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Abstract In this paper, by employing the Leggett–Williams fixed point theo-

rem, we study the existence of three solutions in the multi point fractional bound-
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Da
0þuðtÞ ¼ fðt; uðtÞ; u0ðtÞÞ; t 2 ½0; 1�;

uð0Þ ¼ u0ð0Þ ¼ 0; uð1Þ �
Pm
i¼1

aiuðniÞ ¼ k

8<
:

where 2 < a 6 3 and m P 1 are integers, 0 < n1 < n2 < � � �
< nn < 1 are constants, k 2 (0,1) is a parameter, ai > 0 for
1 6 i 6 m and

Pm
i¼1ain

a�1
i < 1; f 2 Cð½0; 1� � ½0;1Þ� ½0;1Þ;

½0;1ÞÞ.
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1. Introduction

In this paper, we will study the existence of three solutions for multi point bound-
ary value problems for fractional differential equations of the form
Da
0þuðtÞ ¼ fðt; uðtÞ; u0ðtÞÞ; t 2 ½0; 1�;

uð0Þ ¼ u0ð0Þ ¼ 0; uð1Þ �
Pm
i¼1

aiuðniÞ ¼ k

8<
: ð1Þ
where Da
0þ is the Riemann–Liouville fractional derivative of order 2 < a 6 3 and

m P 1 is integer, k 2 (0,1) is a parameter, and ai,ni, f satisfying

(H1) ai > 0 for 1 6 i 6 m, 0 < n1 < n2 < � � �< nn < 1 and
Pm

i¼1ain
a�1
i < 1;

(H2) f: [0,1] · [0,1) · [0,1) ‹ [0,1) is continuous.

Fractional differential equationshavebeenof great interest recently.This is because
of both the intensive development of the theory of fractional calculus itself and the
applications of such constructions in various scientific fields such as physics, mechan-
ics, chemistry, engineering, etc. For details, see [5,7,8] and the references therein.

The solution of differential equations of fractional order is quite involved. Some
analytical methods are presented, such as the popular Laplace transform method
[18,19], the Fourier transform method [13], the iteration method [20] and the
Green function method [21,12]. Numerical schemes for solving fractional differen-
tial equations are introduced, for example, in [3,4,15]. Recently, a great deal of ef-
fort has been expended over the last years in attempting to find robust and stable
numerical as well as analytical methods for solving fractional differential equa-
tions of physical interest. The Adomian decomposition method [16], the homotopy
perturbation method [17], the homotopy analysis method [2], the differential
transform method [14] and the variational method [6] are relatively new ap-
proaches to provide an analytical approximate solution to linear and nonlinear
fractional differential equations. The existence of solutions of initial value prob-
lems for fractional order differential equations have been studied in the literature
[20,18,1,10] and the references therein.

The basic space used in this paper is a real Banach space C1([0,1]) with the norm
i Æ i defined by iui = max06t61Œu(t)Œ. For convenience, we present here the Legg-
ett–Williams fixed point theorem [11].

Given a cone K in a real Banach space E, a map a is said to be a nonnegative con-
tinuous concave (resp. convex) functional onK provided that a:K arrow [0. +1) is
continuous and
aðtxþ ð1� tÞyÞP taðxÞ þ ð1� tÞaðyÞ;
ðresp:aðtxþ ð1� tÞyÞ 6 taðxÞ þ ð1� tÞaðyÞÞ;
for all x, y 2 K and t 2 [0,1].
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Let 0 < a < b be given and let a be a nonnegative continuous concave func-
tional on K. Define the convex sets Pr and P(a,a,b) by
Pr ¼ fx 2 Kjkxk < rg;

and
Pða; a; bÞ ¼ fx 2 Kja 6 aðxÞ; kxk 6 bg:
Theorem 1 (Leggett–Williams fixed point theorem). Let A : Pc ! Pc be a com-
pletely continuous operator and let a be a nonnegative continuous concave functional
on K such that a(x) 6 ixi for all x 2 Pc. Suppose there exist 0 < a < b < d 6 c
such that

(A1) {x 2 P(a, b,d)Œa(x)> b} „ ;, and a(Ax)> b for x 2 P(a, b,d),
(A2) iAxi < a for ixi 6 a, and
(A3) a(Ax)> b for x 2 P(a, b, c) with iAxi > d.

Then A has at least three fixed points x1, x2, and x3 and such that ix1i < a,
b < a(x2) and ix3i > a, with a(x3) < b.

In this paper, we will consider the existence of positive solutions to the problem
(1). We will firstly give a new form of the solution, and then determine the prop-
erties of the Green’s function for associated fractional boundary value problems;
finally, by employing the Leggett–Williams fixed point theorem, some sufficient
conditions guaranteeing the existence of three positive solutions.

The rest of the article is organized as follows: in Section 2, we present some pre-
liminaries that will be used in Section 3. The main result and proofs will be given in
Section 3. Finally, in Section 4, an example is given to demonstrate the application
of our main result.

2. Preliminaries

This section devotes to present some notation and preliminary lemmas that will be
used in the proofs of the main results.

Definition 1. Let X be a real Banach space. A non-empty closed set P � X is called
a cone of X if it satisfies the following conditions:

(1) x 2 P,l P 0 implies lx 2 P,
(2) x 2 P,�x 2 P implies x= 0.

Definition 2. The Riemann–Liouville fractional integral operator of order a > 0,
of a function f 2 L1ðRþÞ is defined as
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Ia0þfðtÞ ¼
1

CðaÞ

Z t

0

ðt� sÞa�1fðsÞds;
where C(Æ) is the Euler gamma function.

Definition 3. The Riemann–Liouville fractional derivative of order
a > 0; n� 1 < a < n; n 2 N is defined as
Da
0þfðtÞ ¼

1

Cðn� aÞ
d

dt

� �n Z t

0

ðt� sÞn�a�1
fðsÞds;
where the function f(t) has absolutely continuous derivatives up to order (n � 1).

Lemma 1. ([9]) The equality Dc
0þ
Ic
0þ
fðtÞ ¼ fðtÞ; c > 0 holds for f 2 L(0,1).

Lemma 2. ([9]) Let a > 0. Then the differential equation
Da
0þu ¼ 0
has a unique solution uðtÞ ¼ c1t
a�1 þ c2t

a�2 þ � � � þ cnt
a�n; ci 2 R; i ¼ 1; . . . ; n,

there n � 1 < a 6 n.

Lemma 3. ([9]) Let a > 0. Then the following equality holds for
u 2 Lð0; 1Þ; Da

0þu 2 Lð0; 1Þ;
Ia0þD
a
0þuðtÞ ¼ uðtÞ þ c1t

a�1 þ c2t
a�2 þ � � � þ cnt

a�n; ci 2 R; i

¼ 1; . . . ; n; there n� 1 < a 6 n:
Lemma 4. Suppose that D :¼
Pm

i¼1ain
a�1
i –0, then for h(t) 2 C([0,1]) , the follow-

ing boundary value problem
Da
0þuðtÞ ¼ hðtÞ; 2 < a 6 3; t 2 ½0; 1�;

uð0Þ ¼ u0ð0Þ ¼ 0; uð1Þ �
Pm
i¼1

aiuðniÞ ¼ k

8<
: ð2Þ
has a unique solutionZ P Z

uðtÞ ¼

1

0

Gðt; sÞhðsÞdsþ
m
i¼1ait

a�1

1� D

1

0

Gðni; sÞhðsÞdsþ
kta�1

1� D
; ð3Þ
where (

Gðt; sÞ ¼ 1

CðaÞ
ta�1ð1� sÞa�1 � ðt� sÞa�1; 0 6 s 6 t 6 1;

ta�1ð1� sÞa�1; 0 6 t 6 s 6 1;
ð4Þ
Proof. According to Lemma 3, we can obtain that
uðtÞ ¼ � 1

CðaÞ

Z t

0

ðt� sÞa�1hðsÞdsþ c1t
a�1 þ c2t

a�2 þ c3t
a�3:
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By the boundary conditions of (2), there are c2 = c3 = 0 and
c1 ¼
1

CðaÞð1� DÞ

Z 1

0

ð1� sÞa�1hðsÞds�
Xm
i¼1

ai

Z ni

0

ðni � sÞa�1hðsÞds
" #

þ k
1� D

:

Therefore, problem (2) has a unique solutionZ Z�

uðtÞ ¼ � 1

CðaÞ
t

0

ðt� sÞa�1hðsÞdsþ 1

CðaÞð1� DÞ
1

0

ð1� sÞa�1ta�1hðsÞds

�
Xm
i¼1

ai

Z ni

0

ðni � sÞa�1ta�1hðsÞds
#
þ kta�1

1� D

¼ � 1

CðaÞ

Z t

0

ðt� sÞa�1hðsÞdsþ 1

CðaÞ

Z 1

0

ð1� sÞa�1ta�1hðsÞds

þ D
CðaÞð1� DÞ

Z 1

0

ð1� sÞa�1ta�1hðsÞds

�

Pm
i¼1

ai

CðaÞð1� DÞ

Z ni

0

ðni � sÞa�1ta�1hðsÞdsþ kta�1

1� D

¼ 1

CðaÞ

Z t

0

ð1� sÞa�1ta�1 � ðt� sÞa�1
h i

hðsÞds

þ 1

CðaÞ

Z 1

t

ð1� sÞa�1ta�1hðsÞdsþ
Pm

i¼1ait
a�1

CðaÞð1� DÞ

Z 1

0

ð1� sÞa�1na�1
i hðsÞds

�
Pm

i¼1ait
a�1

CðaÞð1� DÞ

Z ni

0

ðni � sÞa�1hðsÞdsþ kta�1

1� D

¼ 1

CðaÞ

Z t

0

ð1� sÞa�1ta�1 � ðt� sÞa�1
h i

hðsÞds

þ 1

CðaÞ

Z 1

t

ð1� sÞa�1ta�1hðsÞdsþ
Pm

i¼1ait
a�1

CðaÞð1� DÞ

�
Z ni

0

ð1� sÞa�1na�1
i � ðni � sÞa�1

h i
hðsÞds

�

þ
Z 1

ni

ð1� sÞa�1na�1
i hðsÞds

�
þ kta�1

1� D

¼
Z 1

0

Gðt; sÞhðsÞdsþ
Pm

i¼1ait
a�1

1� D

Z 1

0

Gðni; sÞhðsÞdsþ
kta�1

1� D
:

Therefore, the proof is completed. h

Lemma 5. The function G(t, s) defined by (4) satisfies the following conditions:

(i) G(t, s) P 0, G(t, s) 6 G(s, s) for all s, t 2 [0,1];
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(ii) there exists a positive function g 2 C(0,1) such that minc6t6dG(t, s) P g(s)
G(s, s), s 2 (0,1), where 0 < c < d < 1 and
gðsÞ ¼
da�1ð1�sÞa�1�ðd�sÞa�1

sa�1ð1�sÞa�1 ; s 2 ð0; m1�;
c
s

� �a�1
; s 2 ½m1; 1Þ;

8<
: ð5Þ
where c < m1 < d;
(iii) max06t61

R 1

0
Gðt; sÞ ¼ CðaÞ

Cð2aÞ.
Proof.

(i) By definition of G, for all (t, s) 2 [0,1] · [0,1] if s 6 t, it can be written
Gðt; sÞ ¼ 1

CðaÞ ½t
a�1ð1� sÞa�1 � ðt� sÞa�1�P 1

CðaÞ ½t
a�1ð1� sÞa�1

� ðt� tsÞa�1� ¼ ta�1

CðaÞ ½ð1� sÞa�1 � ð1� sÞa�1� ¼ 0;
and if t 6 s, it is obvious that G(t, s) P 0. Therefore, one can canclude
Gðt; sÞP 0 for all ðt; sÞ 2 ½0; 1� � ½0; 1�:

Let L(t, s) :¼ ta � 1(1 � s)a � 1 � (t � s)a � 1, 0 6 s 6 t 6 1. Then
dLðt; sÞ
dt

¼ ða� 1Þ½ta�2ð1� sÞa�1 � ðt� sÞa�2�

¼ ða� 1Þta�2½ð1� sÞa�1 � ð1� s

t
Þa�2�

6 ða� 1Þta�2½ð1� sÞa�1 � ð1� sÞa�2� 6 0;
which implies that L(Æ, s) is non-increasing for all s 2 (0,1], hence, we obtain that
Lðt; sÞ 6 Lðs; sÞ for all 0 6 s 6 t 6 1: ð6Þ

Thus, by definition of G and (6), we Know that G(t, s) 6 G(s, s) for all s, t 2 [0,1]
(ii) Let J(t, s) = ta � 1(1 � s)a � 1, 0 6 t 6 s 6 1. Since L(Æ, s) is non-increasing,

J(Æ, s) is nondecreasing, for all s 2 (0,1). Then, one can give
min
c6t6d

Gðt; sÞ¼ 1

CðaÞ

Lðd; sÞ; s2 ð0; c�;
minfLðd; sÞ; Jðc; sÞg; s2 ½c; d�;
Jðc; sÞ; s2 ½d; 1Þ;

8><
>: ¼

Lðd; sÞ; s2 ð0;m1�;
Jðc; sÞ; s2 ½m1; 1Þ;

�
¼ da�1ð1� sÞa�1�ðd� sÞa�1; s2 ð0;m1�;

ca�1ð1� sÞa�1; s2 ½m1; 1Þ:

(

where c < m1 < d is the solution of equation
da�1ð1�m1Þa�1 � ðd�m1Þa�1 ¼ ca�1ð1�m1Þa�1:

It follows from the monotonicity of L and J that
max
06t61

Gðt; sÞ ¼ Gðs; sÞ ¼ sa�1ð1� sÞa�1

CðaÞ ; ð7Þ
Thus, we set g(s) as in (5).
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(iii) By (7) and Beta function, we have
max
06t61

Z 1

0

Gðt; sÞ ¼ CðaÞ
Cð2aÞ :
Therefore, the proof is complete. h

We now define
g :¼ min
c6t6d

gðtÞ;
and let
r :¼ minfg; ca�1g: ð8Þ
Then, choose a cone K is C1([0,1]), by
K ¼ u 2 C½0; 1�juðtÞP 0; min
t2½c; d�

uðtÞP r
3
kuk

� �
:

It is obvious that K is cone.
Define an operator T by
ðTuÞðtÞ ¼
Z 1

0

Gðt; sÞfðs; uðsÞ; u0ðsÞÞdsþ
Pm

i¼1ait
a�1

1� D

�
Z 1

0

Gðni; sÞfðs; uðsÞ; u0ðsÞÞdsþ
kta�1

1� D
: ð9Þ
It is clear that the existence of a positive solution for the system (1) is equivalent
to the existence of nontrivial fixed point of T in K.

Lemma 6. T:K fi K is a completely continuous operator.

Proof. Let u 2 K. Then, it follows from Lemma 5(i) that
kTuk 6
Z 1

0

Gðs; sÞfðs; uðsÞ; u0ðsÞÞdsþ
Pm

i¼1ai
1� D

Z 1

0

Gðs; sÞfðs; uðsÞ; u0ðsÞÞds

þ k
1� D

¼
Z c

0

þ
Z d

c
þ
Z 1

d

� �
Gðs; sÞfðs; uðsÞ; u0ðsÞÞð Þds

þ
Pm

i¼1ai
1� D

Z c

0

þ
Z d

c
þ
Z 1

d

� �
Gðs; sÞfðs; uðsÞ; u0ðsÞÞð Þds

þ k
1� D

6 3

Z d

c
Gðs; sÞfðs; uðsÞ; u0ðsÞÞds

þ
Pm

i¼1ai
1� D

Z d

c
Gðs; sÞfðs; uðsÞ; u0ðsÞÞdsþ k

1� D
:
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On the other hand, (8) and (9) and Lemma 5(ii) imply that, for any t 2 [c,d],
ðTuÞðtÞ ¼
Z 1

0

Gðt; sÞfðs; uðsÞ; u0ðsÞÞdsþ
Pm

i¼1ait
a�1

1�D

Z 1

0

Gðni; sÞfðs; uðsÞ; u0ðsÞÞds

þ kta�1

1�D
P
Z d

c
Gðt; sÞfðs; uðsÞ; u0ðsÞÞdsþ

Pm
i¼1ait

a�1

1�D

�
Z d

c
Gðni; sÞfðs; uðsÞ; u0ðsÞÞdsþ

kta�1

1�D

P
Z d

c
gðsÞGðs; sÞfðs; uðsÞ; u0ðsÞÞdsþ

Pm
i¼1aic

a�1

1�D

�
Z d

c
gðsÞGðs; sÞfðs; uðsÞ; u0ðsÞÞdsþ k

1�D

P k
Z d

c
Gðs; sÞfðs; uðsÞ; u0ðsÞÞdsþ

Pm
i¼1aic

a�1

1�D

�

�
Z d

c
Gðs; sÞfðs; uðsÞ; u0ðsÞÞdsþ k

1�D

	
P

r
3
kTuk:
This fact directly implies that T:K fi K is well defined. Now we show that T is a
completely continuous operator. h
3. Main results

In this section, we discuss the existence of a positive solution of problem (1). We
define the nonnegative continuous concave functional on K by
aðuÞ ¼ min
c6t6d
ðuðtÞÞ:
It is obvious that, for each u 2 K,a(u) 6 iui.
We use the following notations. Let
M ¼ CðaÞ
Cð2aÞ 1þ

Pn
i¼1ai

CðaÞð1� DÞ

� �

R ¼ min
c6t6d

Z d

c
Gðt; sÞdsþ

Pn
i¼1ai

CðaÞð1� DÞ

Z d

c
Gðni; sÞds

� �
:

We are now ready to state our main results.

Theorem 2. Assume that there exist nonnegative numbers a,b, c such that
0< a < b 6 rc, and f(t,u,u0), satisfy the following conditions:

H3) f ðt; u; u0Þ 6 c
M, for all (t,u,u

0) 2 [0,1] · [0,c] · [0,c];
H4) f ðt; u; u0Þ 6 a

M, for all (t,u, u
0) 2 [0,1] · [0,a] · [0,a];

H5) f ðt; u; u0Þ > b
R, for all ðt; u; u0Þ 2 ½c; d� � b; b

r


 �
� b; b

r


 �
.
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In addition, suppose that k satisfy
0 < k <
cð1� DÞ

2
: ð10Þ
Then the problem (1) has at least three positive solutions u1, u2,u3 such that iu1i <
a,b < a(u2(t)), and iu3i > a, with a(u3(t)) < b.

Proof. Firstly, we show that T : Pc ! Pc is a completely continuous operator. In
fact, if u 2 Pc, by condition (H3) and (10), we have
kTuk ¼ max
06t61

jðTuÞðtÞj

¼ max
06t61

Z 1

0

Gðt; sÞfðs; uðsÞ; u0ðsÞÞdsþ
Pm

i¼1ait
a�1

1� D

�

�
Z 1

0

Gðni; sÞfðs; uðsÞ; u0ðsÞÞdsþ
kta�1

1� D

�

6
c

M

CðaÞ
Cð2aÞ þ

Pn
i¼1ai

CðaÞð1� DÞ
CðaÞ
Cð2aÞ

� �
þ k
1� D

6
c

2
þ c

2
¼ c:
Therefore, iTui 6 c, that is, T : Pc ! Pc. The operator T is completely continuous
by an application of the Ascoli–Arzela theorem.

In a completely analogous way, the condition (H4) implies that the condition
(A2) of Theorem 1 is satisfied.

We now show that the condition (A1) of Theorem 1 is satisfied. Clearly,
fu 2 P a; b; br

� �
jaðuÞ > bg–;. If u 2 P a; b; br

� �
, then b 6 uðsÞ 6 b

r ; s 2 ½c; d�.
By condition (H5), we get
aððTuÞðtÞÞ ¼ min
c6t6d
ððTuÞðtÞÞP min

c6t6d

Z 1

0

Gðt; sÞfðs; uðsÞ; u0ðsÞÞds
�

þ
Pm

i¼1ait
a�1

1� D

Z 1

0

Gðni; sÞfðs; uðsÞ; u0ðsÞÞdsþ
kta�1

1� D

�

P
b

R
min
c6t6d

Z d

c
Gðt; sÞdsþ

Pn
i¼1ai

CðaÞð1� DÞ

Z d

c
Gðni; sÞds

� �
¼ b:
Therefore, the condition (A1) of Theorem 1 is satisfied.
Finally, we show that the condition (A3) of Theorem 1 is also satisfied.

If u 2 P(a,b,c), and kTuk > b
r, then
aððTuÞðtÞÞ ¼ min
c6t6d
ðTuÞðtÞP rkTuk > b:
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Therefore, the condition (A3) of Theorem 1 is also satisfied. By Theorem 1, there
exist three positive solutions u1,u2,u3 such that iu1i < a,b< a(u2(t)), and iu3i >
a, with a(u3(t)) < b. Therefore, we have the conclusion. h
4. Application
Example 3. Consider the following fractional boundary value problem:
D
5
2

0þ
uðtÞ ¼ fðt; uðtÞ; u0ðtÞÞ; t 2 ½0; 1�;

uð0Þ ¼ u0ð0Þ ¼ 0; uð1Þ � 1
4
u 1

3

� �
� 3

4
u 2

3

� �
¼ k

(
ð11Þ
where
fðt; u; vÞ ¼
sinðptÞ þ u6 þ

ffiffi
v
p

30
; t 2 ½0; 1�; 0 6 u < 2; v P 0;

sinðptÞ þ 64þ 15
2

ffiffiffiffiffiffiffiffiffiffiffi
u� 2
p

þ
ffiffi
v
p

30
; t 2 ½0; 1�; 2 6 u < 18; v P 0;

sinðptÞ þ 94þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� 18
p

þ
ffiffi
v
p

30
; t 2 ½0; 1�; u P 18; v P 0:

8>><
>>:
To show the problem (11) has at least three positive solutions, we apply Theorem 2
with a ¼ 5

2
; m ¼ 2; a1 ¼ 1

4
; a2 ¼ 3

4
; n1 ¼ 1

3
and n2 ¼ 2

3
.

We choose c ¼ 1
3 and d ¼ 2

3. Then, by direct calculations, we can obtain that
D ¼ 0:4564 M ¼ 0:264048; R ¼ 0:18297
By calculating, we can let m1 ¼
ffiffiffiffiffiffiffiffiffiffi
3�2

ffiffi
2
p3

p
�2ffiffiffiffiffiffiffiffiffiffi

3�2
ffiffi
2
p3

p
�3

(see Lemma 5) and r . 0.01437. If we

take a = 1, b = 2 and c= 100, we obtain
fðt; u; vÞ 6 104:3833 6
c

M
¼ 378:719; for all 0 6 t 6 1; 0 6 u 6 100; 0

6 v 6 100; fðt; u; vÞ 6 2:0333 <
a

M
¼ 3:677; for all 0 6 t 6 1; 0

6 u 6 1; 0 6 v 6 1; fðt; u; vÞP 64:5471 >
b

R

¼ 10:9307; for all
1

3
6 t 6

2

3
; 2 6 u 6 4:559; 2 6 v 6 4:559:
Thus for 0 < k 6 cð1�DÞ
2
¼ 27:18 by Theorem 2, the problem (1) has at least three

positive solutions ui, i= 1,2,3, such that u1i < 1,2 < a(u2), and iu3i > 1, with
a(u3) < 2.
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