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Abstract In this paper, we discus the existence of solutions for a nonlocal bound-

ary value problem of fractional differential inclusions concerning a nonlocal strip

condition via some fixed point theorems. Our results include the cases when the

right-hand side of the inclusion is convex as well as nonconvex valued.
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1. Introduction

In this paper, we discuss the existence of solutions for a boundary value problem
of nonlinear fractional differential inclusions of order q 2 (1,2) with nonlocal strip
conditions given by
cDqxðtÞ 2 Fðt; xðtÞÞ; 0 < t < 1; 1 < q 6 2;

xð0Þ ¼ 0; xð1Þ ¼ g
R s

m xðsÞds; 0 < m < s < 1ðm–sÞ;

(
ð1:1Þ
where cDq denotes the Caputo fractional derivative of order q; F : ½0; 1��
R! PðRÞ is a multivalued map, PðRÞ is the family of all subsets of R.

The single-valued problem, that is the equation cDqx(t) = f(t,x(t)), with the
boundary conditions in (1.1) was studied recently in [4]. As argued in [4], the non-
local strip condition (xð1Þ ¼ g

R s
m xðsÞds; 0 < m < s < 1) in (1.1) is an extension of

a three-point nonlocal boundary condition of the form xð1Þ ¼ gxðmÞ; g 2 R;
0 < m < 1. In fact, this strip condition corresponds to a continuous distribution
of the values of the unknown function on an arbitrary finite segment of the inter-
val. In other words, the strip condition in (1.1) can be regarded as a four-point
nonlocal boundary condition which reduces to the typical integral boundary
conditions in the limit m fi 0, s fi 1. Strip conditions of fixed size appear in the
mathematical modeling of real world problems, for example, see [6,12]. Thus,
the present idea of nonlocal strip conditions will be quite fruitful in modeling
the strip problems as one can choose a strip of arbitrary size according to the
requirement by fixing the nonlocal parameters involved in the problem. As a
matter of fact, integral boundary conditions have various applications in applied
fields such as blood flow problems, chemical engineering, thermo-elasticity, under-
ground water flow, population dynamics, etc. For a detailed description of the
integral boundary conditions, we refer the reader to the papers [5,16] and refer-
ences therein. For the basic theory of fractional differential equations and its
applications see [24–27], and the recent development on the topic can be found
in [1,2,10,3,7–9,11,13,14] and the references cited therein.

Here we extend the results of [4] to cover the multi-valued case. We establish the
existence of results for the problem (1.1), when the right hand side is convex as well
as nonconvex valued. The first result relies on the nonlinear alternative of
Leray–Schauder type. In the second result, we shall combine the nonlinear alter-
native of Leray–Schauder type for single-valued maps with a selection theorem
due to Bressan and Colombo for lower semicontinuous multivalued maps with
nonempty closed and decomposable values, while in the third result, we shall
use the fixed point theorem for contraction multivalued maps due to Covitz and
Nadler.

The methods used are standard, however their exposition in the framework of
problems (1.1) is new.
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2. Preliminaries

2.1. Fractional Calculus

Let us recall some basic definitions of fractional calculus [24,27].

Definition 2.1. For a continuous function g : ½0;1Þ ! R, the Caputo derivative of
fractional order q is defined as
cDqgðtÞ ¼ 1

Cðn� qÞ

Z t

0

ðt� sÞn�q�1gðnÞðsÞds; n� 1 < q < n; n ¼ ½q� þ 1;
where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann–Liouville fractional integral of order q is defined as
IqgðtÞ ¼ 1

CðqÞ

Z t

0

gðsÞ
ðt� sÞ1�q

ds; q > 0;
provided the integral exists.

To define the solution for the inclusion problem we need the following lemma.

Lemma 2.3 ([4]). For a given g 2 Cð½0; 1�; RÞ the unique solution of the boundary
value problem
cDqxðtÞ ¼ gðtÞ; 0 < t < 1; 1 < q 6 2;

xð0Þ ¼ 0; xð1Þ ¼ g
R s

m xðsÞds; 0 < m < s < 1ðm–sÞ;

�
ð2:1Þ
is given by
xðtÞ ¼ 1

CðqÞ

Z t

0

ðt� sÞq�1gðsÞds� 2t

½2� gðs2 � m2Þ�CðqÞ

�
Z 1

0

ð1� sÞq�1gðsÞdsþ 2gt
½2� gðs2 � m2Þ�CðqÞ

�
Z s

m

Z s

0

ðs�mÞq�1gðmÞdm
� �

ds: ð2:2Þ
2.2. Multivalued analysis

Let us recall some basic definitions on multi-valued maps [19,21].
For a normed space (X, i.i), let PclðXÞ ¼ fY 2 PðXÞ : Y is closedg; PbðXÞ ¼

fY 2 PðXÞ : Y is boundedg; PcpðXÞ ¼ fY 2 PðXÞ : Y is compactg, and Pcp;c

ðXÞ ¼ fY 2 PðXÞ : Y is compact and convexg. A multi-valued map G : X!
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PðXÞ is convex (closed) valued if G(x) is convex (closed) for all x 2 X. The map G is
bounded on bounded sets ifGðBÞ ¼ [x2BGðxÞ is bounded inX for allB 2 PbðXÞ (i.e.
supx2Bfsupfjyj : y 2 GðxÞgg <1Þ.G is called upper semi-continuous (u.s.c.) onX if
for each x0 2 X, the set G(x0) is a nonempty closed subset of X, and if for each open
set N of X containing G(x0), there exists an open neighborhood N 0 of x0 such that
GðN 0Þ#N. G is said to be completely continuous if GðBÞ is relatively compact
for every B 2 PbðXÞ. If the multi-valued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has a closed graph, i.e.,
xn fi x*, yn fi y*, yn 2 G(xn) imply y* 2 G(x*). G has a fixed point if there is x 2 X
such that x 2 G(x). The fixed point set of themultivalued operatorGwill be denoted
by FixG. A multivalued mapG : ½0; 1� ! PclðRÞ is said to be measurable if for every
y 2 R, the function
t#dðy;GðtÞÞ ¼ inffjy� zj : z 2 GðtÞg

is measurable.

Let C([0,1]) denote a Banach space of continuous functions from [0,1] into R

with the norm ixi = supt2[0, 1] Œx(t)Œ. Let L1ð½0; 1�;RÞ be the Banach space of mea-
surable functions x : ½0; 1� ! R which are Lebesgue integrable and normed by
kxkL1 ¼

R 1

0
jxðtÞjdt.

Definition 2.4. A multivalued map F : ½0; 1� � R! PðRÞ is said to be Carathéod-
ory if

(i) t ´ F(t,x) is measurable for each x 2 R;
(ii) x ´ F(t,x) is upper semicontinuous for almost all t 2 [0,1]; Further a Carat-

héodory function F is called L1�Carathéodory if
(iii) for each a > 0, there exists ua 2 L1ð½0; 1�; RþÞ such that
kFðt; xÞk ¼ supfjvj : v 2 Fðt; xÞg 6 uaðtÞ

for all ixi 6 a and for a.e. t 2 [0,1].

For each y 2 Cð½0; 1�; RÞ, define the set of selections of F by
SF;y :¼ fv 2 L1ð½0; 1�; RÞ : vðtÞ 2 Fðt; yðtÞÞfor a:e: t 2 ½0; 1�g:

Let X be a nonempty closed subset of a Banach space E and G : X! PðEÞ be a
multivalued operator with nonempty closed values. G is lower semi-continuous
(l.s.c.) if the set {y 2 X:G(y) \ B „ ;} is open for any open set B in E. Let A be
a subset of ½0; 1� � R. A is L � B measurable if A belongs to the r-algebra gener-
ated by all sets of the form J �D, where J is Lebesgue measurable in [0,1] and D
is Borel measurable in R. A subset A of L1ð½0; 1�;RÞ is decomposable if for all
u; v 2 A and measurable J � ½0; 1� ¼ J, the function uvJ þ vvJ�J 2 A, where
vJ stands for the characteristic function of J .
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Definition 2.5. Let Y be a separable metric space and let N : Y! PðL1ð½0; 1�;RÞÞ
be a multivalued operator. We say N has a property (BC) if N is lower semi-
continuous (l.s.c.) and has nonempty closed and decomposable values.

Let F : ½0; 1� � R! PðRÞ be a multivalued map with nonempty compact
values. Define a multivalued operator F : Cð½0; 1� � RÞ ! PðL1ð½0; 1�; RÞÞ associ-
ated with F as
FðxÞ ¼ fw 2 L1ð½0; 1�; RÞ : wðtÞ 2 Fðt; xðtÞÞfor a:e: t 2 ½0; 1�g;

which is called the Nemytskii operator associated with F.

Definition 2.6. Let F : ½0; 1� � R! PðRÞ be a multivalued function with non-
empty compact values. We say F is of lower semi-continuous type (l.s.c. type) if its
associated Nemytskii operator F is lower semi-continuous and has nonempty
closed and decomposable values.

Let (X,d) be a metric space induced from the normed space (X; i.i). Consider
Hd : PðXÞ � PðXÞ ! R [ f1g given by
HdðA; BÞ ¼ maxfsup
a2A

dða; BÞ; sup
b2B

dðA; bÞg;
where d(A,b) = infa2Ad(a;b) and d(a,B) = infb2Bd(a;b). Then (Pb,cl(X),Hd) is a
metric space and (Pcl(X),Hd) is a generalized metric space (see [22]).

Definition 2.7. A multivalued operator N:X fi Pcl(X) is called:

(a) c-Lipschitz if and only if there exists c > 0 such that
HdðNðxÞ; NðyÞÞ 6 cdðx; yÞ for each x; y 2 X;
(b) a contraction if and only if it is c-Lipschitz with c < 1.

The following lemmas will be used in the sequel.

Lemma 2.8 (Nonlinear alternative for Kakutani maps [20]). Let E be a Banach
space, C a closed convex subset of E, U an open subset of C and 0 2 U. Suppose that
F : U! Pc;cvðCÞ is a upper semicontinuous compact map; here Pc;cvðCÞ denotes the
family of nonempty, compact convex subsets of C. Then either

(i) F has a fixed point in U , or
(ii) there is a u 2 oU and k 2 (0,1) with u 2 kF(u).

Lemma 2.9 [23]. Let X be a Banach space. Let F : ½0; T� � R! Pcp;cðXÞ be an L1�
Carathéodory multivalued map and let H be a linear continuous mapping from
L1([0,1],X) to C([0,1],X). Then the operator
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H � SF : Cð½0; 1�; XÞ ! Pcp;cðCð½0; 1�; XÞÞ; x#ðH � SFÞðxÞ ¼ HðSF;xÞ

is a closed graph operator in C([0,1],X) · C([0,1],X).

Lemma 2.10 [15]. Let Y be a separable metric space and let N : Y! PðL1ð½0; 1�;
RÞÞ be a multivalued operator satisfying the property (BC). Then N has a continuous
selection, that is, there exists a continuous function (single-valued) g : Y! L1

ð½0; 1�; RÞ such that g(x) 2 N(x) for every x 2 Y.

Lemma 2.11 [18]. Let (X,d) be a complete metric space. If N:X fi Pcl(X) is a con-
traction, then Fix N „ ;.

Definition 2.12. A function x 2 C2ð½0; 1�; RÞ is a solution of the problem (1.1) if
xð0Þ ¼ 0; xð1Þ ¼ g

R s
m xðsÞds, and there exists a function f 2 L1ð½0; 1�;RÞ such that

f(t) 2 F(t,x(t)) a.e. on [0,1] and
xðtÞ ¼ 1

CðqÞ

Z t

0

ðt� sÞq�1fðsÞds� 2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1fðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1fðmÞdm
� �

ds: ð2:3Þ
3. Existence results

3.1. The Carathéodory case

Theorem 3.1. Assume that:

(H1) F : ½0; 1� � R! PðRÞ is Carathéodory and has nonempty compact and
convex values;

(H2) there exists a continuous nondecreasing function w:[0,1) fi (0,1) and
a function p 2 L1ð½0; 1�; RþÞ such that
kFðt; xÞkP :¼ supfjyj : y 2 Fðt;xÞg 6 pðtÞwðkxkÞfor each ðt; xÞ
2 ½0; 1� � R:
(H3) there exists a constant M> 0 such that
M

wðMÞ
CðqÞ ð1þ d1Þ

R 1

0
ð1� sÞq�1pðsÞdsþ jgjd1

R s
m

R s

0
ðs�mÞq�1pðmÞdm

� �
ds

n o > 1
where
d1 ¼
2

j2� gðs2 � m2Þj :
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Then the boundary value problem (1.1) has at least one solution on [0,1].

Proof. Define the operator X : Cð½0; 1�; RÞ ! PðCð½0; 1�; RÞÞ by
XðxÞ ¼

h 2 Cð½0; 1�; RÞ :

hðtÞ ¼

1
CðqÞ

R t

0
ðt� sÞq�1fðsÞds

� 2t
½2�gðs2�m2Þ�CðqÞ

R 1

0
ð1� sÞq�1fðsÞds

þ 2gt
½2�gðs2�m2Þ�CðqÞ

R s
m

R s

0
ðs�mÞq�1fðmÞdm

� �
ds;

8>><
>>:

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
for f 2 SF,x. We will show that X satisfies the assumptions of the nonlinear alter-
native of Leray–Schauder type. The proof consists of several steps. As a first step,
we show that X is convex for each x 2 Cð½0; 1�; RÞ. This step is obvious since SF,x is
convex (F has convex values), and therefore we omit the proof.

Next, we show that X maps bounded sets (balls) into bounded sets in
Cð½0; 1�; RÞ. For a positive number q, let Bq ¼ fx 2 Cð½0; 1�; RÞ : kxk 6 qg be a
bounded ball in Cð½0; 1�; RÞ. Then, for each h 2 X(x),x 2 Bq, there exists f 2 SF,x

such that
hðtÞ ¼ 1

CðqÞ

Z t

0

ðt� sÞq�1fðsÞds� 2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1fðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1fðmÞdm
� �

ds;
and, Z

jhðtÞj 6 1

CðqÞ

t

0

ðt� sÞq�1jfðs; xðsÞÞjds

þ 2t

½2� gðs2 � m2Þ�CðqÞ

����
����
Z 1

0

ð1� sÞq�1jfðs; xðsÞÞjds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

����
����
Z s

m

Z s

0

ðs�mÞq�1jfðm; xðmÞÞjdm
� �

ds

6 wðkxkÞ 1

CðqÞ

Z t

0

ðt� sÞq�1pðsÞdsþ 2t

½2� gðs2 � m2Þ�CðqÞ

����
����

�

�
Z 1

0

ð1� sÞq�1pðsÞdsþ 2gt
½2� gðs2 � m2Þ�CðqÞ

����
����

�
Z s

m

Z s

0

ðs�mÞq�1pðmÞdm
� �

ds

	

6
wðkxkÞ
CðqÞ ð1þd1Þ

Z 1

0

ð1�sÞq�1pðsÞdsþjgjd1

Z s

m

Z s

0

ðs�mÞq�1pðmÞdm
� �

ds

� 

:

Thus,
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khk 6 wðqÞ
CðqÞ 1þ d1ð Þ

Z 1

0

ð1� sÞq�1pðsÞdsþ jgjd1

Z s

m

Z s

0

ðs�mÞq�1pðmÞdm
� �

ds

� 

:

Now we show that X maps bounded sets into equicontinuous sets of Cð½0; 1�; RÞ.
Let t0,t00 2 [0,1] with t0 < t00 and x 2 Bq, where Bq is a bounded set of Cð½0; 1�; RÞ.
For each h 2 X(x), we obtain
jhðt00Þ � hðt0Þj 6
Z t0

0

ðt00 � sÞq�1 � ðt0 � sÞq�1

CðqÞ

" #
fðsÞdsþ

Z t00

t0

ðt00 � sÞq�1

CðqÞ fðsÞds
�����

�����
� 2jt00 � t0j
½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1fðsÞds

þ 2gjt00 � t0j
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1fðmÞdm
� �

ds:
Obviously the right hand side of the above inequality tends to zero indepen-
dently of x 2 Bq as t00 � t0 fi 0. As X satisfies the above three assumptions, there-
fore it follows by the Ascoli–Arzelá theorem that X : Cð½0; 1�; RÞ ! PðCð½0; 1�;
RÞÞ is completely continuous.

In our next step, we show that X has a closed graph. Let xn fi x*,hn 2 X(xn) and
hn fi h*. Then we need to show that h* 2 X(x*). Associated with hn 2 X(xn), there
exists fn 2 SF;xn such that for each t 2 [0,1],
hnðtÞ ¼
1

CðqÞ

Z t

0

ðt� sÞq�1fnðsÞds�
2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1fnðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1fnðmÞdm
� �

ds:
Thus we have to show that there exists f� 2 SF;x� such that for each t 2 [0,1],
h�ðtÞ ¼
1

CðqÞ

Z t

0

ðt� sÞq�1f�ðsÞds�
2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1f�ðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1f�ðmÞdm
� �

ds:
Let us consider the continuous linear operator H : L1ð½0; 1�; RÞ ! Cð½0; 1�; RÞ
given by
f#HðfÞðtÞ ¼ 1

CðqÞ

Z t

0

ðt� sÞq�1fðsÞds� 2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1fðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1fðmÞdm
� �

ds:
Observe that
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khnðtÞ � h�ðtÞk ¼
1

CðqÞ

Z t

0

ðt� sÞq�1ðfnðsÞ � f�ðsÞÞds
����

� 2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1ðfnðsÞ � f�ðsÞÞds

þ 2gt
½2�gðs2�m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1ðfnðmÞ � f�ðmÞÞdm
� �

ds
as n fi1.
Thus, it follows by Lemma 2.9 that H�SF is a closed graph operator. Further,

we have hnðtÞ 2 HðSF;xnÞ. Since xn fi x*, therefore, we have
h�ðtÞ ¼
1

CðqÞ

Z t

0

ðt� sÞq�1f�ðsÞds�
2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1f�ðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1f�ðmÞdm
� �

ds;
for some f� 2 SF;x� .
Finally, we show there exists an open set U#Cð½0; 1�; RÞ with x R X(x) for

k 2 (0,1) and x 2 oU. Let k 2 (0,1) and x 2 kX(x). Then there exists
f 2 L1ð½0; 1�; RÞ with f 2 SF,x such that, for t 2 [0,1], we have
hðtÞ ¼ 1

CðqÞ

Z t

0

ðt� sÞq�1fðsÞds� 2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1fðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1fðmÞdm
� �

ds;
Using the computations of the second step above we have
:
khk6wðkxkÞ
CðqÞ 1þd1ð Þ

Z 1

0

ð1�sÞq�1pðsÞdsþjgjd1

Z s

m

Z s

0

ðs�mÞq�1pðmÞdm
� �

ds

� 

Consequently, we have
kxk
wðkxkÞ
CðqÞ ð1þ d1Þ

R 1

0
ð1� sÞq�1pðsÞdsþ jgjd1

R s
m

R s

0
ðs�mÞq�1pðmÞdm

� �
ds

n o 6 1:
In view of (H3), there exists M such that ixi „ M. Let us set
U ¼ fx 2 Cð½0; 1�; RÞ : kxk <Mþ 1g:

Note that the operator X : U! PðCð½0; 1�; RÞÞ is upper semicontinuous and com-
pletely continuous. From the choice of U, there is no x 2 oU such that x 2 kX(x)
for some k 2 (0,1). Consequently, by the nonlinear alternative of Leray-Schauder
type (Lemma 2.8), we deduce that X has a fixed point x 2 U which is a solution of
the problem (1.1). This completes the proof. h
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Example 3.2. Consider the following strip fractional boundary value problem
cD3=2xðtÞ 2 Fðt; xðtÞÞ; 0 < t < 1;

xð0Þ ¼ 0; xð1Þ ¼
R 3=4

1=4
xðsÞds:

8<
: ð3:1Þ
Here, q = 3/2, m = 1/4, s = 3/4, g = 1, and F : ½0; 1� � R! PðRÞ is a multi-
valued map given by
x! Fðt; xÞ ¼ jxj3

jxj3 þ 3
þ 3t3 þ 5;

jxj
jxj þ 1

þ tþ 1

" #
:

For f 2 F, we have
jfj 6 max
jxj3

jxj3 þ 3
þ 3t3 þ 5;

jxj
jxj þ 1

þ tþ 1

 !
6 9; x 2 R:
Thus,
kFðt; xÞkP :¼ supfjyj : y 2 Fðt; xÞg 6 9 ¼ pðtÞwðkxkÞ; x 2 R;
with p(t) = 1, w(ixi) = 9.
Further, using the condition (H3) we find that M> 5.8159541. Clearly, all the

conditions of Theorem 3.1 are satisfied. So there exists at least one solution of the
problem (3.1) on [0,1].

3.2. The lower semicontinuous case

Here, we study the case when F is not necessarily convex valued. Our strategy to
deal with these problems is based on the nonlinear alternative of Leray Schauder
type together with the selection theorem of Bressan and Colombo [15] for lower
semi-continuous maps with decomposable values.

Theorem 3.3. Assume that (H1), (H2) and the following condition holds:

(H4) F : ½0; 1� � R! PðRÞ is a nonempty compact-valued multivalued map such
that

(a) (t,x) ´ F(t,x) is L � B measurable,
(b) x ´ F(t,x) is lower semicontinuous for each t 2 [0,1];

Then the boundary value problem (1.1) has at least one solution on [0,1].

Proof. It follows from (H2) and (H4) that F is of l.s.c. type. Then from Lemma
2.10, there exists a continuous function f : Cð½0; 1�; RÞ ! L1ð½0; 1�; RÞ such that
fðxÞ 2 FðxÞ for all x 2 Cð½0; 1�; RÞ.
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Consider the problem
cDqxðtÞ ¼ fðxÞðtÞ; t 2 ½0; 1�; T > 0; 1 < q 6 2;

xð0Þ ¼ 0; xð1Þ ¼ g
R s

m xðsÞds; 0 < m < s < 1ðm–sÞ:

�
ð3:2Þ
Observe that if x 2 C2ð½0; 1�; RÞ is a solution of (3.2), then x is a solution to the
problem (1.1). In order to transform the problem (3.2) into a fixed point problem,
we define the operator X as
XxðtÞ ¼ 1

CðqÞ

Z t

0

ðt� sÞq�1fðxÞðsÞds� 2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1fðxÞ

� ðsÞdsþ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1fðxÞðmÞdm
� �

ds:
It can easily be shown that X is continuous and completely continuous. The
remaining part of the proof is similar to that of Theorem 3.1. So we omit it. This
completes the proof. h
3.3. The Lipschitz case

Now we prove the existence of solutions for the problem (1.1) with a nonconvex
valued right hand side by applying a fixed point theorem for multivalued map due
to Covitz and Nadler [27].

Theorem 3.4. Assume that the following conditions hold:

(H5) F : ½0; 1� � R! P cpðRÞ is such that F ð	; xÞ : ½0; 1� ! P cpðRÞ is measurable
for each x 2 R.
(H6) H dðF ðt; xÞ; F ðt; �xÞÞ 6 mðtÞjx� �xj for almost all t 2 [0,1] and x; �x 2 R

with m 2 L1ð½0; 1�; RþÞ and d(0,F(t,0)) 6 m(t) for almost all
t 2 [0,1].Then the boundary value problem (1.1) has at least one solution
on [0,1] if
1

CðqÞ 1þ d1ð Þ
Z 1

0

ð1� sÞq�1mðsÞdsþ jgjd1

Z s

m

Z s

0

ðs� rÞq�1mðrÞdr
� �

ds

� 

< 1:
Proof. Observe that the set SF,x is nonempty for each x 2 Cð½0; 1�;RÞ by the
assumption (H5), so F has a measurable selection (see Theorem III.6 [17]). Now
we show that the operator X, defined in the beginning of proof of Theorem 3.1,
satisfies the assumptions of Lemma 2.11. To show that XðxÞ 2 PclððC½0; 1�; RÞÞ
for each x 2 Cð½0; 1�;RÞ, let {un}nP0 2 X(x) be such that un fi u(n fi1) in
Cð½0; 1�; RÞ. Then u 2 Cð½0; 1�; RÞ and there exists vn 2 SF;xn such that, for each
t 2 [0,1],
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unðtÞ ¼
1

CðqÞ

Z t

0

ðt� sÞq�1vnðsÞds�
2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1vnðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1vnðmÞdm
� �

ds;
As F has compact values, we pass onto a subsequence to obtain that vn converges
to v in L1ð½0; 1�; RÞ. Thus, v 2 SF,x and for each t 2 [0,1],Z
unðtÞ ! uðtÞ ¼ 1

CðqÞ
t

0

ðt� sÞq�1vðsÞds� 2t

½2� gðs2 � m2Þ�CðqÞ

�
Z 1

0

ð1� sÞq�1vðsÞdsþ 2gt
½2� gðs2 � m2Þ�CðqÞ

�
Z s

m

Z s

0

ðs�mÞq�1vðmÞdm
� �

ds:
Hence, u 2 X(x).
Next we show that there exists c < 1 such that
HdðXðxÞ; Xð�xÞÞ 6 ckx� �xk for each x; �x 2 Cð½0; 1�; RÞ:

Let x; �x 2 Cð½0; 1�; RÞ and h1 2 X(x). Then there exists v1(t) 2 F(t,x(t)) such that,
for each t 2 [0,1], Z Z
h1ðtÞ ¼
1

CðqÞ
t

0

ðt� sÞq�1v1ðsÞds�
2t

½2� gðs2 � m2Þ�CðqÞ
1

0

ð1� sÞq�1v1ðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1v1ðmÞdm
� �

ds;
By (H7), we have
HdðFðt; xÞ; Fðt; �xÞÞ 6 mðtÞjxðtÞ � �xðtÞj:

So, there exists w 2 Fðt; �xðtÞÞ such that
jv1ðtÞ � wj 6 mðtÞjxðtÞ � �xðtÞj; t 2 ½0; 1�:

Define U : ½0; 1� ! PðRÞ by
UðtÞ ¼ fw 2 R : jv1ðtÞ � wj 6 mðtÞjxðtÞ � �xðtÞjg:

Since the multivalued operator UðtÞ \ Fðt; �xðtÞÞ is measurable (Proposition III.4
[17]), there exists a function v2(t) which is a measurable selection for V. So
v2ðtÞ 2 Fðt; �xðtÞÞ and for each t 2 [0,1], we have jv1ðtÞ � v2ðtÞj 6 mðtÞjxðtÞ � �xðtÞj.

For each t 2 [0,1], let us define
h2ðtÞ ¼
1

CðqÞ

Z t

0

ðt� sÞq�1v2ðsÞds�
2t

½2� gðs2 � m2Þ�CðqÞ

Z 1

0

ð1� sÞq�1v2ðsÞds

þ 2gt
½2� gðs2 � m2Þ�CðqÞ

Z s

m

Z s

0

ðs�mÞq�1v2ðmÞdm
� �

ds;
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Thus,
jh1ðtÞ � h2ðtÞj ¼
1

CðqÞ

Z t

0

ðt� sÞq�1jv1ðsÞ � v2ðsÞjdsþ
2t

½2� gðs2 � m2Þ�CðqÞ

����
����

�
Z 1

0

ð1� sÞq�1jv1ðsÞ � v2ðsÞjdsþ
2gt

½2� gðs2 � m2Þ�CðqÞ

����
����

�
Z s

m

Z s

0

ðs� rÞq�1jv1ðrÞ � v2ðrÞjdr
� �

ds

6
kx� �xkÞ

CðqÞ ð1þ d1Þ
Z 1

0

ð1� sÞq�1mðsÞdsþ jgjd1

�

�
Z s

m

Z s

0

ðs� rÞq�1mðrÞdr
� �

ds



:

Hence,
kh1 � h2k 6
kx� �xkÞ

CðqÞ 1þ d1ð Þ
Z 1

0

ð1� sÞq�1mðsÞdsþ jgjd1

Z s

m

Z s

0

ðs� rÞq�1mðrÞdr
� �

ds

� 

:

Analogously, interchanging the roles of x and �x, we obtain
HdðXðxÞ;Xð�xÞÞ 6 ckx� �xk 6 kx� �xkÞ
CðqÞ ð1þ d1Þ

Z 1

0

ð1� sÞq�1mðsÞdsþ jgjd1

�

�
Z s

m

Z s

0

ðs� rÞq�1mðrÞdr
� �

ds



:

Since X is a contraction, it follows by Lemma 2.11 that X has a fixed point x which
is a solution of (1.1). This completes the proof. h
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