Existence of positive solutions for a variational inequality of Kirchhoff type

Ouidad Frites, Toufik Moussaoui*
Department of Mathematics, Laboratory of Fixed Point Theory and Applications, E.N.S. Kouba, Algiers, Algeria

Received 9 October 2014; received in revised form 18 February 2015; accepted 19 February 2015
Available online 2 March 2015

Abstract

In the present paper, we study existence of nontrivial positive solutions for a Kirchhoff type variational inequality. Our approach is based on the non-smooth critical point theory for Szulkin-type functionals.

Keywords: Variational inequality; Critical point; Mountain pass theorem; Minimization; Szulkin-type functionals

1. Introduction

Variational inequalities describe phenomena from mathematical physics. They have applications in physics, mechanics, engineering, optimization, and elliptic inequalities, see, for example, [1-4] and [5].

The aim of this work is to study a Kirchhoff type variational inequality which is defined on a bounded interval $(0,1)$ by using a non-smooth critical point theory due to Szulkin. In [7], the author has proved a number of existence theorems for critical points of functionals which are not smooth. He has generalized some minimization and minimax methods in critical point theory to a class of functionals which are not necessarily continuous and has introduced a new concept of compactness which is suitable to study these kinds of problems.

In the present paper, by using a minimization principle and the Mountain pass theorem of Szulkin-type, we prove existence of positive solutions to a variational inequality of Kirchhofftype in a closed convex set.

Let $K=\left\{u \in H_{0}^{1}(0,1): u \geq 0\right\}$ be the closed convex set in the Sobolev space $H_{0}^{1}(0,1)$ and we consider the problem, denoted by (P) :

[^0]| | Production and hosting by Elsevier |
| :---: | :---: |

http://dx.doi.org/10.1016/j.ajmsc.2015.02.004
1319-5166 © 2015 King Saud University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Given $f:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ a continuous function and $a, b>0$, find $u \in K$ such that

$$
\begin{aligned}
& \left(a+b \int_{0}^{1}\left|u^{\prime}(x)\right|^{2} d x\right) \int_{0}^{1} u^{\prime}(x)\left(v^{\prime}(x)-u^{\prime}(x)\right) \mathrm{d} x \\
& \quad-\int_{0}^{1} f(x, u(x))(v(x)-u(x)) \mathrm{d} x \geq 0, \quad \forall v \in K
\end{aligned}
$$

Such kind of problems are called obstacle problems and they have been largely studied due to its physical applications. See, for example, the classical books Kinderlehrer and Stampacchia [4], Rodrigues [6] and Troianiello [8] and the references therein.

2. SZULKIN-TYPE FUNCTIONALS

Let X be a real Banach space and X^{*} its dual. Let E be a functional which is of class C^{1} and let $\psi: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ be a proper (i.e. $\psi \neq+\infty$), convex, lower semicontinuous functional. We say that $I=E+\psi$ is a Szulkin-type functional, see [7]. An element $u \in X$ is called a critical point of $I=E+\psi$ if

$$
\begin{equation*}
E^{\prime}(u)(v-u)+\psi(v)-\psi(u) \geq 0 \quad \text { for all } v \in X \tag{1}
\end{equation*}
$$

which is equivalent to

$$
0 \in E^{\prime}(u)+\partial \psi(u) \quad \text { in } X^{*}
$$

where $\partial \psi(u)$ is the subdifferential of the convex functional ψ at $u \in X$.
Definition 2.1. The functional $I=E+\psi$ satisfies the Palais-Smale condition at level $c \in \mathbb{R}$, denoted by $(P S Z)_{c}$ if every sequence $\left\{u_{n}\right\} \subset X$ such that $\lim _{n \rightarrow \infty} I\left(u_{n}\right)=c$ and

$$
\left\langle E^{\prime}\left(u_{n}\right), v-u_{n}\right\rangle_{X}+\psi(v)-\psi\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\| \quad \text { for all } v \in \mathrm{X},
$$

where $\varepsilon_{n} \rightarrow 0$, possesses a convergent subsequence.
Theorem 2.1 ([7]). Let X be a Banach space, $I=E+\psi: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ a Szulkin-type functional which is bounded below. If I satisfies the $(P S Z)_{c}$-condition for

$$
c=\inf _{u \in X} I(u),
$$

then c is a critical value.
Szulkin has proved the following version of the Mountain Pass theorem.
Theorem 2.2 ([7]). Let X be a Banach space, $I=E+\psi: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ a Szulkin-type functional and assume that
(i) $I(u) \geq \alpha$ for all $\|u\|=\rho$ for some $\alpha, \rho>0$, and $I(0)=0$;
(ii) there is $e \in X$ with $\|e\|>\rho$ and $I(e) \leq 0$.

If I satisfies the $(P S Z)_{c}$-condition for

$$
c=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} I(\gamma(t)),
$$

with

$$
\Gamma=\{\gamma \in C([0,1], X): \gamma(0)=0, \gamma(1)=e\}
$$

then c is a critical value of I and $c \geq \alpha$, i.e., there exists u^{*} in X such that $I^{\prime}\left(u^{*}\right)=0$ and $I\left(u^{*}\right)=c \geq \alpha$.

3. Main results

We now formulate the main results of this paper. We denote by F the function defined by $F(x, s)=\int_{0}^{s} f(x, t) \mathrm{d} t$.

Theorem 3.1. Let $f:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function which satisfies the following condition:
$\left(f_{1}\right)$ there exists $\beta>0$ such that

$$
\limsup _{|t| \rightarrow \infty} \frac{F(x, t)}{t^{2}} \leq \beta, \quad \text { uniformly with respect to } x \in[0,1] .
$$

Then the problem (P) has at least one solution $u \in K$.
Theorem 3.2. Let $f:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function which satisfies the following conditions:
$\left(h_{1}\right)$ There exists $\nu>4$ and $M>0$ such that

$$
0<\nu F(x, t) \leq t f(x, t) \quad \text { for }|t| \geq M, \forall x \in[0,1]
$$

$\left(h_{2}\right) \lim \sup _{|t| \rightarrow 0} \frac{F(x, t)}{|t|^{2}}<\frac{a}{2}$, uniformly with respect to $x \in[0,1]$.
Then the problem (P) has at least one nontrivial solution $u \in K$.
Remark 3.1. The hypotheses in Theorems 3.1 and 3.2 are respectively of sublinear and superlinear types, so they are natural conditions.

We define the functional $E: H_{0}^{1}(0,1) \longrightarrow \mathbb{R}$ by

$$
E(u)=\frac{1}{2} a\|u\|^{2}+\frac{1}{4} b\|u\|^{4}-\int_{0}^{1} F(x, u(x)) \mathrm{d} x .
$$

Because $f:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, by using the Lebesgue theorem on dominated convergence and the compact embedding of $H_{0}^{1}(0,1)$ in $C([0,1])$, we can prove easily that $E \in C^{1}\left(H_{0}^{1}(0,1), \mathbb{R}\right)$.

We define the indicator functional of the set K by

$$
\psi_{K}(u)= \begin{cases}0, & \text { if } u \in K \\ +\infty, & \text { if } u \notin K\end{cases}
$$

We remark that the functional ψ_{K} is convex, proper, and lower semicontinuous. So, $I=$ $E+\psi_{K}$ is a Szulkin-type functional.

Proposition 3.1. Every critical point $u \in H_{0}^{1}(0,1)$ of $I=E+\psi_{K}$ is a solution of (P).

Proof. Since $u \in H_{0}^{1}(0,1)$ is a critical point of $I=E+\psi_{K}$, we have

$$
E^{\prime}(u)(v-u)+\psi_{K}(v)-\psi_{K}(u) \geq 0, \quad \forall v \in H_{0}^{1}(0,1)
$$

Note that u belongs to K. For if this were not true we had $\psi_{K}(u)=+\infty$ and taking $v=0 \in K$ in the above inequality, we obtain a contradiction. We fix $v \in K$. Since

$$
\begin{aligned}
0 \leq E^{\prime}(u)(v-u)= & \left(a+b\|u\|^{2}\right) \int_{0}^{1} u^{\prime}(x)\left(v^{\prime}(x)-u^{\prime}(x)\right) \mathrm{d} x \\
& -\int_{0}^{1} f(x, u(x))(v(x)-u(x)) \mathrm{d} x
\end{aligned}
$$

the inequality is proved.

4. Proof of Theorem 3.1

We assume that the hypothesis of Theorem 3.1 is satisfied and prove the existence of a solution for the problem (P) by using Theorem 2.1.

Proposition 4.1. If the function f satisfies the hypothesis $\left(f_{1}\right)$, then $I=E+\psi_{K}$ is coercive and bounded from below in $H_{0}^{1}(0,1)$.

Proof. We have

$$
I(u)=E(u)=\frac{1}{2}\left(a\|u\|^{2}+\frac{1}{2} b\|u\|^{4}\right)-\int_{0}^{1} F(x, u(x)) \mathrm{d} x
$$

for every $u \in K$. By the hypothesis $\left(f_{1}\right)$, there exists $A>0$ such that $F(x, t) \leq \beta t^{2}$ for every $|t|>A$ and $x \in[0,1]$. By using the compactness embedding of $H_{0}^{1}(0,1)$ in $L^{2}[0,1]$, we obtain that $\|u\|_{L^{2}(0,1)} \leq\|u\|_{H_{0}^{1}(0,1)}$. Hence

$$
\begin{aligned}
I(u) & \geq \frac{1}{2} a\|u\|^{2}+\frac{1}{4} b\|u\|^{4}-\beta \int_{0}^{1} u^{2}(x) \mathrm{d} x \\
& =\frac{1}{2} a\|u\|^{2}+\frac{1}{4} b\|u\|^{4}-\beta\|u\|_{L^{2}}^{2} \\
& \geq \frac{1}{2} a\|u\|^{2}+\frac{1}{4} b\|u\|^{4}-\beta\|u\|^{2} \\
& =\left(\frac{1}{2} a-\beta\right)\|u\|^{2}+\frac{1}{4}\|u\|^{4},
\end{aligned}
$$

which implies that the functional $I=E+\psi_{K}$ is coercive. Therefore I is bounded from below in $H_{0}^{1}(0,1)$. If this is not true, there exists a sequence $\left\{u_{n}\right\}$ in $H_{0}^{1}(0,1)$ such that $\left\|u_{n}\right\| \rightarrow+\infty$ and $I\left(u_{n}\right) \rightarrow-\infty$, which is a contradiction with the coerciveness of I.

Proposition 4.2. If the function f satisfies $\left(f_{1}\right)$, then $I=E+\psi_{K}$ satisfies $(P S Z)_{c}$ for every $c \in \mathbb{R}$.

Proof. Let $c \in \mathbb{R}$ be fixed. Let $\left\{u_{n}\right\}$ be a sequence in $H_{0}^{1}(0,1)$ such that

$$
\begin{equation*}
I\left(u_{n}\right)=E\left(u_{n}\right)+\psi_{K}\left(u_{n}\right) \rightarrow c ; \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{\prime}\left(u_{n}\right)\left(v-u_{n}\right)+\psi_{K}(v)-\psi_{K}\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\|, \quad \forall v \in H_{0}^{1}(0,1) \tag{3}
\end{equation*}
$$

$\left\{\varepsilon_{n}\right\}$ a sequence in $[0, \infty)$ with $\varepsilon_{n} \rightarrow 0$. By (2), we obtain that the sequence $\left\{u_{n}\right\}$ is in K. By Proposition 4.1, since I is coercive on $H_{0}^{1}(0,1)$, the sequence $\left\{u_{n}\right\}$ is bounded in K. Because the sequence $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(0,1)$. Hence there exists a subsequence still denoted by $\left\{u_{n}\right\}$ which converges weakly in $H_{0}^{1}(0,1)$. So there exists $u \in H_{0}^{1}(0,1)$ such that

$$
\begin{array}{ll}
u_{n} \rightharpoonup u & \text { in } H_{0}^{1}(0,1) \\
u_{n} \rightarrow u & \text { in } L^{2}(0,1) \\
u_{n} \rightarrow u & \text { in } C([0,1]) \tag{6}
\end{array}
$$

As K is weakly closed, $u \in K$. Setting $v=u$ in (3), we obtain that

$$
\begin{aligned}
& \left(a+b\left\|u_{n}\right\|^{2}\right) \int_{0}^{1} u_{n}^{\prime}(x)\left(u^{\prime}(x)-u_{n}^{\prime}(x)\right) \mathrm{d} x \\
& \quad+\int_{0}^{1} f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) \mathrm{d} x \geq-\varepsilon_{n}\left\|u-u_{n}\right\|
\end{aligned}
$$

Therefore, for large $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\left(a+b\left\|u_{n}\right\|^{2}\right)\left\|u-u_{n}\right\|^{2} \leq & \left(a+b\left\|u_{n}\right\|^{2}\right) \int_{0}^{1} u^{\prime}(x)\left(u^{\prime}(x)-u_{n}^{\prime}(x)\right) \mathrm{d} x \\
& +\int_{0}^{1} f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) \mathrm{d} x+\varepsilon_{n}\left\|u-u_{n}\right\| \\
\leq & \left(a+b\left\|u_{n}\right\|^{2}\right)\left(u, u-u_{n}\right)_{H_{0}^{1}} \\
& +\left\|u-u_{n}\right\|_{L^{2}}\left(\int_{0}^{1}\left|f\left(x, u_{n}(x)\right)\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}+\varepsilon_{n}\left\|u-u_{n}\right\| .
\end{aligned}
$$

Since $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(0,1)$, it is also bounded in $C([0,1])$. Therefore, there exists a constant $M>0$ such that $\left\|u_{n}\right\|_{\infty} \leq M$, which together with the continuity of f implies that $\left|f\left(x, u_{n}(x)\right)\right| \leq M_{1}$ for some $M_{1}>0$. We obtain that

$$
\begin{align*}
\left(a+b\left\|u_{n}\right\|^{2}\right)\left\|u-u_{n}\right\|^{2} \leq & \left(a+b\left\|u_{n}\right\|^{2}\right)\left(u, u-u_{n}\right)_{H_{0}^{1}} \\
& +M_{1}\left\|u-u_{n}\right\|_{L^{2}}+\varepsilon_{n}\left\|u-u_{n}\right\| . \tag{7}
\end{align*}
$$

By (4) and the fact that $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(0,1)$, we have

$$
\lim _{n}\left(a+b\left\|u_{n}\right\|^{2}\right)\left(u, u-u_{n}\right)_{H_{0}^{1}}=0
$$

We conclude by (5) that the second term in (7) also converges to 0 . Since $\varepsilon_{n} \rightarrow 0^{+},\left\{u_{n}\right\}$ converges strongly to u in $H_{0}^{1}(0,1)$. This completes the proof.

By Proposition 4.2, the functional I satisfies the $(P S Z)_{c}$ condition, and by Proposition 4.1, the functional I is bounded from below. Therefore, the number

$$
c_{1}=\inf _{u \in H_{0}^{1}(0,1)} I(u)
$$

is a critical value of I by Theorem 2.1. It remains to apply Proposition 3.1 which concludes that the critical point $u_{1} \in H_{0}^{1}(0,1)$ which corresponds to c_{1}, is actually an element of K and a solution of the problem (P).

Example 4.1. Let $f:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x, t)=x\left(|t|^{\frac{1}{2}}+1\right)$. It satisfies $\left(f_{1}\right)$. Indeed, we have $F(x, t)=x\left(\frac{2}{3}|t|^{\frac{3}{2}}+t\right)$ and

$$
\frac{F(x, t)}{t^{2}}=\frac{x\left(\frac{2}{3}|t|^{\frac{3}{2}}+t\right)}{t^{2}}=x\left(\frac{2}{3|t|^{\frac{1}{2}}}+\frac{1}{t}\right)
$$

so

$$
\limsup _{|t| \rightarrow \infty} \frac{F(x, t)}{t^{2}}=0
$$

5. Proof of Theorem 3.2

We assume that all the hypotheses of Theorem 3.2 are satisfied. Now we prove the existence of a nontrivial solution for the problem (P) by using the Mountain Pass theorem of Szulkin type (see Theorem 2.2).

Proposition 5.1. If the function f satisfies $\left(h_{1}\right)$, then the functional $I=E+\psi_{K}$ satisfies $(P S Z)_{c}$ for every $c \in \mathbb{R}$.
Proof. Let $c \in \mathbb{R}$ be a fixed number. Let $\left\{u_{n}\right\}$ be a sequence in $H_{0}^{1}(0,1)$ such that

$$
\begin{equation*}
I\left(u_{n}\right)=E\left(u_{n}\right)+\psi_{K}\left(u_{n}\right) \rightarrow c \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{\prime}\left(u_{n}\right)\left(v-u_{n}\right)+\psi_{K}(v)-\psi_{K}\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\|, \quad \forall v \in H_{0}^{1}(0,1) \tag{9}
\end{equation*}
$$

where $\left\{\varepsilon_{n}\right\}$ is a sequence in $[0, \infty)$ with $\varepsilon_{n} \rightarrow 0$. By (8), we see that the sequence $\left\{u_{n}\right\}$ belongs to K. We put $v=2 u_{n}$ in (9) and obtain

$$
E^{\prime}\left(u_{n}\right)\left(u_{n}\right) \geq-\varepsilon_{n}\left\|u_{n}\right\|
$$

Therefore, we obtain that

$$
\begin{equation*}
a\left\|u_{n}\right\|^{2}+b\left\|u_{n}\right\|^{4}-\int_{0}^{1} f\left(x, u_{n}(x)\right) u_{n}(x) \mathrm{d} x \geq-\varepsilon_{n}\left\|u_{n}\right\| \tag{10}
\end{equation*}
$$

Because (8) is satisfied for large $n \in \mathbb{N}$

$$
\begin{equation*}
c+1 \geq \frac{1}{2} a\left\|u_{n}\right\|^{2}+\frac{b}{4}\left\|u_{n}\right\|^{4}-\int_{0}^{1} F\left(x, u_{n}(x)\right) \mathrm{d} x . \tag{11}
\end{equation*}
$$

By (h_{1}), we have

$$
\nu F(x, t)-t f(x, t) \leq c_{1} \quad \text { for } x \in[0,1], t \in \mathbb{R}
$$

Multiplying (10) by ν^{-1}, and by adding this to (11) and by using (h_{1}), for large $n \in \mathbb{N}$, we obtain that

$$
\begin{aligned}
c+1+\frac{1}{\nu}\left\|u_{n}\right\| \geq & a\left(\frac{1}{2}-\frac{1}{\nu}\right)\left\|u_{n}\right\|^{2}+b\left(\frac{1}{4}-\frac{1}{\nu}\right)\left\|u_{n}\right\|^{4} \\
& -\int_{0}^{1} F\left(x, u_{n}(x)\right)-\frac{1}{\nu} f\left(x, u_{n}(x)\right) u_{n}(x) \mathrm{d} x \\
\geq & a\left(\frac{1}{2}-\frac{1}{\nu}\right)\left\|u_{n}\right\|^{2}+b\left(\frac{1}{4}-\frac{1}{\nu}\right)\left\|u_{n}\right\|^{4} \\
& -\frac{1}{\nu} \int_{0}^{1} \nu F\left(x, u_{n}(x)\right)-f\left(x, u_{n}(x)\right) u_{n}(x) \mathrm{d} x \\
\geq & a\left(\frac{1}{2}-\frac{1}{\nu}\right)\left\|u_{n}\right\|^{2}+b\left(\frac{1}{4}-\frac{1}{\nu}\right)\left\|u_{n}\right\|^{4}-\frac{c_{1}}{\nu} .
\end{aligned}
$$

Since $\nu>4$ we deduce that the sequence $\left\{u_{n}\right\}$ is bounded in K. So there exists a subsequence which converges weakly in $H_{0}^{1}(0,1)$. We can assume that there exists $u \in$ $H_{0}^{1}(0,1)$ such that

$$
\begin{array}{ll}
u_{n} \rightharpoonup u & \text { in } H_{0}^{1}(0,1) \\
u_{n} \rightarrow u & \text { in } C([0,1]) \tag{13}
\end{array}
$$

As K is weakly closed, $u \in K$. When we put $v=u$ in (9), we obtain that

$$
\begin{aligned}
& \left(a+b\left\|u_{n}\right\|^{2}\right) \int_{0}^{1} u_{n}^{\prime}(x)\left(u^{\prime}(x)-u_{n}^{\prime}(x)\right) \mathrm{d} x \\
& \quad+\int_{0}^{1} f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) \mathrm{d} x \geq-\varepsilon_{n}\left\|u-u_{n}\right\|
\end{aligned}
$$

Hence, for large $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\left(a+b\left\|u_{n}\right\|^{2}\right)\left\|u-u_{n}\right\|^{2} \leq & \left(a+b\left\|u_{n}\right\|^{2}\right) \int_{0}^{1} u^{\prime}(x)\left(u^{\prime}(x)-u_{n}^{\prime}(x)\right) \mathrm{d} x \\
& +\int_{0}^{1} f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) \mathrm{d} x+\varepsilon_{n}\left\|u-u_{n}\right\| \\
\leq & \left(a+b\left\|u_{n}\right\|^{2}\right)\left(u, u-u_{n}\right)_{H_{0}^{1}}+\left\|u-u_{n}\right\|_{C([0,1])} \\
& \times \int_{0}^{1} \max _{s \in[-R, R]}|f(x, s)| \mathrm{d} x+\varepsilon_{n}\left\|u-u_{n}\right\|
\end{aligned}
$$

where $R=\|u\|_{C([0,1])}+1$. By (12) and the fact that $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(0,1)$, we have

$$
\lim _{n}\left(a+b\left\|u_{n}\right\|^{2}\right)\left(u, u-u_{n}\right)_{H_{0}^{1}}=0
$$

By using (13), the second term in the last expression also tends to 0 . Since $\varepsilon_{n} \rightarrow 0^{+},\left\{u_{n}\right\}$ converges strongly to u in $H_{0}^{1}(0,1)$. This completes the proof.

Proposition 5.2. If the function f satisfies $\left(h_{1}\right)$ and $\left(h_{2}\right)$, then the following assertions are true:
(i) there exist constants $\alpha>0$ and $\rho>0$ such that $I(u) \geq \alpha$ for all $\|u\|=\rho$;
(ii) there exists $e \in H_{0}^{1}(0,1)$ with $\|e\|>\rho$ and $I(e) \leq 0$.

Proof. (i) By condition (h_{2}), there exist $\varepsilon>0$ and $\rho>0$ such that

$$
\frac{F(x, t)}{|t|^{2}} \leq \frac{a}{2}-\varepsilon \quad \text { for }|t| \leq \rho .
$$

Therefore, by using the compactness embedding of $H_{0}^{1}(0,1)$ in $L^{2}(0,1)$ with $\|u\|_{L^{2}(0,1)} \leq$ $\|u\|_{H^{1}(0,1)}$, we have

$$
\begin{aligned}
I(u) & =\frac{a}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-\int_{0}^{1} F(x, u(x)) \mathrm{d} x \\
& \geq \frac{a}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-\int_{0}^{1}\left(\frac{a}{2}-\varepsilon\right)|u(x)|^{2} \mathrm{~d} x \\
& =\frac{a}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-\left(\frac{a}{2}-\varepsilon\right)\|u\|_{L^{2}}^{2} \\
& \geq \frac{a}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-\left(\frac{a}{2}-\varepsilon\right)\|u\|^{2} \\
& =\varepsilon\|u\|^{2}+\frac{b}{4}\|u\|^{4} .
\end{aligned}
$$

For $\|u\|=\rho$ we have $\alpha=\varepsilon \rho^{2}+\frac{b}{4} \rho^{4}>0$, and the assertion of (i) holds true.
(ii) The condition $\left(h_{1}\right)$ implies that the function $t \rightarrow \frac{F(x, t)}{|t|^{\nu}}$ is increasing for $t \geq M$ and decreasing for $t \leq-M$ as one can see by differentiation, so there exists $r_{1}>0$ such that $F(x, t) \geq r_{1}|t|^{\nu}, \quad$ for $x \in[0,1],|t| \geq M$. Also the function $t \rightarrow F(x, t)$ is continuous on the compact $[0,1] \times[-M, M]$, then there exists $r_{2}>0$ such that $F(x, t) \geq-r_{2}, \quad$ for $x \in$ $[0,1],|t| \leq M$, so

$$
F(x, t) \geq r_{1}|t|^{\nu}-r_{2}, \quad \text { for } x \in[0,1], t \in \mathbb{R}
$$

Fix $u_{0} \in K \backslash\{0\}$. Letting $u=s u_{0}(s>0)$, we have that

$$
\begin{aligned}
I\left(s u_{0}\right) & =\frac{a}{2} s^{2}\left\|u_{0}\right\|^{2}+\frac{b}{4} s^{4}\left\|u_{0}\right\|^{4}-\int_{0}^{1} F\left(x, s u_{0}(x)\right) \mathrm{d} x \\
& \leq \frac{a}{2} s^{2}\left\|u_{0}\right\|^{2}+\frac{b}{4} s^{4}\left\|u_{0}\right\|^{4}-\int_{0}^{1}\left(r_{1} s^{\nu}\left|u_{0}\right|^{\nu}-r_{2}\right) \mathrm{d} x \\
& =\frac{a}{2} s^{2}\left\|u_{0}\right\|^{2}+\frac{b}{4} s^{4}\left\|u_{0}\right\|^{4}-r_{1} s^{\nu}\left\|u_{0}\right\|_{L^{\nu}}^{\nu}+r_{2} .
\end{aligned}
$$

Since $\nu>4$ we obtain that $I\left(s u_{0}\right) \rightarrow-\infty$ as $s \rightarrow+\infty$. Thus, it is possible to take s so large such that for $e=s u_{0}$, we have $\|e\|>\rho$ and $I(e) \leq 0$. The proof of the proposition is achieved.

By Proposition 5.1, the functional I satisfies the $(P S Z)_{c}$-condition for every $c \in \mathbb{R}$, and $I(0)=0$. By Proposition 5.2 it follows that there exist constants $\alpha, \rho>0$ and $e \in H_{0}^{1}(0,1)$ such that I satisfies all the conditions of Theorem 2.2. Therefore,

$$
c_{2}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t)),
$$

is a critical value of I with $c_{2} \geq \alpha>0$, where

$$
\Gamma=\{\gamma \in C([0,1], X): \gamma(0)=0, \gamma(1)=e\} .
$$

We remark that the critical point $u_{2} \in H_{0}^{1}(0,1)$ associated to the critical value c_{2} cannot be trivial because $I\left(u_{2}\right)=c_{2}>0=I(0)$. By Proposition 3.1, we conclude that u_{2} is a solution of (P).

Example 5.1. Let $f:[0,1] \times \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x, t)=\frac{1}{1+x^{2}} \frac{a}{2} t\left(1+t^{2}\right) e^{t^{2}}$. As we will show, it satisfies $\left(h_{1}\right)$ and $\left(h_{2}\right)$. We have $F(x, t)=\frac{1}{1+x^{2}} \frac{a}{4} t^{2} e^{t^{2}}$, and

$$
6 F(x, t)-t f(x, t)=\frac{1}{1+x^{2}} \frac{a}{2} t^{2}\left(2-t^{2}\right) e^{t^{2}} \leq 0
$$

for all $|t| \geq \sqrt{2}$. So there exist $\nu=6>4$ and $M=\sqrt{2}>0$ such that

$$
0<\nu F(x, t) \leq t f(x, t)
$$

Moreover

$$
\limsup _{|t| \rightarrow 0} \frac{F(x, t)}{|t|^{2}}=\limsup _{|t| \rightarrow 0} \frac{1}{1+x^{2}} \frac{a}{4} e^{t^{2}}=\frac{a}{4}<\frac{a}{2} .
$$

References

[1] A. Friedman, Variational Principles and Free Boundary Value Problems, Wiley-Interscience, New York, 1983.
[2] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.
[3] S. Karamardian, Generalized complementarity problem, J. Optim. Theory Appl. 8 (1971) 161-168.
[4] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
[5] O. Mancino, G. Stampacchia, Convex programming and variational inequalities, J. Optim. Theory Appl. 9 (1972) 3-23.
[6] J.F. Rodrigues, Obstacle problems in mathematica physics, in: Mathematics Studies, vol. 134, Elsevier, 1987.
[7] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (2) (1986) 77-109.
[8] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems, The University Series in Mathematics, 1987.

[^0]: * Corresponding author.

 E-mail addresses: ofrites @yahoo.fr (O. Frites), moussaoui@ens-kouba.dz (T. Moussaoui).
 Peer review under responsibility of King Saud University.

