . Then in Eq. (2.4) the tensor field
ϕ = 0 and we have for the constant c that

Ric(∇f + cξ, ∇f + cξ) = Ric(∇f, ∇f) + 2cRic(∇f, ξ) + c2Ric(ξ, ξ).

Integrating the above equation and using Eq. (2.9) as Ric(∇f, ξ) = −(n − 1) ∥∇f∥2, the
inequality (2.6) and Lemma 2.4, we arrive at

M

Ric(∇f + cξ, ∇f + cξ) ≤


M


Ric(∇f, ∇f) − (n − 1)


2 − nc

λ1


c ∥∇f∥2


.

Since M has positive Ricci curvature, the condition in the statement of the theorem, together
with above inequality, implies that

∇f = −cξ, (3.1)

which, together with Eq. (2.4), gives

∇X ∇f = −cfX , X ∈ X(M). (3.2)

If f is a constant function, Eq. (2.5) would imply f = 0, which together with the fact that
ξ = ∇ρ is a gradient conformal vector field, that is, ∆ρ = divξ = nf = 0. Then on compact
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M , we get ρ is a constant function, that is ξ = 0, which is a contradiction. Hence, f is
a nonconstant function that satisfies Obata’s differential equation (3.2) and therefore M is
isometric to Sn(c) (cf. [22,23]).

The converse is trivial as the sphere Sn(c) has λ1 = nc and admits a nonzero gradient
conformal vector field and satisfies the inequality in the hypothesis.

Theorem 3.3 ([10]). Let (M, g) be an n-dimensional compact and connected Einstein
manifold with Einstein constant λ = (n − 1)c. Then (M, g) admits a nonzero gradient
conformal vector field if and only if c > 0 and it is isometric to Sn(c).

Proof. Suppose the compact connected Einstein manifold (M, g) admits a nonzero gradient
conformal vector field ξ with potential function f . Then taking ϕ = 0 and Q(ξ) = (n − 1)cξ
in Eq. (2.4), we get

∇f = −cξ,

which is the same as Eq. (3.1), except that in this case we need to verify c > 0. The above
equation gives ∆f = −ncf , that is f is an eigenfunction of the Laplace operator which is
nonconstant (as seen in the proof of Theorem 3.1), and this proves c > 0. Then as in the proof
of Theorem 3.2, we see that M is isometric to Sn(c). The converse is trivial.

Remark. On a compact Riemannian manifold (M, g) of constant scalar curvature S, if there
exists a nonzero gradient conformal vector field ξ with potential function f , then as ϕ = 0,
taking divergence on both sides of Eq. (2.9), we get

∆f = −Sf ,

where we have used Eq. (2.10) with S a constant. From the above equation, we conclude
that S > 0 (as for nonzero gradient conformal vector field ξ, the potential function is
nonconstant). As a consequence, we arrive at the following result:

Corollary. On a compact and connected Riemannian manifold of constant nonpositive scalar
curvature there does not exist a nonzero gradient conformal vector field.

Theorem 3.4 ([13]). Let (M, g) be an n-dimensional compact and connected Riemannian
manifold of constant scalar curvature S with S ≤ (n − 1)λ1, λ1 being the first nonzero
eigenvalue of the Laplace operator on M . Then the Riemannian manifold (M, g) admits a
nonzero closed conformal vector field ξ with potential function f which satisfies

Ric


∇f +

S

n(n − 1)
ξ, ∇f +

S

n(n − 1)
ξ


≥ 0,

if and only if it is isometric to Sn(c) for a constant c.

Proof. Suppose the compact connected Riemannian manifold (M, g) of constant scalar
curvature S admits a nonzero closed conformal vector field ξ with potential function f . Then
as ϕ = 0, Eq. (2.9) gives

Ric(∇f, ξ) = −(n − 1) ∥∇f∥2 . (3.3)
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Using this equation and Lemmas 2.1, 2.2 and the fact that S is a constant, we get

(n − 1)


M

∥∇f∥2 = S


M

f2. (3.4)

Eq. (2.6) together with the above equation gives the inequality λ1(n−1) ≤ S and the equality
holds if and only if the equality in (2.6) holds, and the equality in (2.6) holds if and only if
∆f = −λ1f (cf. [4]). However, by the hypothesis and λ1(n − 1) ≤ S, we get the equality
λ1(n − 1) = S and consequently ∆f = −λ1f . We have

Ric


∇f +

λ1

n
ξ, ∇f +

λ1

n
ξ


= Ric(∇f, ∇f) + 2

λ1

n
Ric(∇f, ξ)

+
λ2

1

n2
Ric(ξ, ξ). (3.5)

Using Lemma 2.6, ∆f = −λ1f and the Schwartz inequality ∥Af ∥2 ≥ 1
n (∆f)2 = λ2

1
n , we

get 
M

Ric(∇f, ∇f) ≤ n − 1
n

λ2
1


M

f2, (3.6)

and Eqs. (3.3), (3.4) and S = (n − 1)λ1 imply
M

Ric(∇f, ξ) = −λ1(n − 1)


M

f2. (3.7)

Integrating Eq. (3.5) and using Eqs. (3.6), (3.7) together with Lemma 2.3, we get
M

Ric


∇f +

λ1

n
ξ, ∇f +

λ1

n
ξ


≤ 0.

This, together with the hypothesis, gives

Ric


∇f +

λ1

n
ξ, ∇f +

λ1

n
ξ


= 0.

Thus, using Eqs. (3.5), (3.7) and Lemma 2.3, we get
M


Ric(∇f, ∇f) − n − 1

n
λ2

1f
2


= 0,

which together with Lemma 2.6 and equation ∆f = −λ1f gives
M


∥Af ∥2 − 1

n
(∆f)2


= 0.

Hence the Schwartz inequality gives the equality Af = ∆f
n I = − λ1

n fI , that is,

∇X ∇f = −λ1

n
fX , X ∈ X(M). (3.8)
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The closed conformal vector field ξ being nonzero, the potential function f is a nonconstant
function which satisfies Obata’s differential equation (3.8). Therefore M is isometric to
Sn(c), where nc = λ1.

Conversely, choosing a nonzero constant vector field Z on the Euclidean space
Rn+1, ⟨, ⟩


and the vector field ξ = ZT , the tangential component of Z to the sphere Sn(c),

we get Z = ξ + fN , where N is the unit normal vector field to Sn(c) and f = ⟨Z,N⟩. It
then follows that

∇Xξ = −
√
cfX , ∇f =

√
cξ, X ∈ X(Sn(c)),

that is, ξ is a nonzero closed conformal vector field on Sn(c) with λ1 = nc, which satisfies
the hypothesis of the theorem.

Recall that a smooth vector field ξ is said to be parallel on the Riemannian manifold (M, g)
if ∇Xξ = 0, X ∈ X(M) and that the Hessian Hf of a smooth function f is defined by

Hf (X,Y ) = g (AfX,Y ) , X,Y ∈ X(M) .

To conclude this section, we obtain the following characterization for the Euclidean space
using a closed conformal vector field.

Theorem 3.5. Let (M, g) be an n-dimensional complete and connected Riemannian mani-
fold. Then M admits a nonparallel closed conformal vector field that annihilates the Ricci
operator if and only if it is isometric to the Euclidean space (Rn, ⟨, ⟩).

Proof. Suppose the complete and connected Riemannian manifold (M, g) admits a nonparal-
lel closed conformal vector field ξ with potential function f that annihilates the Ricci operator
Q. Then as ϕ = 0, Eq. (2.9) gives ∇f = 0, that is, the potential function is a constant. More-
over as ξ is nonparallel by Eq. (2.4), we get the constant f ≠ 0 and ∇Xξ = fX ,X ∈ X(M).
Define a smooth function

h =
1
2

∥ξ∥2 .

Then it follows that X(h) = fg(X, ξ), X ∈ X(M), which gives ∇h = fξ. Since f is a
constant,

AhX = f∇Xξ = f2X , X ∈ X(M).

Thus Hf (X,Y ) = f2g(X,Y ) with positive constant f2, and therefore (M, g) is isometric
to the Euclidean space (Rn, ⟨, ⟩) (cf. [23]).

Conversely, the vector field ξ = ψ the position vector field on Rn is a closed conformal
vector field on the Euclidean space (Rn, ⟨, ⟩) which annihilates the Ricci operator Q = 0
of the Euclidean space. Moreover the vector field ξ satisfies ∇Xξ = X , which is therefore
nonparallel.

Remark. We have seen the results using a closed conformal vector field on Riemannian
manifolds of constant scalar curvature characterizing the spheres. We know that the n-sphere
Sn(c) admits a closed conformal vector field ξ induced by a nonzero constant vector field
Z on the Euclidean space (Rn+1, ⟨, ⟩) that satisfies ∆ξ = −cξ. This raises a question:
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Assuming (M, g) is a compact and connected n-dimensional Riemannian manifold that
admits a nontrivial closed conformal vector field ξ satisfying ∆ξ = −λξ, for a constant
λ > 0 with sectional curvatures of plane sections containing ξ bounded below by λ, is M
necessarily isometric to the sphere Sn(λ)?

4. ENERGY AND LAPLACIAN OF CONFORMAL VECTOR FIELDS

In this section, we study the geometry of a Riemannian manifold (M, g) that admits a
conformal vector field which need not be closed. On a compact Riemannian manifold (M, g),
the energy e(X) of a smooth vector field X is defined by

e(X) =
1
2


M

∥X∥2 .

For the sphere Sn(c) of constant curvature c in Euclidean space Rn+1, if we denote by ξ
the tangential component of a nonzero constant vector field Z on Rn+1 and by N the unit
normal vector field on Sn(c), then we have ∇Xξ = −

√
cρX and ∇ρ =

√
cξ, that is ξ is a

conformal vector field with potential function f = −
√
cρ, where ρ is the normal component

of the constant vector field Z. Moreover, we have

e(ξ) = c−2e(∇f).

This example motivates the following question: Is a compact Riemannian manifold (M, g)
that admits a nontrivial conformal vector field ξ with potential function f satisfying e(ξ) =
c−2e(∇f) for a positive constant c necessarily isometric to Sn(c)? The following result
shows that the answer to this question is in the affirmative for compact Riemannian manifolds
of constant scalar curvature.

Theorem 4.1 ([7]). Let (M, g) be an n-dimensional compact and connected Riemannian
manifold of constant scalar curvature S = n(n− 1)c. Then the Riemannian manifold (M, g)
admits a nonzero closed conformal vector field ξ with potential function f satisfying

e(ξ) ≤ c−2e(∇f),

if and only if it is isometric to Sn(c).

Proof. Suppose the compact connected Riemannian manifold (M, g) of constant scalar
curvature S admits a nontrivial conformal vector field ξ with potential function f . Then
Lemmas 2.1 and 2.4 imply that

e(∇f) =
S

2(n − 1)


M

f2, (4.1)

which proves that S = n(n − 1)c > 0 as ξ is a nontrivial conformal vector field, that is, the
potential function is nonconstant. By virtue of Lemma 2.1,

M

∥∇f + cξ∥2 =


M


c2 ∥ξ∥2 + ∥∇f∥2 − 2ncf2


.



Geometry of conformal vector fields 55

Using Eq. (4.1) in the above equation, we arrive at
M

∥∇f + cξ∥2 = 2c2

e(ξ) − c−2e(∇f)


,

which together with the condition in the hypothesis gives

∇f = −cξ.

The above equation and Eq. (2.4) imply

∇X ∇f = −cfX − cϕX , X ∈ X(M).

By taking the inner product with X , and as ϕ is skew symmetric, this yields

g (∇X ∇f,X) = −cfg(X,X), X ∈ X(M).

On polarization, the above equation gives

g (∇X ∇f, Y ) = −cfg(X,Y ), X,Y ∈ X(M),

which is Obata’s differential equation with nonconstant f and constant c > 0. Thus M is
isometric to Sn(c).

The converse is trivial as seen in the above example.

We observe that in the above example of the conformal vector field ξ on the sphere Sn(c)
induced by the nonzero constant vector field Z on the Euclidean spaceRn+1 has the potential
function f = −

√
cρ, where ρ is the normal component of the constant vector field Z and that

∇f = −cξ, ∆f = −ncf holds. Also the Laplacian of the conformal vector field ξ satisfies
∆ξ = −cξ, that is the conformal vector field ξ is an eigenvector of the Laplace operator ∆
with eigenvalue c. Moreover, as ∆f = −ncf , we have

e(∇f) =
nc−1

2


M

f2.

This raises a question: is a compact Riemannian manifold (M, g) that admits a nontrivial
conformal vector field with ∆ξ = −cξ, and having energy satisfying the above equality for
a constant c, necessarily isometric to the sphere Sn(c)? In this direction, we show that the
answer is in the affirmative, and prove the following result:

Theorem 4.2 ([11]). An n-dimensional compact and connected Riemannian manifold
(M, g) admits a nontrivial conformal vector field ξ with potential function f that satisfies
∆ξ = −λξ, λ > 0 with energy

e(ξ) ≤ nλ−1

2


M

f2,

if and only if it is isometric to Sn(λ).

Proof. Suppose the compact connected Riemannian manifold (M, g) admits a nontrivial
conformal vector field ξ with potential function f satisfying ∆ξ = −λξ, λ > 0 and the
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energy condition in the statement. We use Eq. (2.4) to compute ∆ξ and arrive at

∆ξ = ∇f +


(∇ϕ)(ei, ei), (4.2)

where {e1, . . . , en} is a local orthonormal frame on M . Using ∆ξ = −λξ and the above
equation, we get

Q(ξ) = −(n − 2)∇f + λξ,

which, together with Lemmas 2.1 and 2.3, gives
M

∥ϕ∥2 = 2λ

e(ξ) − nλ−1

2


M

f2


.

The above equation with the condition in the statement gives ϕ = 0 and, consequently,
Eq. (4.2) gives

∇f = −λξ.

This together with Eq. (2.4) and ϕ = 0 leads to Obata’s differential equation for nonconstant
function f (ξ being a nontrivial conformal vector field) and the constant λ > 0. Hence M is
isometric to Sn(λ).

The converse is trivial as Sn(λ) admits a nontrivial conformal vector field ξ with potential
function f that satisfies the energy condition and ∆ξ = −λξ.

Theorem 4.3 ([6]). Let (M, g) be an n-dimensional compact and connected Riemannian
manifold (M, g) with constant scalar curvature. Then M admits a nontrivial conformal
vector field ξ with potential function f that satisfies ∆ξ = −λξ for a constant λ > 0 and the
Ricci curvature in the direction of the vector field ∇f is bounded below by (n − 1)λ if and
only if M is isometric to Sn(λ).

Proof. Suppose the compact connected Riemannian manifold (M, g) of constant scalar
curvature admits a nontrivial conformal vector field ξ with potential function f that satisfies
∆ξ = −λξ for a constant λ > 0. Using Eq. (4.2), we get

(∇ϕ)(ei, ei) = −λξ − ∇f ,

which, together with Eq. (2.9), gives

Q(ξ) = λξ − (n − 2)∇f .

Since the scalar curvature S is a constant, we get div(Q(ξ)) = fS. Using the divergence in
the above equation, we arrive at

fS = nλf − (n − 2)∆f . (4.3)

Recalling the Weitzenbock formula δdξ + dδξ = −∆ξ + Q(ξ), where δ = −div (cf. [1]),
and taking its divergence and using div(Q(ξ)) = fS and Eq. (2.4), we get

n∆f = −nλf − fS. (4.4)
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Then Eqs. (4.3) and (4.4) imply that

∆f = −nλf and


M

∥∇f∥2 = nλ


M

f2. (4.5)

We use the above equation in Lemma 2.6 to get
M


Ric(∇f, ∇f) − (n − 1)λ ∥∇f∥2


+


∥Af ∥2 − 1
n

(∆f)2


= 0.

Since the Ricci curvature in the direction of the vector field ∇f is bounded below by (n−1)λ,
we can apply the Schwartz inequality in the above equation to obtain

Af =
∆f
n
I = −λfI .

The conformal vector field being nontrivial, the potential function f is nonconstant and the
above equation gives Obata’s differential equation for constant λ > 0 and therefore M is
isometric to Sn(λ). The converse is trivial as the conformal vector field ξ on Sn(c) induced
by the nonzero constant vector field Z on the Euclidean space Rn+1 satisfies ∆ξ = −cξ and
the other conditions in the statement of the theorem.

Note that the scalar curvature of the Riemannian manifold being constant (or the manifold
being an Einstein manifold) gives a convenient combination with the presence of a conformal
vector field to study the geometry of the manifold, especially in getting the characterizations
of spheres using conformal vector field. However, if the scalar curvature of the Riemannian
manifold is not a constant, then finding such characterizations becomes a difficult task and we
do not find many results in the present literature which address the geometry of Riemannian
manifolds of non-constant scalar curvature that admit a conformal vector field. In the next
result, we study the geometry of a compact Riemannian manifold of non-constant scalar
curvature that admits a nontrivial conformal vector field, under the mild condition that the
scalar curvature is constant along the integral curves of the conformal vector field. Such a
condition together with an upper bound on the scalar curvature and a lower bound on the
Ricci curvature in a certain direction gives a characterization of an n-sphere, as shown in the
following theorem:

Theorem 4.4 ([12]). Let (M, g) be an n-dimensional compact and connected Riemannian
manifold (M, g) with scalar curvature S and first nonzero eigenvalue of the Laplace operator
λ1 satisfying S ≤ (n − 1)λ1. Then M admits a nontrivial conformal vector field ξ with
potential function f that satisfies ξ(S) = 0 and the Ricci curvature in the direction of the
vector field ∇f is bounded below by n−1S if and only if M is isometric to Sn(c) for a
constant c.

Proof. Suppose the compact connected Riemannian manifold (M, g) admits a nontrivial
conformal vector field ξ with potential function f satisfying ξ(S) = 0 and Ric(∇f, ∇f) ≥
n−1S. The condition ξ(S) = 0 gives

Sg(∇f, ξ) = Sξ(f) = div(fSξ) − fdiv(Sξ) = div(fSξ) − nf2S,



58 S. Deshmukh

which, by Lemma 2.4 implies
M


(n − 1) ∥∇f∥2 − Sf2


= 0. (4.6)

Using the inequality (2.6) in the above equation, we get
M

((n − 1)λ1 − S) f2 ≤ 0.

In view of the inequality S ≤ (n − 1)λ1 this implies that ((n − 1)λ1 − S) f2 = 0. Thus, on
the connected M , we have either S = (n − 1)λ1 or f = 0. However the conclusion f = 0
makes ξ a Killing vector field, which is contrary to our assumption that ξ is a nontrivial
conformal vector field. Hence we must have S = (n − 1)λ1. Inserting in Eq. (4.6), this
gives 

M

∥∇f∥2 = λ1


M

f2. (4.7)

The above equality gives ∆f = −λ1f . In view of this conclusion and Eq. (4.7), S =
(n − 1)λ1, Lemma 2.6 takes the form

M


Ric(∇f, ∇f) − S

n
∥∇f∥2


+


∥Af ∥2 − 1
n

(∆f)2


= 0.

Using the lower bound on the Ricci curvature and the Schwartz inequality in the above
equation gives

Af =
∆f
n
I = −λ1

n
fI . (4.8)

Since the potential function f of the nontrivial conformal vector field is nonconstant, Eq. (4.8)
gives Obata’s differential equation with constant c = λ1

n > 0, and therefore M is isometric
to the sphere Sn(c). The converse is trivial as the nontrivial conformal vector field on Sn(c)
induced by a nonzero constant vector field Z on the Euclidean space Rn+1 satisfies all the
conditions in the statement of the theorem.

In the rest of this section we give examples of conformal vector fields on a Riemannian
manifold (M, g), which are eigenvectors of the Laplace operator. They are in abundance on
Einstein manifolds and we therefore start with the following lemma:

Lemma 4.1. On an Einstein manifold (M, g) of constant scalar curvature S, an eigenfunc-
tion f , ∆f = −λf , gives an eigenvector of the Laplace operator ∆ acting on smooth vector
fields, namely ∆∇f = −µ∇f with eigenvalue µ = λ − n−1S.

Proof. Suppose (M, g) is an Einstein manifold of constant scalar curvature S and ∆f =
−λf for a smooth function f and constant λ > 0. Then Lemma 2.5 gives

(∇Af ) (ei, ei) =

S

n
− λ


∇f .
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Using this equation, by a straightforward computation we get

∆∇f =


∇ei
∇ei

∇f − ∇∇ei
ei

∇f


=


(∇Af ) (ei, ei)

=

S

n
− λ


∇f = −µ∇f ,

which proves the Lemma.

We have already seen that the conformal vector field ξ on the n-sphere Sn(c) induced by
a nonzero constant vector field Z on the Euclidean space Rn+1 satisfies ∆ξ = −cξ, that is
the conformal vector field ξ is an eigenvector of the Laplace operator ∆ acting on the smooth
vector fields on the sphere Sn(c).

Example 4.1. Let (M, g) be an n-dimensional connected Einstein manifold of constant
scalar curvature S. Let ξ = ∇ρ, for a smooth function ρ on M , be the gradient conformal
vector field on M with potential function f . Since ξ is a closed vector field we have ϕ = 0
and Eq. (2.4) gives ∆ρ = nf . Moreover, the Hessian operation Aρ of the function ρ satisfies
AρX = fX and consequently, for a local orthonormal frame {e1, . . . , en}, we have

(∇Aρ) (ei, ei) = ∇f .

Combining this equation with Lemma 2.5 for the Einstein manifold and ∆ρ = nf , we get

−n(n − 1)∇f = S∇ρ, (4.9)

which, together with ∆ρ = nf gives

∆f = − S

(n − 1)
f . (4.10)

Using Eqs. (2.4) and (4.9), we get ∇X ∇f = hX , X ∈ X(M), where h = − S
n(n−1)f is

a smooth function, that is u = ∇f is a gradient conformal vector field. By Lemma 4.1 and
Eq. (4.10), we have ∆u = − S

n(n−1)u. Thus on the Einstein manifold (M, g) the conformal
vector field u is an eigenvector of the Laplace operator ∆ acting on the smooth vector fields
on M .

Example 4.2. Consider the Euclidean space (Rn, g), where g = ⟨, ⟩ is the Euclidean metric
and define a metric g on Rn by

gu =


2

1 + ∥u∥2

2

gu, u ∈ Rn.

Then the Riemannian connection ∇ on the Riemannian manifold (Rn, g) and the Euclidean
connection ∇ on (Rn, g) are related by

∇XY = ∇XY − X(f)Y − Y (f)X + g(X,Y )∇f , (4.11)
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where f = log(1 + ∥u∥2) − log 2. Let Ψ be the position vector field on Rn. Then, using
(4.11), we get

∇XΨ =


1 − ∥u∥2

1 + ∥u∥2


X , X ∈ X(Rn) (4.12)

which proves that Ψ is a conformal vector field on the Riemannian manifold (Rn, g). Using
(4.12), we obtain

∇X ∇XΨ − ∇∇XXΨ = X(h)X , (4.13)

where

h =


1 − ∥u∥2

1 + ∥u∥2


.

For a local orthonormal frame {e1, . . . , en} on (Rn, g), we get the local orthonormal frame
efe1, . . . , e

fen


on (Rn, g). Using the fact that the gradient ∇h of the function h on the

Euclidean space (Rn, g) is given by

∇h =
−4

(1 + ∥u∥2)2
Ψ ,

and consequently by Eq. (4.13), we conclude that ∆Ψ = −Ψ , that is the conformal vector
field Ψ on the Riemannian manifold (Rn, g) is an eigenvector of the Laplace operator ∆
acting on the smooth vector fields on Rn.

A smooth vector field u on a Riemannian manifold (M, g) is said to be a harmonic vector
field if ∆u = 0. In what follows we give an example of a harmonic conformal vector field.

Example 4.3. Consider the Euclidean space (Rn, ⟨, ⟩), and the vector field

ξ = ψ + xi ∂

∂xj
− xj ∂

∂xi
,

where ψ is the position vector field x1, . . . , xn are the Euclidean coordinates, and i, j are
fixed indices with i ≠ j. Then it is straightforward to see that ξ is a conformal vector field
with potential function 1 and the skew symmetric operator ϕ in Eq. (2.4) is given by

ϕX = X(xi)
∂

∂xj
− X(xj)

∂

∂xi
, X ∈ X(Rn)

and that

(∇ϕ) (X,Y ) = Hxi(X,Y )
∂

∂xj
− Hxj (X,Y )

∂

∂xi
= 0, X,Y ∈ X(Rn).

With f = 1 Eq. (4.2) and the above equation imply ∆ξ = 0, that is, ξ is a harmonic conformal
vector field on the Euclidean space (Rn, ⟨, ⟩).
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5. CHARACTERIZING EUCLIDEAN SPACES BY CONFORMAL VECTOR FIELDS

One of the interesting questions in differential geometry is to characterize Euclidean
spaces among complete and connected Riemannian manifolds. In this section we study the
role of conformal vector fields in characterizing Euclidean spaces. Given a conformal vector
field ξ on a Riemannian manifold (M, g) with potential function f , we shall call the skew
symmetric tensor field ϕ appearing in Eq. (2.4) the associated tensor field of the conformal
vector field ξ.

We have seen that the vector field ξ = ψ, where ψ is the position vector field on the
Euclidean space (Rn, ⟨, ⟩) is a nontrivial conformal vector field which satisfies ϕ(ξ) = 0,
Q(ξ) = 0 as Q = 0 for the Euclidean space, the vector field being a gradient conformal
vector field ϕ = 0. Moreover, the conformal vector field ξ is also harmonic, that is, ∆ξ = 0.
We utilize this information on the Euclidean space to arrive at the following characterizations.

Theorem 5.1. Let (M, g) be an n- dimensional (n > 2) complete and connected Riemannian
manifold. Then it admits a nontrivial harmonic conformal vector field ξ with potential
function f and associated tensor field ϕ, that annihilates the Ricci operator and satisfies

R(X, ξ; ξ,X) = ∥ϕX∥2 , X ∈ X(M)

if and only if M is isometric to the Euclidean space (Rn, ⟨, ⟩).

Proof. Suppose (M, g) is a complete and connected Riemannian manifold dimM > 2 that
admits a nontrivial conformal vector field ξ with potential function f , satisfying ∆ξ = 0,
Q(ξ) = 0 and the curvature condition given in the statement. Then, using Eq. (2.4), it is
straightforward to get

∆ξ = ∇f +


(∇ϕ)(ei, ei) = 0. (5.1)

Now, using Eq. (2.9), we have

Q(ξ) = −(n − 1)∇f −


(∇ϕ)(ei, ei) = 0. (5.2)

These two equation give

(n − 2)∇f = 0,

which in view of n > 2, means the potential function f is a constant. This constant cannot be
zero, for if it were zero that would imply ξ is a Killing vector field, which is not permissible
as ξ is a nontrivial conformal vector field. Next define a smooth function h = 1

2 ∥ξ∥2, which
by virtue of Eq. (2.4) satisfies

∇h = fξ − ϕ(ξ). (5.3)

Note that this equation stipulates that the smooth function h is a nonconstant function, since
otherwise that would imply ϕ(ξ) = fξ, that is, f ∥ξ∥2 = 0 and ξ = 0 which contradicts the
assumption that ξ is a nontrivial conformal vector field. Taking the covariant derivative with
respect to X ∈ X(M) in Eq. (5.3), and using Eqs. (2.4) and (2.8), we get

∇X ∇h = f2X − R(X, ξ)ξ − ϕ2X , X ∈ X(M),
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which, in view of the curvature condition in the hypothesis, gives

Hh(X,Y ) = cg(X,Y ), X,Y ∈ X(M), c = f2 > 0.

Hence, M is isometric to the Euclidean space (Rn, ⟨, ⟩) (cf. [23]). The converse is trivial as
the conformal vector field ξ = ψ on the Euclidean space (Rn, ⟨, ⟩) meets all the requirements
in the statement.

Theorem 5.2. An n-dimensional (n > 2) complete and connected Riemannian manifold
(M, g) of nonnegative Ricci curvature admits a nontrivial harmonic conformal vector field ξ
that annihilates the associated tensor field ϕ if and only if M is isometric to the Euclidean
space (Rn, ⟨, ⟩).

Proof. Suppose (M, g) is a complete and connected Riemannian manifold dimM > 2 of
nonnegative Ricci curvature that admits a nontrivial conformal vector field ξ with potential
function f satisfying ∆ξ = 0 and ϕ(ξ) = 0. Using Eqs. (2.9) and (5.1), we get

Q(ξ) = −(n − 2)∇f ,

that is

Ric(ξ, ξ) = −(n − 2)ξ(f). (5.4)

Next, using Eq. (2.4) and ϕ(ξ) = 0, we compute

(∇ϕ)(X, ξ) = −fϕX − ϕ2X , X ∈ X(M).

For an orthonormal frame {e1, . . . , en}, choose X = ei in the above equation and take the
inner product with ei and sum the resulting equation, to get

−g

ξ,


(∇ϕ)(ei, ei)


= ∥ϕ∥2 ,

which, together with Eq. (5.1), gives

ξ(f) = ∥ϕ∥2 .

Using this last equation in (5.4), we arrive at Ric(ξ, ξ) + (n − 2) ∥ϕ∥2 = 0. Since the Ricci
curvature is nonnegative and n > 2 it follows that ϕ = 0. By Eq. (5.1), we get ∇f = 0, that
is, f is a constant, which cannot be zero by virtue of the fact that ξ is a nontrivial conformal
vector field. Finally, the smooth function h = 1

2 ∥ξ∥2 defined on M has gradient ∇h = fξ
and as in the proof of previous theorem, h is a nonconstant function that satisfies

Hh(X,Y ) = cg(X,Y )

for a constant c > 0 and therefore M is isometric to the Euclidean space (Rn, ⟨, ⟩). The
converse is trivial.

We denote by η the smooth 1-form dual to the conform vector field ξ on a Riemannian
manifold (M, g), that is η(X) = g(X, ξ), X ∈ X(M). Finally, we arrive at the following
characterization of the Euclidean space.
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Theorem 5.3 ([12]). An n-dimensional complete and connected Riemannian manifold
(M, g), (n ≥ 3), admits a nontrivial harmonic conformal field ξ that annihilates the Ricci
operator and satisfies dη(X, ξ) = 0 for smooth vector fields X on M , where η is the 1-form
dual to ξ, if and only if M is isometric to the Euclidean space (Rn, ⟨, ⟩).

In the rest of this section we are interested in obtaining characterizations of the Euclidean
complex space form (Cn, J, ⟨, ⟩) using specific conformal vector fields on a Kaehler
manifold. On the Euclidean complex space form there exists a conformal vector field whose
expression for its covariant derivative motivates the definition of a specific vector field on
the Kaehler manifold, which we call a special conformal vector field. We have seen in the
introduction that the vector field ξ = ψ + Jψ is a conformal vector field on the Kaehler
manifold (Cn, J, ⟨, ⟩), which is not Killing, where ψ is the position vector field, J is the
complex structure and ⟨, ⟩ is the Hermitian metric on Cn. For this conformal vector field ξ on
(Cn, J, ⟨, ⟩), we have

∇Xξ = X + JX , X ∈ X(Cn).

Motivated by the above expression, we say a smooth vector field ξ on a Kaehler manifold
(M,J, g) is a special conformal vector field if it satisfies

∇Xξ = fX + ρJX , X ∈ X(M), (5.5)

for smooth functions f, ρ defined on M . Note that a conformal vector field ξ on a Kaehler
manifold (M,J, g) is a special conformal vector field if the associated tensor field ϕ of ξ
satisfies ϕ = ρJ , for a smooth function ρ on M . These special conformal vector fields are a
particular case of the vector fields considered in [19]. We observe that for a special conformal
vector field ξ on a Kaehler manifold (M,J, g), we have ϕ = ρJ and JϕJ = −ϕ and
therefore, using Eqs. (2.4) and (2.11), we have

divϕ = −J∇ρ, div(JϕJ) = J∇ρ and Tr(Jϕ) = −2nρ. (5.6)

Hence, by Lemma 2.7,

(n − 1) (∇f − J∇ρ) = 0. (5.7)

Theorem 5.4 ([14]). A 2n-dimensional (n > 1) complete and simply connected complex
space form M(c) admits a nontrivial conformal vector field ξ with potential function f and
associated tensor field ϕ satisfying divϕ = J∇r and div(JϕJ) = J∇s for smooth functions
r, s on M if and only if M is isometric to the Euclidean complex space form (Cn, J, ⟨, ⟩).

Proof. Suppose M(c) is a complete and simply connected complex space form dimM > 2
that admits a nontrivial conformal vector field ξ with potential function f and associated
tensor field ϕ satisfying divϕ = J∇r and div(JϕJ) = J∇s for smooth functions r, s.
Using Eq. (2.13), we get

Q(ξ) =
c

2
(n+ 1)ξ.

Also, using divϕ = J∇r in Eq. (2.9), we get

J∇r = (2n − 1)∇f +Q(ξ) = (2n − 1)∇f +
c

2
(n+ 1)ξ.
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Taking divergence in the above equation and using Lemma 2.8, we arrive at

(2n − 1)∆f + n(n+ 1)cf = 0. (5.8)

By Lemma 2.7 we have

2(n − 1)∇f = J∇r − J∇s+ J∇(TrJϕ).

Taking divergence and using Lemma 2.8, gives 2(n − 1)∆f = 0, that is, ∆f = 0. From Eq.
(5.8) we have n(n+1)cf = 0, hence either c = 0 or f = 0. But the choice f = 0 contradicts
the fact that ξ is a nontrivial conformal vector field, and hence c = 0. Consequently, M
is isometric to the Euclidean complex space form (Cn, J, ⟨, ⟩). The converse is trivial as
the Euclidean complex space form (Cn, J, ⟨, ⟩) admits the nontrivial conformal vector field
ξ = ψ + Jψ, with potential function f = 1 and associated tensor field ϕ = J satisfying
divϕ = 0 and div(JϕJ) = 0, and thus meets the requirements.

Since a special conformal vector field ξ on a complex space form M(c) satisfies Eq. (5.6),
as a direct consequence of Theorem 5.4, we have the following:

Corollary 5.1 ([14]). A 2n-dimensional (n > 1) complete and simply connected complex
space form M(c) admits a nontrivial special conformal vector field ξ, if and only if M is
isometric to the Euclidean complex space form (Cn, J, ⟨, ⟩).

Corollary 5.2 ([14]). On a hyperbolic complex space form there does not exist a nontrivial
special conformal vector field.

Theorem 5.5 ([14]). A 2n-dimensional (n > 1) complete and simply connected Kaehler
manifold (M,J, g) admits a nontrivial harmonic special conformal vector field ξ if and only
if it is isometric to the Euclidean complex space form (Cn, J, ⟨, ⟩).

Proof. Suppose that ξ is a nontrivial harmonic special conformal vector field on a
2n-dimensional Kaehler manifold (M,J, g). Then the associated tensor field ϕ of ξ satisfies
ϕ = ρJ for some smooth function ρ. Using Eq. (5.5), we compute

∆ξ = ∇f + J∇ρ.

Since ∆ξ = 0 (ξ is harmonic), Eq. (5.7) and n > 1 imply ∇f = 0 and ∇ρ = 0, that is, both
functions f and ρ are constants. Thus Eq. (5.5) takes the form

∇Xξ = c1X + c2JX , X ∈ X(M). (5.9)

Then for the smooth function h = 1
2 ∥ξ∥2 on M , using Eq. (5.9), we compute the gradient

∇h and the Hessian operator as

∇h = c1ξ − c2Jξ, (5.10)

and

Ah(X) = (c21 + c22)X = cX , X ∈ X(M). (5.11)

If the constant c = 0, that would give c1 = c2 = 0, which by Eq. (5.9) would imply that ξ
is parallel and hence Killing, thereby contradicting the fact that ξ is a nontrivial conformal
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vector field. Hence c > 0. Moreover, if h is a constant function, Eq. (5.10) would imply that
ξ = 0 (since constants c1 and c2 cannot both be zero), which contradicts the fact that ξ is
a nontrivial conformal vector field and hence h is a nonconstant function. By virtue of Eq.
(5.11) h satisfies

Hh(X,Y ) = cg(X,Y ), X,Y ∈ X(M).

Hence M is isometric to the Euclidean complex space form Cn (cf. [29]).
The converse is trivial as the Euclidean complex space form (Cn, J, ⟨, ⟩) admits a

nontrivial harmonic special conformal vector field ξ = ψ + Jψ.

6. CONFORMAL VECTOR FIELDS ON KAEHLER MANIFOLDS

In this section, we study conformal vector fields on a Kaehler manifold. The model spaces
in Kaehler manifolds, the Euclidean space Cn and the complex projective space CPn, are
counterparts of Riemannian manifolds, the Euclidean space Rn, and the unit sphere Sn re-
spectively. However, with respect to the existence of conformal vector fields the analogy is
not complete as it is known that on the complex projective space, CPn, (n > 1) there does
not exists a nontrivial conformal vector field, whereas on the unit sphere Sn there are many.
Indeed, it is known that a conformal vector field on a 2n-dimensional compact Kaehler man-
ifold (M,J, g), (n > 1) is Killing (cf. [17]). This result limits the use of nontrivial conformal
vector fields in characterizing complex projective spaces beyond the real dimension 2. There-
fore the focus in the geometry of conformal vector fields on Kaehler manifolds is to find
conditions for a conformal vector field on a noncompact Kaehler manifold to be Killing.

Recall that a smooth vector field ξ on a Kaehler manifold (M,J, g) is said to be an analytic
vector field if the flow of ξ consists of holomorphic diffeomorphisms (that is, the differentials
of flow diffeomorphisms commute with the complex structure J), which is equivalent to the
requirement that

£ξ J = 0,

where £ξ is the Lie-derivative with respect the vector field ξ. A smooth vector field ξ on
a Kaehler manifold (M,J, g) is said to be an analytic conformal vector field if it is both
an analytic vector field and a conformal vector field. As pointed out earlier, on a compact
Kaehler manifold (M,J, g) with dimM > 2 each conformal vector field is Killing. However
on noncompact Kaehler manifolds nontrivial conformal vector fields are in abundance, for
instance the vector field ξ = ψ + Jψ on the Kaehler manifold (Cn, J, ⟨, ⟩) is a nontrivial
conformal vector field. Moreover this vector field is an analytic vector field on the Kaehler
manifold (Cn, J, ⟨, ⟩). For a smooth vector field X on a Kaehler manifold (M,J, g), we set
X = JX , X ∈ X(M) and it is easy see that if ξ is an analytic vector field on the Kaehler
manifold (M,J, g), then so is ξ.

Lemma 6.1 ([8]). Let ξ be an analytic conformal vector field with potential function f on a
Kaehler manifold (M,J, g). Then the associated tensor field ϕ of the conformal vector field
ξ satisfies J ◦ ϕ = ϕ ◦ J and the covariant derivative of the vector field ξ is given by

∇Xξ = AX + fJX , X ∈ X(M),

where A = J ◦ ϕ is a symmetric (1, 1) tensor field.
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Lemma 6.2 ([8]). Let ξ be an analytic conformal vector field with potential function f on a
Kaehler manifold (M,J, g). Then the tensor field A = J ◦ ϕ satisfies

divA = ∆ξ − J∇f .

Lemma 6.3 ([8]). Let ξ be an analytic conformal vector field with potential function f on a
Kaehler manifold (M,J, g). Then the tensor field A = J ◦ ϕ satisfies

(∇A) (X,Y ) − (∇A) (Y,X) = J [R(X,Y )ξ + Y (f)X − X(f)Y ], X,Y ∈ X(M).

Lemma 6.4 ([8]). Let ξ be an analytic conformal vector field with potential function f on a
2n-dimensional Kaehler manifold (M,J, g). Then the trace h = TrA tensor field A = J ◦ϕ
satisfies

∇h = ∆ξ − Q(ξ) − 2J∇f and ∇h = −2Q(ξ) − 2nJ∇f .

Note that if ξ is an analytic conformal vector field with potential function f on a
2n-dimensional Kaehler manifold (M,J, g), then using Eqs. (2.9) and (4.2), we have

∆ξ +Q(ξ) = −2(n − 1)∇f . (6.1)

Theorem 6.1 ([8]). Let (M,J, g) be a Kaehler manifold of constant scalar curvature S ≠ 0
and dimM ≠ 4. Then a harmonic analytic conformal vector field on M is Killing.

Proof. Suppose that ξ is a harmonic analytic conformal vector field on a 2n-dimensional
Kaehler manifold (M,J, g) with potential function f . Then Eq. (6.1) gives Q(ξ) = −2(n −
1)∇f and as Eq. (2.12) implies that the Ricci operator Q commutes with the complex
structure J , we have

Q(ξ) = −2(n − 1)J∇f . (6.2)

Using Eq. (6.2) and the fact that ∆ξ = J∆ξ = 0 in Lemma 6.4, we get

−J∇h = 2(n − 2)∇f .

Taking divergence in the above equation and using Lemma 2.8, we get (n − 2)∆f = 0.
Since dimM ≠ 4, we have n ≠ 2 and consequently ∆f = 0, which together with Eq.
(6.2) gives div(Q(ξ)) = 0. However, as the scalar curvature S is a constant, we have
div(Q(ξ)) = fS = 0 and the scalar curvature S ≠ 0 implies that f = 0. Hence the
conformal vector field is Killing.

Theorem 6.2 ([8]). Let (M,J, g) be a 2n-dimensional Kaehler Einstein manifold (n > 1).
If ξ is an analytic conformal vector field on M , then either ξ is a Killing vector field or else
(M,J, g) is Ricci flat.

Proof. Suppose that ξ is an analytic conformal vector field on a 2n-dimensional Kaehler
Einstein manifold (M,J, g) with potential function f . Then using Q(ξ) = (2n)−1Sξ in
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Lemma 6.4, we get

∇h = −S

n
ξ − 2nJ∇f and J∇h = 2n∇f +

S

n
ξ. (6.3)

Taking divergence in equations in (6.3) and using Lemma 2.8, we arrive at

∆h = −S

n
h and ∆f = −S

n
f . (6.4)

Now, taking the covariant derivative in the first equation in (6.3) with respect to X ∈ X(M),
we get

Ah(X) = −S

n
AX − S

n
fJX − 2nJAfX , X ∈ X(M),

which gives

(∇Ah) (X,Y ) = −S

n
(∇A) (X,Y ) − S

n
X(f)JY − 2nJ (∇Af ) (X,Y ), (6.5)

X,Y ∈ X(M). For a local orthonormal frame {e1, . . . , e2n} on M , take X = Y = ei in
Eq. (6.5) and sum, while using Eqs. (6.4) and Lemma 2.5, one arrives at

S

2n
∇h − S

n
∇h = −S

n
J∇f − 2nJ


S

2n
∇f − S

n
∇f


− S

n


(∇A) (ei, ei). (6.6)

Lemma 6.4 together with the property of the curvature tensor of a Kaehler manifold
R(X,Y )JZ = JR(X,Y )Z, implies

X(h) = −Ric(X, ξ) − g(X, J∇f) + g

X,


(∇A) (ei, ei)


,

that is,
(∇A) (ei, ei) = ∇h+

S

2n
ξ + J∇f .

Using the above equation in (6.6), we arrive at

S

2n


∇h+

S

n
ξ − 2(n − 2)J∇f


= 0. (6.7)

From the second equation in Lemma 6.4 we have

∇h+
S

n
ξ = −2nJ∇f .

This, together with Eq. (6.7), gives

(n − 1)SJ∇f = 0.

Thus either S = 0, that is, the Kaehler manifold is Ricci flat or else ∇f = 0, which gives
∆f = 0. By Eq. (6.4) we have f = 0 for (S ≠ 0), hence the vector field ξ is Killing.
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7. ϕ-ANALYTIC CONFORMAL VECTOR FIELDS

Given a conformal vector field ξ on a Riemannian manifold (M, g) with potential function
f and associated tensor field ϕ, if the conformal vector field ξ is not closed, then ϕ ≠ 0 and
it is a skew symmetric tensor field. Taking clue from analytic vector fields on a complex
manifold, one considers conformal vector fields whose flow leaves the associated tensor field
ϕ invariant. Such conformal vector fields on a Riemannian manifold will be the subject of
study in this section.

Definition. A conformal vector field ξ on a Riemannian manifold (M, g) with associated
tensor field ϕ is said to be a ϕ-analytic conformal vector field if the tensor field ϕ is invariant
under the flow of ξ.

It follows from the above definition that a conformal vector field ξ is ϕ-analytic if and only
if

(£ξ ϕ) (X) = 0, X ∈ X(M). (7.1)

We have seen that the vector field ξ = ψ + Jψ ∈ X(Cn), where ψ is the position vector field
and J is the complex structure on the complex Euclidean space Cn is a conformal vector field
with potential function f = 1 and associated tensor field ϕ = J and it satisfies Eq. (7.1),
hence ξ is a ϕ-analytic vector field. Note that the conformal vector fields on the n-sphere
Sn(c) induced by constant vector fields on Rn+1 are ϕ-analytic vector fields. Furthermore,
the vector field

ξ = ψ + xi ∂

∂xj
− xj ∂

∂xi

on the Euclidean space (Rn, ⟨, ⟩), where ψ is the position vector field and x1, . . . , xn are
Euclidean coordinates and i ≠ j are two fixed indices, is a ϕ-analytic vector field with the
associated tensor field ϕ given by

ϕ(X) = X(xi)
∂

∂xj
− X(xj)

∂

∂xj
, X ∈ X(Rn).

Note that on a connected Riemannian manifold (M, g) a nontrivial conformal vector field ξ
cannot have a constant length. For if h is the square of the length of ξ, then using Eq. (2.4),
we would get

∇h = 2 (fξ − ϕξ) ,

which for a constant h, would give

f ∥ξ∥2 = 0.

The above equation on connected M gives either f = 0 or ξ = 0 and both of these are ruled
out for a nontrivial conformal vector field. Indeed, this proves that a conformal vector field
of constant length on a connected Riemannian manifold is Killing.

Having seen many examples of ϕ-analytic conformal vector fields, to see that this is
a stronger notion than conformal vector field, consider the odd dimensional unit sphere
(S2n−1, g), n > 1. The Reeb vector field ξ

′
defines the Sasakian structure (ϕ, ξ

′
, η

′
, g) that
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satisfies

∇Xξ
′
= −ϕX , X ∈ X(S2n−1)

and

(∇ϕ) (X,Y ) = g(X,Y )ξ
′

− η(Y )X , X,Y ∈ X(S2n−1).

Using the gradient conformal vector field u = ZT on S2n−1 induced by a constant vector
field Z on the Euclidean space Ren, which satisfies

u = ∇f and ∇Xu = −fX , X ∈ X(S2n−1),

where f = ⟨Z,N⟩, N being the unit normal vector field to S2n−1, we get the vector field
ξ = −u − ξ

′
. This is a conformal vector field with potential function f and associated tensor

field ϕ. We claim that this conformal vector field ξ with potential function f and associated
tensor field ϕ is not a ϕ-analytic vector field. If it were, then an easy computation shows that

(£ξ ϕ) (X) = g(X, ξ
′
)u − g(u,X)ξ

′
= 0, X ∈ X(S2n−1),

and that the vector fields u and ξ
′

are parallel. Hence there exists a smooth function ρ on
S2n−1 such that u = ρξ

′
. Taking the covariant derivative with respect to X ∈ X(S2n−1), we

get ρϕX = X(ρ)ξ
′
+ fX . Operating ϕ on this equation, to obtain fϕX = ρη(X)ξ

′ − ρX ,
then eliminating ϕX using the last two equations, we get

(f2 + ρ2)X =

ρ2η(X) − fX(ρ)


ξ

′
, X ∈ X(S2n−1).

Choose unit vector fieldX orthogonal to ξ
′

in the above equation to conclude that f = ρ = 0,
which is a contradiction as u is a nontrivial gradient conformal vector field. Hence ξ is not a
ϕ analytic vector field.

First, we prove the following result, which gives an important property of a ϕ-analytic
conformal vector field.

Theorem 7.1 ([11]). A conformal vector field ξ on a Riemannian manifold (M, g) with
potential function f is a ϕ-analytic conformal vector field if and only if there exists a smooth
function ρ on M such that ∇f = ρξ.

Proof. Suppose ξ is a ϕ-analytic vector field with potential function f . Then using Eqs. (2.4)
and (7.1), we get

(∇ϕ) (ξ,X) = 0, X ∈ X(M).

In view of Eq. (2.8), this gives

g(X, ξ)∇f = g(X, ∇f)ξ, X ∈ X(M).

Thus, we get ∇f ∧ ξ = 0 and consequently the vector fields ∇f and ξ are parallel. Hence,
there exists a smooth function ρ on M such that ∇f = ρξ.

Conversely, assume that ∇f = ρξ. Then using Eqs. (2.4) and (2.8), we have

(£ξ ϕ) (X) = [ξ, ϕX] − ϕ[ξ,X] = (∇ϕ) (ξ,X)
= g(X, ∇f)ξ − g(X, ξ)∇f = 0

which proves that ξ is a ϕ-analytic vector field.
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A conformal vector field ξ on a Riemannian manifold (M, g) with associated tensor field
ϕ is said to be a null conformal vector field if it satisfies ϕ(ξ) = 0. The following result shows
that on non-positively curved Riemannian manifolds ϕ-analytic conformal vector fields are
in abundance.

Theorem 7.2 ([11]). A null conformal vector field ξ on a Riemannian manifold (M, g) with
potential function f satisfying R(∇f, ξ; ∇f, ξ) ≤ 0 is a ϕ-analytic conformal vector field.

Proof. Using ϕ(ξ) = 0 and Eq. (2.8), we get

−ϕ (f∇f + ϕ(∇f)) = R(∇f, ξ)ξ. (7.2)

Taking the inner product in the above equation with ∇f ,

R(∇f, ξ; ξ, ∇f) = ∥ϕ(∇f)∥2 .

Since the sectional curvature is non-positive, we get ϕ(∇f) = 0, and consequently, [∇f, ξ] =
f∇f − ∇ξ ∇f . On the other hand Eq. (7.2) gives R(∇f, ξ)ξ = 0. Thus

∇∇ffξ − ∇ξ(f∇f) − ∇f ∇fξ + ∇∇ξ ∇fξ = 0,

which, on using Eq. (2.4), gives

∥∇f∥2
ξ − ξ(f)∇f + ϕ (∇ξ ∇f) = 0.

Taking the inner product in the above equation with ξ, we get

g(∇f, ξ)2 = ∥∇f∥2 ∥ξ∥2

that is, ∇f = ρξ for a smooth function ρ on M . By Theorem 7.1, this proves that ξ is a
ϕ-analytic vector field.

Finally, we use a specific type of ϕ-analytic vector field to find a characterization for
spheres. If the function ρ appearing in the characterization of the ϕ-analytic conformal vector
field ξ in Theorem 7.1 is a constant, then we say that ξ is a constant type ϕ-analytic conformal
vector field.

Theorem 7.3 ([11]). Let ξ be a nontrivial ϕ-analytic conformal vector field of constant
type on an n-dimensional compact and connected Riemannian manifold (M, g). Then M
is isometric to the n-sphere Sn(c).

Proof. Note that we have ∇f = αξ, where α is a constant. The constant α ≠ 0 for otherwise
the potential function f will be a constant. By Eq. (2.5) this will imply f = 0, which is
contrary to our assumption that ξ is a nontrivial conformal vector field. Hence, α ≠ 0 and the
vector field ξ = α− ∇f is a closed vector field, which by Eq. (2.3) gives ϕ = 0. Thus, taking
covariant derivative of both sides of equation ∇f = αξ with respect toX ∈ X(M) and using
Eq. (2.4), we get

∇X ∇f = αfX , X ∈ X(M). (7.3)
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We claim that α is a negative constant. To see that observe that Eq. (7.3) gives ∆f = nαf ,
that is, f is an eigenfunction of the Laplace operator ∆. Since this is an elliptic operator on
the compact Riemannian manifold its eigenvalue is either nα = 0 or nα < 0. The first option
implies ∆f = 0, that is, f is a constant which is ruled out as seen above. Hence α < 0 and
we put α = −c, c > 0 which makes Eq. (7.3) Obata’s differential equation. That proves M
is isometric to Sn(c).

Finally, we have the following characterization of the Euclidean space (Rn, ⟨, ⟩) using
ϕ-analytic conformal vector fields.

Theorem 7.4. An n-dimensional (n > 1),complete and connected Riemannian manifold
(M, g) admits a nontrivial null ϕ-analytic conformal vector field ξ with potential function
f and associated tensor field ϕ satisfying

divϕ = 0 and Ric(ξ, ξ) = 0,

if and only if it is isometric to the Euclidean space (Rn, ⟨, ⟩).

Proof. Suppose the complete and connected Riemannian manifold (M, g) admits a nontrivial
null ϕ-analytic conformal vector field that satisfies the conditions in the statement. Then we
have

ϕ(ξ) = 0 and ∇f = ρξ (7.4)

for a smooth function ρ on M . Since, divϕ = 0, we have for a local orthonormal frame
{e1, . . . , en} on M

g ((∇ϕ)(eiX), ei) = 0, X ∈ X(M),

which gives
(∇ϕ)(ei, ei) = 0, (7.5)

From Eqs. (2.9), (7.4) and Ric(ξ, ξ) = 0 we conclude that

(n − 1)ρ ∥ξ∥2 = 0.

As the vector field ξ is a nontrivial conformal vector field and n > 1, the above equation gives
ρ = 0, which by virtue of Eq. (7.4) implies that f is a constant. Moreover, f is a nonzero
constant, for f = 0 makes ξ Killing, which is contrary to the assumption that ξ is a nontrivial
conformal vector field. Also, using Eq. (2.4), we compute

div(ϕ(ξ)) = − ∥ϕ∥2 − g

ξ,


(∇ϕ)(ei, ei)


.

Using Eqs. (7.4) and (7.5), we conclude that ϕ = 0 and thus Eq. (2.4) for the function
h = 1

2 ∥ξ∥2 gives

Hh(X,Y ) = cg(X,Y ),
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where the constant c = f2 > 0 and hence M is isometric to the Euclidean space (Rn, ⟨, ⟩)
(cf. [25]). The converse is trivial as the Euclidean space (Rn, ⟨, ⟩) admits the nontrivial con-
formal vector field ξ = ψ, where ψ is the position vector field, that satisfies all requirements
in the statement.

Remark. Given a ϕ-analytic vector field ξ on a Riemannian manifold (M, g) with potential
function f , it gives rise to another smooth function ρ on M that satisfies ∇f = ρξ. It
will be worth exploring the properties of this function to utilize these properties in getting
different characterizations of the spheres Sn(c) as well as the Euclidean spaces (Rn, ⟨, ⟩).
For instance in Theorem 7.3, we used ρ = constant for characterizing spheres. Similarly, one
could expect the bounds on ρ could be used to get some new characterizations of spheres
as well as Euclidean spaces. Moreover, as we have seen all closed conformal vector fields
are trivially ϕ-analytic conformal vector fields as the associated tensor field ϕ = 0 for these
conformal vector fields. The examples of nontrivial ϕ-analytic vector fields known so far
are on the Euclidean spaces, therefore it will be worth constructing nontrivial ϕ-analytic
conformal vector fields on other spaces.
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