Generalized derivations as homomorphisms or anti-homomorphisms on Lie ideals

Nadeem ur Rehman*, Mohd Arif RaZa
Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Received 27 January 2014; received in revised form 5 August 2014; accepted 28 September 2014 Available online 8 October 2014

Abstract

Let R be a prime ring of $\operatorname{char}(R) \neq 2, Z$ the center of R, and L a nonzero Lie ideal of R. If R admits a generalized derivation F associated with a derivation d which acts as a homomorphism or as anti-homomorphism on L, then either $d=0$ or $L \subseteq Z$. This result generalizes a theorem of Wang and You.

Keywords: Generalized derivations; Martindale ring of quotients; Prime ring; Lie ideal; Homomorphisms and anti-homomorphisms

2010 Mathematics Subject Classification: 16N60; 16W25

1. Introduction

Throughout this paper, unless specifically stated, R will be an associative ring, Z the center of R, Q its two-sided Martindale quotient ring and U its right Utumi quotient ring (some times, as in [2], U is called the maximal right ring of quotients). The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [2], for the definitions and related properties of these objects). For any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $x y-y x$. Recall that a ring R is prime if $x R y=0$ implies either $x=0$ or $y=0$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. In particular d is an inner derivation induced by an element $q \in R$, if $d(x)=[q, x]$ holds for all $x \in R$. By a generalized inner derivation on R, one usually means an additive mapping $F: R \rightarrow R$ if $F(x)=a x+x b$ for fixed $a, b \in R$. For such a mapping F, it is easy to see that $F(x y)=F(x) y+x[y, b]=F(x) y+x I_{b}(y)$,

[^0]
http://dx.doi.org/10.1016/j.ajmsc.2014.09.001
1319-5166 © 2015 Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
where I_{b} is an inner derivation determined by b. This observation leads to the definition given in [5]: an additive mapping $F: R \rightarrow R$ is called generalized derivation associated with a derivation d if $F(x y)=F(x) y+x d(y)$ for all $x, y \in R$. Obviously any derivation is a generalized derivation. Other basic examples of generalized derivations are the following: (i) $F(x)=a x+x b$ for $a, b \in R$; (ii) $F(x)=a x$ for some $a \in R$. Since the sum of two generalized derivations is a generalized derivation, every map of the form $F(x)=c x+d(x)$ is a generalized derivation, where c is a fixed element of R and d is a derivation of R. In [16], Lee extended the definition of a generalized derivation as follows: by a generalized derivation we mean an additive mapping $F: I \rightarrow U$ such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in I$, where I is a dense right ideal of R and d is a derivation from I into U. Moreover, Lee also proved that every generalized derivation can be uniquely extended to a generalized derivation on U, and thus all generalized derivations of R will be implicitly assumed to be defined on dense right ideal of R can be uniquely extended to U and assumes the form $F(x)=a x+d(x)$ for some $a \in U$ and a derivation d on U (see Theorem 3, in [16]).

In [3, Theorem 3], Bell and Kappe proved that if d is a derivation of a prime ring R which acts as homomorphisms or anti-homomorphisms on a nonzero right ideal of R then $d=0$ on R. Further Asma et al. [1], extend this result to Lie ideals of 2-torsion free prime rings. More precisely they prove that if L is a noncentral Lie ideal of R such that $u^{2} \in L$, for all $u \in L$ and d acts as a homomorphism or anti-homomorphism on L, then $d=0$. In 2007 Wang and You [19], eliminate the hypothesis $u^{2} \in L$, for all $u \in L$ and prove the same result as Asma et al. [1]. To be more specific, the statement of Wang and You theorem is the following:

Theorem 1.1 ([19, Theorem 1.2]). Let R be a 2-torsion free prime ring and L a nonzero Lie ideal of R. If d is a derivation of R which acts as a homomorphism or an antihomomorphism on L, then either $d=0$ or $L \subseteq Z$.

In [18], First author studies the case when the derivation d is replaced by a generalized derivation F and obtain the following: if R is a 2-torsion free prime ring and F acts as a homomorphism or an anti-homomorphism on a nonzero ideal of R, then R must be commutative. For more details related results we refer the reader to $[7,8,10,11]$. Our work is then motivated by the previous results. The aim of the present paper is to generalize Theorem 1.1, for generalized derivation F by using the same technique as Wang and You [19] with necessary variations.

Explicitly we shall prove the following theorem.
Theorem 1.2. Let R be a prime ring with $\operatorname{char}(R) \neq 2, L$ a nonzero Lie ideal of R. If R admits a generalized derivation F associated with a derivation d which acts as a homomorphism or an anti-homomorphism on L, then $d=0$ or $L \subseteq Z$.

2. Main result

We will make frequent use of the following result due to Kharchenko [14] (see also [15]): Let R be a prime ring, d a nonzero derivation of R and I a nonzero two sided ideal of R. Let $f\left(x_{1}, \ldots, x_{n}, d\left(x_{1}, \ldots, x_{n}\right)\right)$ be a differential identity in I, that is

$$
f\left(r_{1}, \ldots, r_{n}, d\left(r_{1}\right), \ldots, d\left(r_{n}\right)\right)=0 \quad \text { for all } r_{1}, \ldots, r_{n} \in I
$$

Then one of the following holds:
(1) either d is an inner derivation in Q, the Martindale quotient ring of R, in the sense that there exists $q \in Q$ such that $d=a d(q)$ and $d(x)=a d(q)(x)=[q, x]$, for all $x \in R$ and I satisfies the generalized polynomial identity

$$
f\left(r_{1}, \ldots, r_{n},\left[q, r_{1}\right], \ldots,\left[q, r_{n}\right]\right)=0
$$

(2) if it is not inner then d is called Q-outer and I satisfies the generalized polynomial identity

$$
f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=0
$$

Remark 2.1. If I is a nonzero ideal of the prime ring R, then
(i) I, R and U satisfy the same generalized polynomial identities with coefficient in U [6, Theorem 2].
(ii) I, R and U satisfy the same differential identities [15, Theorem 2].

Now, we are in a position to prove the main result of the paper.
Proof of the Theorem 1.2. Assume on contrary that both $d \neq 0$ and $L \nsubseteq Z$. Since R is a prime ring and F is a generalized derivation associated with derivation d of R, by Lee [16, Theorem 3], $F(x)=a x+d(x)$ for some $a \in U$ and a derivation d on U. Also by a result of Herstein [12, Lemma 1.3.], there exist a nonzero ideal I of R such that $0 \neq[I, R] \subseteq L$. In particular, $[I, I] \subseteq L$, hence without loss of generality we may assume that $L=[I, I] \subseteq L$. We divide the proof into two cases:
Case 1. If F acts as a homomorphism on L, then we have

$$
F([x, y]) F\left(\left[x_{1}, y_{1}\right]\right)=F\left([x, y]\left[x_{1}, y_{1}\right]\right)=F([x, y])\left[x_{1}, y_{1}\right]+[x, y] d\left(\left[x_{1}, y_{1}\right]\right),
$$

for all $x, y, x_{1}, y_{1} \in I$. Thus for all $x, y, x_{1}, y_{1} \in I, I$ satisfies the differential identity

$$
\begin{aligned}
& a[x, y] a\left[x_{1}, y_{1}\right]+[d(x), y] a\left[x_{1}, y_{1}\right]+[x, d(y)] a\left[x_{1}, y_{1}\right] \\
&+a[x, y]\left[d\left(x_{1}\right), y_{1}\right]+[d(x), y]\left[d\left(x_{1}\right), y_{1}\right]+[x, d(y)]\left[d\left(x_{1}\right), y_{1}\right] \\
&+a[x, y]\left[x_{1}, d\left(y_{1}\right)\right]+[d(x), y]\left[x_{1}, d\left(y_{1}\right)\right]+[x, d(y)]\left[x_{1}, d\left(y_{1}\right)\right] \\
&= a[x, y]\left[x_{1}, y_{1}\right]+[d(x), y]\left[x_{1}, y_{1}\right]+[x, d(y)]\left[x_{1}, y_{1}\right] \\
&+[x, y]\left[d\left(x_{1}\right), y_{1}\right]+[x, y]\left[x_{1}, d\left(y_{1}\right)\right] .
\end{aligned}
$$

In the light of Kharchenko's theory [14], we divide the proof into two cases:
If the derivation d is Q-outer, by Kharchenko's theorem [14], I satisfies the polynomial identity

$$
\begin{aligned}
a[x, y] a & {\left[x_{1}, y_{1}\right]+[s, y] a\left[x_{1}, y_{1}\right]+[x, t] a\left[x_{1}, y_{1}\right] } \\
& +a[x, y]\left[s_{1}, y_{1}\right]+[s, y]\left[s_{1}, y_{1}\right]+[x, t]\left[s_{1}, y_{1}\right] \\
& +a[x, y]\left[x_{1}, t_{1}\right]+[s, y]\left[x_{1}, t_{1}\right]+[x, t]\left[x_{1}, t_{1}\right] \\
= & a[x, y]\left[x_{1}, y_{1}\right]+[s, y]\left[x_{1}, y_{1}\right]+[x, t]\left[x_{1}, y_{1}\right] \\
& +[x, y]\left[s_{1}, y_{1}\right]+[x, y]\left[x_{1}, t_{1}\right], \quad \text { for all } x, y, x_{1}, y_{1}, s, t, s_{1}, t_{1} \in I .
\end{aligned}
$$

In particular, for $x=x_{1}=t_{1}=0, I$ satisfies the blended component $[s, y]\left[s_{1}, y_{1}\right]=0$ for all $s, y, s_{1}, t_{1} \in I$. In other words, $[I, I]^{2}=0$ i.e., $L^{2}=0$. By [4, Lemma 4], $L=0$, a contradiction.

Let now d be an inner derivation induced by an element $q \in Q$, that is, $d(x)=[q, x]$ for all $x \in R$. Then, for any $x, y, x_{1}, y_{1}, s, t, s_{1}, t_{1} \in I$,

$$
\begin{aligned}
& a[x, y] a\left[x_{1}, y_{1}\right]+[[q, x], y] a\left[x_{1}, y_{1}\right]+[x,[q, y]] a\left[x_{1}, y_{1}\right] \\
&+a[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[[q, x], y]\left[\left[q, x_{1}\right], y_{1}\right]+[x,[q, y]]\left[\left[q, x_{1}\right], y_{1}\right] \\
&+a[x, y]\left[x_{1},\left[q, y_{1}\right]\right]+[[q, x], y]\left[x_{1},\left[q, y_{1}\right]\right]+[x,[q, y]]\left[x_{1},\left[q, y_{1}\right]\right] \\
&= a[x, y]\left[x_{1}, y_{1}\right]+[[q, x], y]\left[x_{1}, y_{1}\right]+[x,[q, y]]\left[x_{1}, y_{1}\right] \\
&+[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[x, y]\left[x_{1},\left[q, y_{1}\right]\right] .
\end{aligned}
$$

By Chuang [6, Theorem 1], I and Q satisfy same generalized polynomial identities (GPIs), we have

$$
\begin{aligned}
a[x, y] & a\left[x_{1}, y_{1}\right]+[[q, x], y] a\left[x_{1}, y_{1}\right]+[x,[q, y]] a\left[x_{1}, y_{1}\right] \\
& +a[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[[q, x], y]\left[\left[q, x_{1}\right], y_{1}\right]+[x,[q, y]]\left[\left[q, x_{1}\right], y_{1}\right] \\
& +a[x, y]\left[x_{1},\left[q, y_{1}\right]\right]+[[q, x], y]\left[x_{1},\left[q, y_{1}\right]\right]+[x,[q, y]]\left[x_{1},\left[q, y_{1}\right]\right] \\
= & a[x, y]\left[x_{1}, y_{1}\right]+[[q, x], y]\left[x_{1}, y_{1}\right]+[x,[q, y]]\left[x_{1}, y_{1}\right] \\
& +[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[x, y]\left[x_{1},\left[q, y_{1}\right]\right], \quad \text { for all } x, y, x_{1}, y_{1}, s, t, s_{1}, t_{1} \in Q .
\end{aligned}
$$

In case the center C of Q is infinite, we have

$$
\begin{aligned}
& a[x, y] a\left[x_{1}, y_{1}\right]+[[q, x], y] a\left[x_{1}, y_{1}\right]+[x,[q, y]] a\left[x_{1}, y_{1}\right] \\
&+a[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[[q, x], y]\left[\left[q, x_{1}\right], y_{1}\right]+[x,[q, y]]\left[\left[q, x_{1}\right], y_{1}\right] \\
&+a[x, y]\left[x_{1},\left[q, y_{1}\right]\right]+[[q, x], y]\left[x_{1},\left[q, y_{1}\right]\right]+[x,[q, y]]\left[x_{1},\left[q, y_{1}\right]\right] \\
&= a[x, y]\left[x_{1}, y_{1}\right]+[[q, x], y]\left[x_{1}, y_{1}\right]+[x,[q, y]]\left[x_{1}, y_{1}\right] \\
&+[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[x, y]\left[x_{1},\left[q, y_{1}\right]\right],
\end{aligned}
$$

for all $x, y, x_{1}, y_{1}, s, t, s_{1}, t_{1} \in Q \otimes_{C} \bar{C}$, where \bar{C} is algebraic closure of C. Since both Q and $Q \otimes_{C} \bar{C}$ are prime and centrally closed [9, Theorems 2.5 and 3.5], we may replace R by Q or $Q \otimes_{C} \bar{C}$ according as C is finite or infinite. Thus we may assume that R is centrally closed over C (i.e., $R C=R$) which is either finite or algebraically closed and

$$
\begin{aligned}
& a[x, y] a\left[x_{1}, y_{1}\right]+[[q, x], y] a\left[x_{1}, y_{1}\right]+[x,[q, y]] a\left[x_{1}, y_{1}\right] \\
&+a[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[[q, x], y]\left[\left[q, x_{1}\right], y_{1}\right]+[x,[q, y]]\left[\left[q, x_{1}\right], y_{1}\right] \\
&+a[x, y]\left[x_{1},\left[q, y_{1}\right]\right]+[[q, x], y]\left[x_{1},\left[q, y_{1}\right]\right]+[x,[q, y]]\left[x_{1},\left[q, y_{1}\right]\right] \\
&= a[x, y]\left[x_{1}, y_{1}\right]+[[q, x], y]\left[x_{1}, y_{1}\right]+[x,[q, y]]\left[x_{1}, y_{1}\right] \\
&+[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[x, y]\left[x_{1},\left[q, y_{1}\right]\right],
\end{aligned}
$$

for all $x, y, x_{1}, y_{1}, s, t, s_{1}, t_{1} \in R$. By Martindale [17, Theorem 3], $R C$ (and so R) is a primitive ring having nonzero socle H and the commuting division ring D is a finite dimensional central division algebra over Z. Since Z is either finite or algebraically closed, D must coincide with Z. Hence by Jacobson's theorem [13, p-75], R is isomorphic to a dense ring of linear transformations of some vector space V over Z i.e., $R \cong \operatorname{End}\left(V_{Z}\right)$ and H consists of the finite rank linear transformations in R.
Step 1. we want to show that, for any $v \in V, v$ and $q v$ are linearly Z-dependent. Since if $q v=0$ then $\{v, q v\}$ is linearly Z-dependent, suppose that $q v \neq 0$. If v and $q v$ are linearly
Z-independent. By the density of R, there exist $x, y, x_{1}, y_{1} \in R$ such that:

$$
\begin{aligned}
& x v=0, \quad x q v=q v, \quad y v=0, \quad y q v=v ; \\
& x_{1} v=0, \quad x_{1} q v=v, \quad y_{1} v=0, \quad y_{1} q v=q v .
\end{aligned}
$$

These imply that

$$
\begin{aligned}
v= & \left(a[x, y] a\left[x_{1}, y_{1}\right]+[[q, x], y] a\left[x_{1}, y_{1}\right]+[x,[q, y]] a\left[x_{1}, y_{1}\right]\right. \\
& +a[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[[q, x], y]\left[\left[q, x_{1}\right], y_{1}\right]+[x,[q, y]]\left[\left[q, x_{1}\right], y_{1}\right] \\
& \left.+a[x, y]\left[x_{1},\left[q, y_{1}\right]\right]+[[q, x], y]\left[x_{1},\left[q, y_{1}\right]\right]+[x,[q, y]]\left[x_{1},\left[q, y_{1}\right]\right]\right) v \\
= & \left(a[x, y]\left[x_{1}, y_{1}\right]+[[q, x], y]\left[x_{1}, y_{1}\right]+[x,[q, y]]\left[x_{1}, y_{1}\right]\right. \\
& \left.+[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[x, y]\left[x_{1},\left[q, y_{1}\right]\right]\right) v \\
= & 0, \quad \text { a contradiction. }
\end{aligned}
$$

So we conclude that $\{v, q v\}$ are linearly Z-dependent, for all $v \in V$.
Step 2. We show here that there exists $\lambda \in Z$ such that $q v=v \lambda$, for any $v \in V$. Now choose $v, w \in V$ linearly Z-independent. By Step 1 there exist $\lambda_{v}, \lambda_{w}, \lambda_{v+w} \in Z$ such that $q v=v \lambda_{v}, q w=w \lambda_{w}, q(v+w)=(v+w) \lambda_{v+w}$, moreover $v \lambda_{v}+w \lambda_{w}=(v+w) \lambda_{v}+w$. Hence $v\left(\lambda_{v}-\lambda_{v+w}\right)+w\left(\lambda_{w}-\lambda_{v+w}\right)=0$. Since v, w are linearly Z-independent, we have $\lambda_{v}=\lambda_{w}=\lambda_{v+w}$. This completes the proof of Step 2.

Let now for $r \in R, v \in V$. By Step 2, qv $=v \lambda, r(q v)=r(v \lambda)$, and also $q(r v)=(r v) \lambda$. Thus $0=[q, r] v$, for any $v \in V$, that is $[q, r] V=0$. Since V is a left faithful irreducible R-module, hence $[q, r]=0$, for all $r \in R$, i.e., $q \in Z$ and $d=0$, which contradicts our hypothesis.
Case 2. Now assume that F acts as anti-homomorphism on L, so that for all $x, y, x_{1}, y_{1} \in$ I

$$
F([x, y])\left[x_{1}, y_{1}\right]+[x, y] d\left(\left[x_{1}, y_{1}\right]\right)=F\left([x, y]\left[x_{1}, y_{1}\right]\right)=F\left(\left[x_{1}, y_{1}\right]\right) F([x, y])
$$

Thus I satisfies the differential identity

$$
\begin{aligned}
a[x, y] & {\left[x_{1}, y_{1}\right]+[d(x), y]\left[x_{1}, y_{1}\right]+[x, d(y)]\left[x_{1}, y_{1}\right] } \\
& +[x, y]\left[d\left(x_{1}\right), y_{1}\right]+[x, y]\left[x_{1}, d\left(y_{1}\right)\right] \\
= & a\left[x_{1}, y_{1}\right] a[x, y]+\left[d\left(x_{1}\right), y_{1}\right] a[x, y]+\left[x_{1}, d\left(y_{1}\right)\right] a[x, y] \\
& +a\left[x_{1}, y_{1}\right][d(x), y]+\left[d\left(x_{1}\right), y_{1}\right][d(x), y]+\left[x_{1}, d\left(y_{1}\right)\right][d(x), y] \\
& +a\left[x_{1}, y_{1}\right][x, d(y)]+\left[d\left(x_{1}\right), y_{1}\right][x, d(y)]+\left[x_{1}, d\left(y_{1}\right)\right][x, d(y)]
\end{aligned}
$$

for all $x, y, x_{1}, y_{1} \in I$.
If d is not inner derivation, by Kharchenko's theorem [14], I satisfies the polynomial identity for all $x, y, x_{1}, y_{1}, s, t, s_{1}, t_{1} \in I$

$$
\begin{aligned}
& a[x, y]\left[x_{1}, y_{1}\right]+[s, y]\left[x_{1}, y_{1}\right]+[x, t]\left[x_{1}, y_{1}\right]+[x, y]\left[s_{1}, y_{1}\right]+[x, y]\left[x_{1}, t_{1}\right] \\
& ==a\left[x_{1}, y_{1}\right] a[x, y]+\left[s_{1}, y_{1}\right] a[x, y]+\left[x_{1}, t_{1}\right] a[x, y] \\
& \quad+a\left[x_{1}, y_{1}\right][s, y]+\left[s_{1}, y_{1}\right][s, y]+\left[x_{1}, t_{1}\right][s, y] \\
& \quad+a\left[x_{1}, y_{1}\right][x, t]+\left[s_{1}, y_{1}\right][x, t]+\left[x_{1}, t_{1}\right][x, t] .
\end{aligned}
$$

In particular, for $x=x_{1}=t_{1}=0, I$ satisfies the blended component $[s, y]\left[s_{1}, y_{1}\right]=0$ for all $s, y, s_{1}, t_{1} \in I$. It follows from Case 1 that $L=0$, a contradiction.

Let now d be an inner derivation induced by an element $q \in Q$, that is, $d(x)=[q, x]$ for all $x \in R$. Since by Chuang [6, Theorem 1], I and Q satisfy same generalized polynomial identities (GPIs), we have

$$
\begin{aligned}
a[x, y] & {\left[x_{1}, y_{1}\right]+[[q, x], y]\left[x_{1}, y_{1}\right]+[x,[q, y]]\left[x_{1}, y_{1}\right] } \\
& +[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[x, y]\left[x_{1},\left[q, y_{1}\right]\right] \\
= & a\left[x_{1}, y_{1}\right] a[x, y]+\left[\left[q, x_{1}, y_{1}\right]\right] a[x, y]+\left[x_{1},\left[q, y_{1}\right]\right] a[x, y] \\
& +a\left[x_{1}, y_{1}\right][[q, x], y]+\left[\left[q, x_{1}\right], y_{1}\right][[q, x], y]+\left[x_{1},\left[q, y_{1}\right]\right][[q, x], y] \\
& +a\left[x_{1}, y_{1}\right][x,[q, y]]+\left[\left[q, x_{1}\right], y_{1}\right][x,[q, y]]+\left[x_{1},\left[q, y_{1}\right]\right][x,[q, y]],
\end{aligned}
$$

for all $x, y, x_{1}, y_{1}, s, t, s_{1}, t_{1} \in Q$. In the view the above situation same as Case 1 , now finally we claim that v and $q v$ are Z-independent. Suppose to the contrary that v and $q v$ are Z-independent. By the density of R, there exist $x, y, x_{1}, y_{1} \in R$ such that

$$
\begin{aligned}
& x v=0, \quad x q v=q v, \quad y v=0, \quad y q v=v \\
& x_{1} v=0, \quad x_{1} q v=v, \quad y_{1} v=0, \quad y_{1} q v=q v .
\end{aligned}
$$

We have,

$$
\begin{aligned}
0= & \left(a[x, y]\left[x_{1}, y_{1}\right]+[[q, x], y]\left[x_{1}, y_{1}\right]+[x,[q, y]]\left[x_{1}, y_{1}\right]\right. \\
& \left.+[x, y]\left[\left[q, x_{1}\right], y_{1}\right]+[x, y]\left[x_{1},\left[q, y_{1}\right]\right]\right) v \\
= & \left(a\left[x_{1}, y_{1}\right] a[x, y]+\left[\left[q, x_{1}, y_{1}\right]\right] a[x, y]+\left[x_{1},\left[q, y_{1}\right]\right] a[x, y]\right. \\
& +a\left[x_{1}, y_{1}\right][[q, x], y]+\left[\left[q, x_{1}\right], y_{1}\right][[q, x], y]+\left[x_{1},\left[q, y_{1}\right]\right][[q, x], y] \\
& \left.\left.+a\left[x_{1}, y_{1}\right][x,[q, y]]+\left[\left[q, x_{1}\right], y_{1}\right][x,[q, y]]+\left[x_{1},\left[q, y_{1}\right]\right]\right][x,[q, y]]\right) v \\
= & v, \quad \text { a contradiction. }
\end{aligned}
$$

Thus, v and $q v$ are Z-dependent. In the same way as Case 1 we can get $d=0$, contradiction. With this the proof is complete.

ACKNOWLEDGMENT

The authors are greatly indebted to the referees for his/her serval useful suggestions and valuable comments.

References

[1] A. Asma, N. Rehman, A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101 (1-2) (2003) 79-82.
[2] K.I. Beidar, W.S. Martindale III, A.V. Mikhalev, Rings with Generalized Identities. Pure and Applied Mathematics, vol. 196, Marcel Dekker, New York, 1996.
[3] H.E. Bell, L.C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989) 339-346.
[4] J. Bergen, I.N. Herstein, J.W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981) 259-267.
[5] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasg. Math. J. 33 (1991) 89-93.
[6] C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988) 723-728.
[7] B. Dhara, Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings, Beitr. Algebra Geom. 53 (1) (2012) 203-209.
[8] D. Eremita, D. Ilisvic, On (anti-) multiplicative generalized derivations, Glas. Mat. Ser. III 47 (67) (2012) 105-118. (1).
[9] T.S. Erickson, W. Martindale III, J.M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975) 49-63.
[10] O. Gelbasi, K. Kaya, On Lie ideals with generalized derivations, Sib. math. J. 47 (2006) 862-866.
[11] I. Gusic, A note on generalized derivations of prime rings, Glas. Mat. Ser. III 40 (60) (2005) 47-49.
[12] I.N. Herstein, Topics in Ring Theory, Univ. Chicago Press, Chicago, 1969.
[13] N. Jacobson, Structure of Rings, Colloquium Publications 37, Amer Math. Soc. VII, Provindence, RI, 1956.
[14] V.K. Kharchenko, Differential identities of prime rings, Algebra Logic 17 (1979) 155-168.
[15] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin. (N.S.) 20 (1992) 27-38.
[16] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (8) (1998) 4057-4073.
[17] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576-584.
[18] N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glas. Mat. 39 (59) (2004) 27-30.
[19] Y. Wang, H. You, Derivations as homomorphisms or anti-homomorphisms on Lie ideals, Acta Math. Sinica 23 (6) (2007) 1149-1152.

[^0]: * Corresponding author.

 E-mail addresses: rehman100@gmail.com (N. Rehman), arifraza03@gmail.com (M.A. Raza). Peer review under responsibility of King Saud University.

