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Abstract. In the present paper, we study existence of nontrivial positive solutions for a
Kirchhoff type variational inequality. Our approach is based on the non-smooth critical point
theory for Szulkin-type functionals.

Keywords: Variational inequality; Critical point; Mountain pass theorem; Minimization;
Szulkin-type functionals

1. INTRODUCTION

Variational inequalities describe phenomena from mathematical physics. They have
applications in physics, mechanics, engineering, optimization, and elliptic inequalities, see,
for example, [1–4] and [5].

The aim of this work is to study a Kirchhoff type variational inequality which is defined on
a bounded interval (0, 1) by using a non-smooth critical point theory due to Szulkin. In [7],
the author has proved a number of existence theorems for critical points of functionals which
are not smooth. He has generalized some minimization and minimax methods in critical point
theory to a class of functionals which are not necessarily continuous and has introduced a new
concept of compactness which is suitable to study these kinds of problems.

In the present paper, by using a minimization principle and the Mountain pass theorem of
Szulkin-type, we prove existence of positive solutions to a variational inequality of Kirchhoff-
type in a closed convex set.

Let K = {u ∈ H1
0 (0, 1) : u ≥ 0} be the closed convex set in the Sobolev space H1

0 (0, 1)
and we consider the problem, denoted by (P ):
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Given f : [0, 1] × R −→ R a continuous function and a, b > 0, find u ∈ K such that
a+ b

 1

0

|u′(x)|2dx
  1

0

u′(x)(v′(x) − u′(x))dx

−
 1

0

f(x, u(x))(v(x) − u(x))dx ≥ 0, ∀v ∈ K.

Such kind of problems are called obstacle problems and they have been largely studied due
to its physical applications. See, for example, the classical books Kinderlehrer and Stampac-
chia [4], Rodrigues [6] and Troianiello [8] and the references therein.

2. SZULKIN-TYPE FUNCTIONALS

Let X be a real Banach space and X∗ its dual. Let E be a functional which is of class C1

and let ψ : X −→ R ∪ {+∞} be a proper (i.e. ψ ≠ +∞), convex, lower semicontinuous
functional. We say that I = E + ψ is a Szulkin-type functional, see [7]. An element u ∈ X
is called a critical point of I = E + ψ if

E′(u)(v − u) + ψ(v) − ψ(u) ≥ 0 for all v ∈ X, (1)

which is equivalent to

0 ∈ E′(u) + ∂ψ(u) in X∗,

where ∂ψ(u) is the subdifferential of the convex functional ψ at u ∈ X.

Definition 2.1. The functional I = E+ψ satisfies the Palais–Smale condition at level c ∈ R,
denoted by (PSZ)c if every sequence {un} ⊂ X such that limn→∞ I(un) = c and

⟨E′(un), v − un⟩X + ψ(v) − ψ(un) ≥ −εn∥v − un∥ for all v ∈ X,

where εn → 0, possesses a convergent subsequence.

Theorem 2.1 ([7]). Let X be a Banach space, I = E+ψ : X −→ R ∪ {+∞} a Szulkin-type
functional which is bounded below. If I satisfies the (PSZ)c-condition for

c = inf
u∈X

I(u),

then c is a critical value.

Szulkin has proved the following version of the Mountain Pass theorem.

Theorem 2.2 ([7]). Let X be a Banach space, I = E+ψ : X −→ R ∪ {+∞} a Szulkin-type
functional and assume that

(i) I(u) ≥ α for all ∥u∥ = ρ for some α, ρ > 0, and I(0) = 0;
(ii) there is e ∈ X with ∥e∥ > ρ and I(e) ≤ 0.
If I satisfies the (PSZ)c-condition for

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),
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with

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e} ,

then c is a critical value of I and c ≥ α, i.e., there exists u∗ in X such that I ′(u∗) = 0 and
I(u∗) = c ≥ α.

3. MAIN RESULTS

We now formulate the main results of this paper. We denote by F the function defined by
F (x, s) =

 s

0
f(x, t)dt.

Theorem 3.1. Let f : [0, 1] × R −→ R be a continuous function which satisfies the following
condition:

(f1) there exists β > 0 such that

lim sup
|t|→∞

F (x, t)
t2

≤ β, uniformly with respect to x ∈ [0, 1].

Then the problem (P ) has at least one solution u ∈ K.

Theorem 3.2. Let f : [0, 1] × R −→ R be a continuous function which satisfies the following
conditions:

(h1) There exists ν > 4 and M > 0 such that

0 < νF (x, t) ≤ tf(x, t) for |t| ≥ M, ∀x ∈ [0, 1].

(h2) lim sup|t|→0
F (x,t)

|t|2 < a
2 , uniformly with respect to x ∈ [0, 1].

Then the problem (P ) has at least one nontrivial solution u ∈ K.

Remark 3.1. The hypotheses in Theorems 3.1 and 3.2 are respectively of sublinear and
superlinear types, so they are natural conditions.

We define the functional E : H1
0 (0, 1) −→ R by

E(u) =
1
2
a∥u∥2 +

1
4
b∥u∥4 −

 1

0

F (x, u(x))dx.

Because f : [0, 1] × R −→ R is continuous, by using the Lebesgue theorem on dominated
convergence and the compact embedding of H1

0 (0, 1) in C([0, 1]), we can prove easily that
E ∈ C1(H1

0 (0, 1),R).
We define the indicator functional of the set K by

ψK(u) =


0, if u ∈ K
+∞, if u ∉ K.

We remark that the functional ψK is convex, proper, and lower semicontinuous. So, I =
E + ψK is a Szulkin-type functional.

Proposition 3.1. Every critical point u ∈ H1
0 (0, 1) of I = E + ψK is a solution of (P).
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Proof. Since u ∈ H1
0 (0, 1) is a critical point of I = E + ψK , we have

E′(u)(v − u) + ψK(v) − ψK(u) ≥ 0, ∀v ∈ H1
0 (0, 1).

Note that u belongs to K. For if this were not true we had ψK(u) = +∞ and taking
v = 0 ∈ K in the above inequality, we obtain a contradiction. We fix v ∈ K. Since

0 ≤ E′(u)(v − u) = (a+ b∥u∥2)
 1

0

u′(x)(v′(x) − u′(x))dx

−
 1

0

f(x, u(x))(v(x) − u(x))dx,

the inequality is proved. �

4. PROOF OF THEOREM 3.1

We assume that the hypothesis of Theorem 3.1 is satisfied and prove the existence of a
solution for the problem (P ) by using Theorem 2.1.

Proposition 4.1. If the function f satisfies the hypothesis (f1), then I = E +ψK is coercive
and bounded from below in H1

0 (0, 1).

Proof. We have

I(u) = E(u) =
1
2


a∥u∥2 +

1
2
b∥u∥4


−

 1

0

F (x, u(x))dx

for every u ∈ K. By the hypothesis (f1), there exists A > 0 such that F (x, t) ≤ βt2 for
every |t| > A and x ∈ [0, 1]. By using the compactness embedding of H1

0 (0, 1) in L2[0, 1],
we obtain that ∥u∥L2(0,1) ≤ ∥u∥H1

0 (0,1). Hence

I(u) ≥ 1
2
a∥u∥2 +

1
4
b∥u∥4 − β

 1

0

u2(x)dx

=
1
2
a∥u∥2 +

1
4
b∥u∥4 − β∥u∥2

L2

≥ 1
2
a∥u∥2 +

1
4
b∥u∥4 − β∥u∥2

=


1
2
a − β


∥u∥2 +

1
4

∥u∥4,

which implies that the functional I = E + ψK is coercive. Therefore I is bounded from
below in H1

0 (0, 1). If this is not true, there exists a sequence {un} in H1
0 (0, 1) such that

∥un∥ → +∞ and I(un) → −∞, which is a contradiction with the coerciveness of I . �

Proposition 4.2. If the function f satisfies (f1), then I = E+ψK satisfies (PSZ)c for every
c ∈ R.

Proof. Let c ∈ R be fixed. Let {un} be a sequence in H1
0 (0, 1) such that

I(un) = E(un) + ψK(un) → c; (2)



Existence of positive solutions for a variational inequality of Kirchhoff type 131

and

E′(un)(v − un) + ψK(v) − ψK(un) ≥ −εn∥v − un∥, ∀v ∈ H1
0 (0, 1), (3)

{εn} a sequence in [0, ∞) with εn → 0. By (2), we obtain that the sequence {un} is in K.
By Proposition 4.1, since I is coercive on H1

0 (0, 1), the sequence {un} is bounded in K.
Because the sequence {un} is bounded in H1

0 (0, 1). Hence there exists a subsequence still
denoted by {un} which converges weakly in H1

0 (0, 1). So there exists u ∈ H1
0 (0, 1) such

that

un ⇀ u in H1
0 (0, 1); (4)

un → u in L2(0, 1), (5)

un → u in C([0, 1]). (6)

As K is weakly closed, u ∈ K. Setting v = u in (3), we obtain that

(a+ b∥un∥2)
 1

0

u′
n(x)(u′(x) − u′

n(x))dx

+
 1

0

f(x, un(x))(un(x) − u(x))dx ≥ −εn∥u − un∥.

Therefore, for large n ∈ N, we have

(a+ b∥un∥2)∥u − un∥2 ≤ (a+ b∥un∥2)
 1

0

u′(x)(u′(x) − u′
n(x))dx

+
 1

0

f(x, un(x))(un(x) − u(x))dx+ εn∥u − un∥

≤ (a+ b∥un∥2)(u, u − un)H1
0

+ ∥u − un∥L2

 1

0

|f(x, un(x))|2dx
 1

2

+ εn∥u − un∥.

Since {un} is bounded in H1
0 (0, 1), it is also bounded in C([0, 1]). Therefore, there exists a

constant M > 0 such that ∥un∥∞ ≤ M , which together with the continuity of f implies that
|f(x, un(x))| ≤ M1 for some M1 > 0. We obtain that

(a+ b∥un∥2)∥u − un∥2 ≤ (a+ b∥un∥2)(u, u − un)H1
0

+M1∥u − un∥L2 + εn∥u − un∥. (7)

By (4) and the fact that{un} is bounded in H1
0 (0, 1), we have

lim
n

(a+ b∥un∥2)(u, u − un)H1
0

= 0.

We conclude by (5) that the second term in (7) also converges to 0. Since εn → 0+, {un}
converges strongly to u in H1

0 (0, 1). This completes the proof. �
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By Proposition 4.2, the functional I satisfies the (PSZ)c condition, and by
Proposition 4.1, the functional I is bounded from below. Therefore, the number

c1 = inf
u∈H1

0 (0,1)
I(u)

is a critical value of I by Theorem 2.1. It remains to apply Proposition 3.1 which concludes
that the critical point u1 ∈ H1

0 (0, 1) which corresponds to c1, is actually an element of K
and a solution of the problem (P ).

Example 4.1. Let f : [0, 1] × R −→ R be defined by f(x, t) = x(|t| 1
2 + 1). It satisfies (f1).

Indeed, we have F (x, t) = x( 2
3 |t| 3

2 + t) and

F (x, t)
t2

=
x( 2

3 |t| 3
2 + t)
t2

= x
 2

3|t| 1
2

+
1
t


,

so

lim sup
|t|→∞

F (x, t)
t2

= 0.

5. PROOF OF THEOREM 3.2

We assume that all the hypotheses of Theorem 3.2 are satisfied. Now we prove the
existence of a nontrivial solution for the problem (P ) by using the Mountain Pass theorem of
Szulkin type (see Theorem 2.2).

Proposition 5.1. If the function f satisfies (h1), then the functional I = E + ψK satisfies
(PSZ)c for every c ∈ R.

Proof. Let c ∈ R be a fixed number. Let {un} be a sequence in H1
0 (0, 1) such that

I(un) = E(un) + ψK(un) → c; (8)

and

E′(un)(v − un) + ψK(v) − ψK(un) ≥ −εn∥v − un∥, ∀v ∈ H1
0 (0, 1), (9)

where {εn} is a sequence in [0, ∞) with εn → 0. By (8), we see that the sequence {un}
belongs to K. We put v = 2un in (9) and obtain

E′(un)(un) ≥ −εn∥un∥.

Therefore, we obtain that

a∥un∥2 + b∥un∥4 −
 1

0

f(x, un(x))un(x)dx ≥ −εn∥un∥. (10)

Because (8) is satisfied for large n ∈ N

c+ 1 ≥ 1
2
a∥un∥2 +

b

4
∥un∥4 −

 1

0

F (x, un(x))dx. (11)
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By (h1), we have

νF (x, t) − tf(x, t) ≤ c1 for x ∈ [0, 1], t ∈ R.

Multiplying (10) by ν−1, and by adding this to (11) and by using (h1), for large n ∈ N, we
obtain that

c+ 1 +
1
ν

∥un∥ ≥ a


1
2

− 1
ν


∥un∥2 + b


1
4

− 1
ν


∥un∥4

−
 1

0

F (x, un(x)) − 1
ν
f(x, un(x))un(x)dx

≥ a


1
2

− 1
ν


∥un∥2 + b


1
4

− 1
ν


∥un∥4

− 1
ν

 1

0

νF (x, un(x)) − f(x, un(x))un(x)dx

≥ a


1
2

− 1
ν


∥un∥2 + b


1
4

− 1
ν


∥un∥4 − c1

ν
.

Since ν > 4 we deduce that the sequence {un} is bounded in K. So there exists a
subsequence which converges weakly in H1

0 (0, 1). We can assume that there exists u ∈
H1

0 (0, 1) such that

un ⇀ u in H1
0 (0, 1); (12)

un → u in C([0, 1]). (13)

As K is weakly closed, u ∈ K. When we put v = u in (9), we obtain that

(a+ b∥un∥2)
 1

0

u′
n(x)(u′(x) − u′

n(x))dx

+
 1

0

f(x, un(x))(un(x) − u(x))dx ≥ −εn∥u − un∥.

Hence, for large n ∈ N, we have

(a+ b∥un∥2)∥u − un∥2 ≤ (a+ b∥un∥2)
 1

0

u′(x)(u′(x) − u′
n(x))dx

+
 1

0

f(x, un(x))(un(x) − u(x))dx+ εn∥u − un∥

≤ (a+ b∥un∥2)(u, u − un)H1
0

+ ∥u − un∥C([0,1])

×
 1

0

max
s∈[−R,R]

|f(x, s)|dx+ εn∥u − un∥,

where R = ∥u∥C([0,1]) + 1. By (12) and the fact that {un} is bounded in H1
0 (0, 1), we have

lim
n

(a+ b∥un∥2)(u, u − un)H1
0

= 0.
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By using (13), the second term in the last expression also tends to 0. Since εn → 0+, {un}
converges strongly to u in H1

0 (0, 1). This completes the proof. �

Proposition 5.2. If the function f satisfies (h1) and (h2), then the following assertions are
true:

(i) there exist constants α > 0 and ρ > 0 such that I(u) ≥ α for all ∥u∥ = ρ;
(ii) there exists e ∈ H1

0 (0, 1) with ∥e∥ > ρ and I(e) ≤ 0.

Proof. (i) By condition (h2), there exist ε > 0 and ρ > 0 such that

F (x, t)
|t|2

≤ a

2
− ε for |t| ≤ ρ.

Therefore, by using the compactness embedding of H1
0 (0, 1) in L2(0, 1) with ∥u∥L2(0,1) ≤

∥u∥H1(0,1), we have

I(u) =
a

2
∥u∥2 +

b

4
∥u∥4 −

 1

0

F (x, u(x))dx

≥ a

2
∥u∥2 +

b

4
∥u∥4 −

 1

0

a
2

− ε


|u(x)|2dx

=
a

2
∥u∥2 +

b

4
∥u∥4 −

a
2

− ε


∥u∥2
L2

≥ a

2
∥u∥2 +

b

4
∥u∥4 −

a
2

− ε


∥u∥2

= ε∥u∥2 +
b

4
∥u∥4.

For ∥u∥ = ρ we have α = ερ2 + b
4ρ

4 > 0, and the assertion of (i) holds true.

(ii) The condition (h1) implies that the function t → F (x,t)
|t|ν is increasing for t ≥ M and

decreasing for t ≤ −M as one can see by differentiation, so there exists r1 > 0 such that
F (x, t) ≥ r1|t|ν , for x ∈ [0, 1], |t| ≥ M . Also the function t → F (x, t) is continuous on
the compact [0, 1] × [−M,M ], then there exists r2 > 0 such that F (x, t) ≥ −r2, for x ∈
[0, 1], |t| ≤ M, so

F (x, t) ≥ r1|t|ν − r2, for x ∈ [0, 1], t ∈ R.

Fix u0 ∈ K \ {0}. Letting u = su0 (s > 0), we have that

I(su0) =
a

2
s2∥u0∥2 +

b

4
s4∥u0∥4 −

 1

0

F (x, su0(x))dx

≤ a

2
s2∥u0∥2 +

b

4
s4∥u0∥4 −

 1

0

(r1sν |u0|ν − r2)dx

=
a

2
s2∥u0∥2 +

b

4
s4∥u0∥4 − r1s

ν ∥u0∥ν
Lν + r2.



Existence of positive solutions for a variational inequality of Kirchhoff type 135

Since ν > 4 we obtain that I(su0) → −∞ as s → +∞. Thus, it is possible to take s so
large such that for e = su0, we have ∥e∥ > ρ and I(e) ≤ 0. The proof of the proposition is
achieved. �

By Proposition 5.1, the functional I satisfies the (PSZ)c-condition for every c ∈ R, and
I(0) = 0. By Proposition 5.2 it follows that there exist constants α, ρ > 0 and e ∈ H1

0 (0, 1)
such that I satisfies all the conditions of Theorem 2.2. Therefore,

c2 = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

is a critical value of I with c2 ≥ α > 0, where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e} .

We remark that the critical point u2 ∈ H1
0 (0, 1) associated to the critical value c2 cannot be

trivial because I(u2) = c2 > 0 = I(0). By Proposition 3.1, we conclude that u2 is a solution
of (P ).

Example 5.1. Let f : [0, 1] × R −→ R be defined by f(x, t) = 1
1+x2

a
2 t(1 + t2)et2 . As we

will show, it satisfies (h1) and (h2). We have F (x, t) = 1
1+x2

a
4 t

2et2 , and

6F (x, t) − tf(x, t) =
1

1 + x2

a

2
t2(2 − t2)et2 ≤ 0,

for all |t| ≥
√

2. So there exist ν = 6 > 4 and M =
√

2 > 0 such that

0 < νF (x, t) ≤ tf(x, t).

Moreover

lim sup
|t|→0

F (x, t)
|t|2

= lim sup
|t|→0

1
1 + x2

a

4
et2 =

a

4
<
a

2
.
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