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General f -harmonic morphisms
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Abstract. In this paper, we prove that a map between Riemannian manifolds is an
f -harmonic morphism in a general sense if and only if it is horizontally weakly conformal,
satisfying some conditions, and we investigate the properties of f -harmonic morphism in a
general sense.
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1. INTRODUCTION

f -harmonic morphisms are mappings between Riemannian manifolds which preserve
Laplace’s equation [4,15,14]. They can be characterized as f -harmonic maps which checks
the property of horizontal weak conformality (called semiconformality).

In mathematical physics, f -harmonic maps relate to the equations of the motion of a
continuous system of spins [6] and the gradient Ricci-soliton structure [16,1]. Recently the
notion of f -harmonic maps (resp bi-f -harmonic maps) was developed by N. Course [7],
M. Djaa and S. Ouakkas [15,8,4], and studied by many authors, including Y.J. Chiang [5],
M. Rimoldi [16], Y.L. Ou [14], S. Feng [10], W.J. Lu [13] and others.

The goal of this work is the characterization of f -harmonic morphism (in a general sense)
between Riemannian manifolds (Theorem 3.1), which generalizes the Fuglede–Ishihara
characterization for harmonic morphisms [11,12], and we investigate the properties of
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f -harmonic morphism in a general sense. Also we construct some examples of f -harmonic
morphism (Example 3.2).

2. f -HARMONIC MAPS

Consider a smooth map ϕ : (M, g) → (N,h) between Riemannian manifolds and
f : (x, y, r) ∈ M × N × R → f(x, y, r) ∈ (0, ∞) a smooth positive function. For any
compact domain D of M the f -energy functional of ϕ is defined by

Ef (ϕ;D) =

D

f

x, ϕ(x), e(ϕ)(x)


vg, (2.1)

where vg is the volume element and

e(ϕ) =
1
2


i

h

dϕ(ei), dϕ(ei)


, (2.2)

is the energy density of ϕ, here {ei} is an orthonormal frame on (M, g).

Definition 2.1 ([4]). A map is called f -harmonic if it is a critical point of the f -energy
functional over any compact subset D of M .

2.1. The first variation of f -energy functional

Theorem 2.1 ([4]). Let ϕ : (M, g) → (N,h) be a smooth map and let {ϕt}t∈(−ϵ,ϵ) be a

smooth variation of ϕ supported in D. If v = ∂ϕt

∂t


t=0

denote the variation vector field of ϕ,

then

d

dt
Ef (ϕt;D)


t=0

= −

D

h(τf (ϕ), v) vg, (2.3)

where

τf (ϕ) =
∂f
∂r


ϕ
τ(ϕ) + dϕ


gradM

∂f
∂r


ϕ


− (gradN f) ◦ ϕ,

here

∂f
∂r


ϕ
(x) = ∂f

∂r


x, ϕ(x), e(ϕ)(x)


and τ(ϕ) = trace ∇dϕ.

Definition 2.2. τf (ϕ) is called an f -tension field of ϕ.

Theorem 2.2 ([4]). Let ϕ : (M, g) → (N,h) be a smooth map between Riemannian
manifolds and f : M × N × R → (0, ∞) be a smooth function. Then ϕ is an f -harmonic
map if and only if

τf (ϕ) =
∂f
∂r


ϕ
τ(ϕ) + dϕ


gradM

∂f
∂r


ϕ


− (gradN f) ◦ ϕ = 0. (2.4)
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Remarks 2.1. 1. If f(x, y, r) = f1(x)f2(y) r, then any smooth map ϕ : (Mm, g) →
(Nn, h) (m ≠ 2) is an f -harmonic map if and only if ϕ : (Mm, f

2
m−2
1 g) → (Nn, f2h) is

a harmonic map.
2. If f(x, y, r) = f(x) r, then any smooth map ϕ : (Mm, g) → (Nn, h) (m ≠ 2) is an
f -harmonic map if and only if ϕ : (Mm, f

2
m−2 g) → (Nn, h) is a harmonic map (see [9]).

Examples 2.1 ([14]). Inhomogeneous Heisenberg spin system

1. ϕ : (R3, ds0) → (Nn, h) is an f -harmonic map if and only if

ϕ : (R3, f2
1 ds0) → (Nn, h)

is a harmonic map with f(x, y, r) = f1(x)r.

2. ϕ : S3 \ {N} ≡ (R3, 4ds0
(1+|x|2)2 ) → (Nn, h) is a harmonic map if and only if

ϕ : (R3, ds0) → (Nn, h)

is an f -harmonic map with f(x, y, r) = 2
(1+|x|2)r.

3. When (Nn, h) = S2, we have 1-1 correspondence between the set of harmonic maps
S3 → S2 and the set of stationary solutions of the inhomogeneous Heisenberg spin system
on R3.

4.

ϕ : H3 ≡


D3,
4ds0

(1 + |x|2)2


→ (Nn, h)

is a harmonic map if and only if

ϕ : (D3, ds0) → (Nn, h)

is an f -harmonic map with f(x, y, r) = 2
(1+|x|2)r.

3. f -HARMONIC MORPHISMS

Let ϕ : (Mm, g) → (Nn, h) be a smooth map between Riemannian manifolds and
Cϕ = {x ∈ M | dxϕ = 0} be the set of critical points of ϕ. Then ϕ is called horizontally
weakly conformal or semi-conformal if for each x ∈ M\Cϕ the restriction of dxϕ to Hx

is surjective and conformal, where the horizontal space Hx is the orthogonal complement
of Vx = Ker dxϕ. The horizontal conformality of ϕ implies that there exists a function
λ : M\Cϕ → R+ such that for all x ∈ M\Cϕ and X,Y ∈ Hx

h(dxϕ(X), dxϕ(Y )) = λ(x)2g(X,Y ). (3.1)

ϕ is horizontally weakly conformal at x with dilation λ(x) if and only if in any local
coordinates (yα) on a neighborhood of ϕ(x) we have

g(gradM ϕα, gradM ϕβ) = λ2(hαβ ◦ ϕ) (α, β = 1, . . . , n). (3.2)

Definition 3.1. Let f : M × R × R → (0, ∞), (x, t, r) → f(x, t, r) be a smooth function
and U be an open subset of M . A C2-function u : U → R is called f -harmonic if

∆M
f u ≡

∂f
∂r


u
∆Mu+ du


gradM

∂f
∂r


u


−

∂f
∂t


u

= 0 (3.3)
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where∂f
∂r


u

: U → (0,+∞)

x →
∂f
∂r


u
(x) =

∂f

∂r


x, u(x), e(u)(x)


.

Definition 3.2. A map ϕ : (Mm, g) → (Nn, h) between Riemannian manifolds is said to
be an f -harmonic morphism if for every open subset V of N with ϕ−1(V ) ≠ ∅ and every
harmonic function v : V → R, the composition v ◦ ϕ : ϕ−1(V ) → R is f -harmonic.

Example 3.1 ([14]). Let ϕ,ψ, φ : R3 → R2 be defined as

ϕ(x, y, z) = (x, y),
ψ(x, y, z) = (3x, xy),
φ(x, y, z) = (x, y + z).

Then both ϕ and ψ are f -harmonic with f = r ez , ϕ is a horizontally conformal submersion
whilst ψ is not. Also, φ is an f -harmonic map with f = r e(y−z), which is a submersion but
not horizontally weakly conformal.

Theorem 3.1. Let ϕ : (Mm, g) → (Nn, h) be a smooth map between Riemannian manifolds
and f : M × R × R → (0, ∞) be a smooth function such that

∂f

∂r
(x, t, r) ≠ 0, for all (x, t, r) ∈ M × R × R;

∂f

∂t
(x, t, 0) = 0, for all (x, t) ∈ M × R.

(3.4)

Then, the following are equivalent:
(1) ϕ is an f -harmonic morphism;
(2) ϕ is a horizontally weakly conformal satisfying∂f

∂r


ϕα
τ(ϕ)α + g


gradM

∂f
∂r


ϕα
, gradM ϕα


−

∂f
∂t


ϕα

= 0, (3.5)

for all α = 1, . . . , n and in any local coordinates (yα) on N ;
(3) There exists a smooth positive function λ on M such that

∆M
f (v ◦ ϕ) =

∂f
∂r


v◦ϕ

λ2 (∆Nv) ◦ ϕ,

for every smooth function v defined on an open subset V of N .

Proof. To prove Theorem 3.1 we need the following lemma.

Lemma 3.1 ([2]). Let y0 be a point in Nn and (yγ) be local coordinates centered at y0.
Then for any constants {cγ , cαβ}nα,β,γ=1 with cαβ = cβα and

n
α=1 cαα = 0, there exists a

neighborhood V of y0 in N and a harmonic function v : V → R such that

∂v

∂yα
(y0) = cα,

∂2v

∂yα∂yβ
(y0) = cαβ , (3.6)

for all α, β, γ = 1, . . . , n.
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Suppose that ϕ : (Mm, g) → (Nn, h) is an f -harmonic morphism. For x0 ∈ M we
consider a system of local coordinates (xi) and (yα) around x0 and y0 = ϕ(x0) respectively,
where we assume that (yα) are normal. By Lemma 3.1, for a sequence (cγ , cαβ)nα,β,γ=1 with
cγ = 0, cαβ = cβα and


α cαα = 0, we can choose a local harmonic function v such that

∂v

∂yα
(y0) = 0,

∂2v

∂yα∂yβ
(y0) = cαβ , (3.7)

for all α, β = 1, . . . , n. By assumption v ◦ ϕ is f -harmonic in a neighborhood of x0, from
Definition 3.1 we have

0 = ∆M
f (v ◦ ϕ)

=
∂f
∂r


v◦ϕ

∆M (v ◦ ϕ) + d(v ◦ ϕ)

gradM

∂f
∂r


v◦ϕ


−

∂f
∂t


v◦ϕ

. (3.8)

In particular at x0

d(v ◦ ϕ)

gradM

∂f
∂r


v◦ϕ


= 0, (3.9)∂f

∂t


v◦ϕ

= 0, (3.10)

since ∂v
∂yα (y0) = 0, e(v ◦ ϕ) = 0 and ∂f

∂t (x, t, 0) = 0 for all (x, t) ∈ M × R.

By (3.8)–(3.10) and ∂f
∂r (x, t, r) ≠ 0, we have

0 = ∆M (v ◦ ϕ)
= dv(τ(ϕ)) + traceg ∇dv(dϕ, dϕ)

= traceg ∇dv(dϕ, dϕ). (3.11)

Since at x0

∇dv =

α,β

∂2v

∂yα∂yβ
dyα ⊗ dyβ =


α,β

cαβdy
α ⊗ dyβ , (3.12)

from (3.7), (3.11) and (3.12), we obtain

0 =

α,β

g(gradM ϕα, gradM ϕβ)cαβ

=

α

g(gradM ϕα, gradM ϕα)cαα +

α≠β

g(gradM ϕα, gradM ϕβ)cαβ (3.13)

0 =

α

g(gradM ϕ1, gradM ϕ1)cαα, (3.14)



280 N.E. Djaa, A.M. Cherif

by (3.13) and (3.14), we obtain

0 =

α


g(gradM ϕα, gradM ϕα) − g(gradM ϕ1, gradM ϕ1)


cαα

+

α≠β

g(gradM ϕα, gradM ϕβ)cαβ . (3.15)

Let α0 ≠ 1 and let

cαβ =


1, if α = β = 1;
−1, if α = β = α0;
0, if α = β ≠ 1, α0;
0, if α ≠ β,

then by (3.15), we have

g(gradM ϕα0 , gradM ϕα0) = g(gradM ϕ1, gradM ϕ1), (3.16)

g(gradM ϕα, gradM ϕα) = g(gradM ϕ1, gradM ϕ1), (3.17)

for all α = 1, . . . , n. Let α0 ≠ β0 and

cαβ =

1, if α = α0 and β = β0;
0, if α ≠ α0 or β ≠ β0;
0, if α = β.

By (3.15), we have

g(gradM ϕα0 , gradM ϕβ0) = 0, (3.18)

and

g(gradM ϕα, gradM ϕβ) = 0, (3.19)

for all α ≠ β = 1, . . . , n. From (3.17) and (3.19) we deduce that ϕ is horizontally weakly
conformal map such that

g(gradM ϕα, gradM ϕβ) = λ2 δαβ , (3.20)

for all α, β = 1, . . . , n.
For every C2-function v : V → R defined on an open subset V of N , we have

∆M
f (v ◦ ϕ) =

∂f
∂r


v◦ϕ

∆M (v ◦ ϕ) + dv

dϕ


gradM

∂f
∂r


v◦ϕ


−

∂f
∂t


v◦ϕ

=
∂f
∂r


v◦ϕ

dv(τ(ϕ)) +
∂f
∂r


v◦ϕ

traceg ∇dv(dϕ, dϕ)

+ dv

dϕ


gradM

∂f
∂r


v◦ϕ


−

∂f
∂t


v◦ϕ

. (3.21)
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Since, ϕ is a horizontally weakly conformal map, we obtain

∆M
f (v ◦ ϕ) =

∂f
∂r


v◦ϕ

dv(τ(ϕ)) +
∂f
∂r


v◦ϕ

λ2(∆Nv) ◦ ϕ

+ dv

dϕ


gradM

∂f
∂r


v◦ϕ


−

∂f
∂t


v◦ϕ

. (3.22)

By special choice of harmonic function v we have∂f
∂r


v◦ϕ

dv(τ(ϕ)) + dv

dϕ


gradM

∂f
∂r


v◦ϕ


−

∂f
∂t


v◦ϕ

= 0,

i.e., in any local coordinates (yα) on N , we have∂f
∂r


ϕα
τ(ϕ)α + g


gradM

∂f
∂r


ϕα
, gradM ϕα


−

∂f
∂t


ϕα

= 0,

for all α = 1, . . . , n. Thus, we obtain the implication (1) =⇒ (2). Therefore, it follows from
(3.22) that (2) =⇒ (3). Finally, (3) =⇒ (1) is clearly true. �

Particular cases:

1. If f(x, t, r) = r for all (x, t, r) ∈ M×R×R, the condition (3.5) is equivalent to τ(ϕ) = 0,
i.e. ϕ is harmonic. Then, a smooth map ϕ : M → N between Riemannian manifolds is a
harmonic morphism if and only if ϕ : M → N is both harmonic and horizontally weakly
conformal [2].

2. If f(x, t, r) = f1(x)r for all (x, t, r) ∈ M × R × R, where f1 ∈ C∞(M) be a smooth
positive function, the condition (3.5) is equivalent to f1 τ(ϕ) + dϕ(gradM f1) = 0, i.e. ϕ
is f1-harmonic. Then, a smooth map ϕ : M → N between Riemannian manifolds is an
f1-harmonic morphism if and only if ϕ : M → N is both f1-harmonic and horizontally
weakly conformal [14].

3. If f(x, t, r) = f1(x, t)r for all (x, t, r) ∈ M × R × R, where f1 ∈ C∞(M × R) be
a smooth positive function, then ϕ is an f -harmonic morphism if and only if ϕ is an f1-
harmonic morphism [3].

4. If f(x, t, r) = F (r) for all (x, t, r) ∈ M × R × R, where F ∈ C∞(R) be a smooth
function such that F ′ > 0, then, the following are equivalent:
(a) ϕ is an f -harmonic morphism;
(b) ϕ is an F -harmonic morphism;
(c) ϕ is horizontally weakly conformal satisfying

F ′e(ϕα)

τ(ϕ)α + g(gradM F ′e(ϕα)


, gradM ϕα) = 0,

for all α = 1, . . . , n and in any local coordinates (yα) on N ;
(d) There exists a smooth positive function λ on M such that

∆M
f (v ◦ ϕ) = F ′e(v ◦ ϕ)


λ2 (∆Nv) ◦ ϕ,

for every smooth function v defined on an open subset V of N .

Proposition 3.1. Let ϕ : M → N be an f -harmonic morphism between Riemannian
manifolds with dilation λ1, ψ : N → P be a harmonic morphism between Riemannian
manifolds with dilation λ2 and f be a smooth positive function inM × R × R satisfying (3.4).
Then, the composition ψ ◦ ϕ : M → P is an f -harmonic morphism with dilation λ1(λ2 ◦ ϕ).
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Proof. This follows from

∆M
f (v ◦ ϕ) =

∂f
∂r


v◦ϕ

λ2
1 (∆Nv) ◦ ϕ,

for every smooth function v defined on an open subset V of N and

∆N (u ◦ ψ) = λ2
2 (∆Pu) ◦ ψ,

for every smooth function u defined on an open subset U of P . So that

∆M
f (u ◦ ψ ◦ ϕ) =

∂f
∂r


u◦ψ◦ϕ

λ2
1 (∆N (u ◦ ψ)) ◦ ϕ

=
∂f
∂r


u◦ψ◦ϕ

λ2
1 (λ2 ◦ ϕ)2(∆Pu) ◦ ψ ◦ ϕ. �

Proposition 3.2. Let (M, g) be a Riemannian manifold and f : M × R × R → (0,+∞) be
a smooth positive function satisfying (3.4). A smooth map

ϕ : (M, g) → (Rn, ⟨, ⟩Rn), x → (ϕ1(x), . . . , ϕn(x))

is an f -harmonic morphism if and only if its components ϕα are f -harmonic functions whose
gradients are orthogonal and of the same norm at each point.

Proof. Let us notice that the condition (3.5) of Theorem 3.1 becomes∂f
∂r


ϕα

∆Mϕα + g

gradM

∂f
∂r


ϕα
, gradM ϕα


−

∂f
∂t


ϕα

= 0,

for all α = 1, . . . , n, i.e. the functions ϕα are f -harmonic. �

Using Proposition 3.2, we can construct many non-trivial examples on Rn.

Example 3.2. Let M = R∗
+ × R × R, then the map

ϕ : (M, ⟨, ⟩R3) → (R2, ⟨, ⟩R2), (x, y, z) → (

x2 + y2, z),

is an f -harmonic morphism with

f(x, y, z, t, r) =
F


y
x


e− 1

2 (x2+y2+z2)+(t2+1) r

x


(x2 + y2 + 1)(z2 + 1)
,

where F is a smooth positive function. Indeed, we have

ϕ1(x, y, z) =

x2 + y2, ϕ2(x, y, z) = z,

∆Mϕ1 =
1

x2 + y2
, ∆Mϕ2 = 0,

e(ϕ1) =
1
2
, e(ϕ2) =

1
2
,
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gradM ϕ1 =


x
x2 + y2

,
y

x2 + y2
, 0


, gradM ϕ2 =


0, 0, 1


.

Let f(x, y, z, t, r) = h(x, y, z) e(t
2+1) r for all (x, y, z, t, r) ∈ M × R × R, where h is a

smooth positive function in M , we get
∂f

∂r
(x, y, z, t, r) = h(x, y, z) (t2 + 1) e(t

2+1) r ≠ 0,

∂f

∂t
(x, y, z, t, 0) = 2h(x, y, z) t r e(t

2+1) r

r=0

= 0,

for all (x, y, z, t, r) ∈ M × R × R,

∂f
∂r


ϕ1

= h(x, y, z) (x2 + y2 + 1) e
x2+y2+1

2 ,∂f
∂r


ϕ2

= h(x, y, z) (z2 + 1) e
z2+1

2 ,∂f
∂t


ϕ1

= h(x, y, z)

x2 + y2 e

x2+y2+1
2 ,

∂f
∂r


ϕ2

= h(x, y, z) z e
z2+1

2 ,

gradM
∂f
∂r


ϕ1

= e
x2+y2+1

2

∂h
∂x

x2 +
∂h

∂x
y2 +

∂h

∂x
+ 3hx+ hx3 + hx y2

 ∂

∂x

+ e
x2+y2+1

2

∂h
∂y

x2 +
∂h

∂y
y2 +

∂h

∂y
+ 3h y + h y3 + h y x2

 ∂

∂y

+ e
x2+y2+1

2

∂h
∂z

x2 +
∂h

∂z
y2 +

∂h

∂z

 ∂

∂z
,

gradM
∂f
∂r


ϕ2

= e
z2+1

2

∂h
∂x

z2 +
∂h

∂x

 ∂

∂x
+ e

z2+1
2

∂h
∂y

z2 +
∂h

∂y

 ∂

∂y

+ e
z2+1

2

∂h
∂z

z2 +
∂h

∂z
+ 3h z + h z3

 ∂

∂z
.

According to Proposition 3.2, the map ϕ is f -harmonic if and only if


3hx2 + 3h y2 + h+

∂h

∂x
x3 +

∂h

∂x
x y2 +

∂h

∂x
x+ hx4

+ 2hx2 y2 +
∂h

∂y
x2 y +

∂h

∂y
y3 +

∂h

∂y
y + h y4 = 0,

∂h

∂z
z2 +

∂h

∂z
+ 2h z + h z3 = 0.

(3.23)

Let F ∈ C∞(R) be a smooth positive function, then the function of type

h(x, y, z) =
F


y
x


e− 1

2 (x2+y2+z2)

x


(x2 + y2 + 1)(z2 + 1)

satisfies the system of differential equations (3.23).



284 N.E. Djaa, A.M. Cherif

ACKNOWLEDGMENTS

The authors would like to thank the referees for their important and useful remarks and
suggestions.

This note was supported by G.M.F.A.M.I Relizane Laboratory and Saida Laboratory of
Geometry analysis and Applications.

REFERENCES

[1] P. Baird, R. Pantilie, On Ricci solitons and twistorial harmonic morphisms (2012) arXiv:1210.4688.
[2] P. Baird, J.C. Wood, Harmonic Morphisms between Riemannain Manifolds, Clarendon Press Oxford, 2003.
[3] A.M. Cherif, M. Djaa, On generaized f -harmonic morphisms, Comment. Math. Univ. Carolin. 55 (1) (2014)

17–27.
[4] A.M. Cherif, M. Djaa, Geometry of energy and bienergy variations between Riemannian manifolds,

Kyungpook Math. J. 55 (2015) 715–730.
[5] Y.J. Chiang, f -biharmonic Maps between Riemannian Manifolds, Department of Mathematics, University of

Mary Washington Fredericksburg, VA 22401, USA, 2012.
[6] J. Cieslinski, A. Sym, W. Wesselius, On the geometry of the inhomogeneous heisenberg ferromagnet model:

non-integrable case, J. Phys. A: Math. Gen. 26 (1993) 1353–1364.
[7] N. Course, f -harmonic maps which map the boundary of the domain to one point in the target, New York J.

Math. 13 (2007) 423–435.
[8] M. Djaa, A.M. Cherif, K. Zegga, S. Ouakkas, On the generalized of harmonic and bi-harmonic maps, Int.

Electron. J. Geom. 5 (1) (2012) 1–11.
[9] J. Eells, L. Lemaire, A report on harmonic maps, Bull. Lond. Math. Soc. 10 (1978) 1–68.

[10] S. Feng, Y. Han, Liouville type theorems of f -harmonic maps with potential, Results Math. 66 (1–2) (2014)
43–64.

[11] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978)
107–144.

[12] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ.
19 (2) (1979) 215–229.

[13] W.J. Lu, On f -bi-harmonic maps and bi-f -harmonic maps between Riemannian manifolds, Sci. China Math.
58 (2015) 1483–1498.

[14] Y.L. Ou, On f -harmonic morphisms between Riemannian manifolds, Chin. Ann. Math. Ser. B 35 (2014)
225–236.

[15] S. Ouakkas, R. Nasri, M. Djaa, On the f -harmonic and f -biharmonic maps, J. P. J. Geom. Top. 10 (1) (2010)
11–27.

[16] M. Rimoldi, G. Veronelli, f -Harmonic Maps and Applications to Gradient Ricci Solitons, Institut Elie Cartan
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