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Abstract. In the present paper, we study existence of nontrivial positive solutions for a
Kirchhoff type variational inequality. Our approach is based on the non-smooth critical point
theory for Szulkin-type functionals.
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1. INTRODUCTION

Variational inequalities describe phenomena from mathematical physics. They have
applications in physics, mechanics, engineering, optimization, and elliptic inequalities, see,
for example, [1-4] and [5].

The aim of this work is to study a Kirchhoff type variational inequality which is defined on
a bounded interval (0, 1) by using a non-smooth critical point theory due to Szulkin. In [7],
the author has proved a number of existence theorems for critical points of functionals which
are not smooth. He has generalized some minimization and minimax methods in critical point
theory to a class of functionals which are not necessarily continuous and has introduced a new
concept of compactness which is suitable to study these kinds of problems.

In the present paper, by using a minimization principle and the Mountain pass theorem of
Szulkin-type, we prove existence of positive solutions to a variational inequality of Kirchhoff-
type in a closed convex set.

Let K = {u € H}(0,1) : u > 0} be the closed convex set in the Sobolev space H}(0,1)
and we consider the problem, denoted by (P):
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Given f : [0,1] x R — R a continuous function and a,b > 0, find v € K such that

(-t 01 o (a) P / () () — o ()

- /0 flz,u(z))(v(z) —u(z))de >0, YveK.

Such kind of problems are called obstacle problems and they have been largely studied due
to its physical applications. See, for example, the classical books Kinderlehrer and Stampac-
chia [4], Rodrigues [6] and Troianiello [8] and the references therein.

2. SZULKIN-TYPE FUNCTIONALS

Let X be a real Banach space and X * its dual. Let E be a functional which is of class C'*
and let ) : X — R U {+o0} be a proper (i.e. ¢ # +00), convex, lower semicontinuous
functional. We say that I = E + 1) is a Szulkin-type functional, see [7]. An element v € X
is called a critical point of I = E + ¢ if

E'(uw)(v—u)+¢(w)—(u) >0 forallve X, (D)
which is equivalent to
0€ E'(u) +0¢(u) inX¥,

where 01)(u) is the subdifferential of the convex functional ¢ at u € X.

Definition 2.1. The functional I = E + 1) satisfies the Palais—Smale condition at level ¢ € R,
denoted by (PSZ). if every sequence {u,,} C X such that lim,,_,o I(u,) = cand

(E'(un),v — tun)x + () —P(un) > —enllv — un|| forallv e X,

where €,, — 0, possesses a convergent subsequence.

Theorem 2.1 ([7]). Let X be a Banach space, I = E+1 : X — RU{+00} a Szulkin-type
functional which is bounded below. If I satisfies the (PSZ).-condition for

°= I,

then c is a critical value.

Szulkin has proved the following version of the Mountain Pass theorem.

Theorem 2.2 ([7]). Let X be a Banach space, I = E+1 : X — RU{+00} a Szulkin-type
functional and assume that

(i) I(u) > o for all ||u|| = p for some o, p > 0, and 1(0) = 0;
(ii) there is e € X with ||e]| > p and I(e) < 0.
If I satisfies the (PSZ).-condition for

c= inf sup I(v(%)),
Juf, b (v(¥))
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with
I'={y€C([0,1], X) : v(0) = 0,7(1) = e},
then c is a critical value of I and ¢ > «, i.e., there exists u* in X such that I'(u*) = 0 and
Iu*)=c>a.

3. MAIN RESULTS

We now formulate the main results of this paper. We denote by F' the function defined by
F(z,s)= [ f(z, t)dt.

Theorem 3.1. Let f : [0, 1] x R — R be a continuous function which satisfies the following
condition:
(f1) there exists 3 > O such that
F(z,t
lim sup (;’ ) < B, uniformly with respect to x € [0, 1].

[t|—o0

Then the problem (P) has at least one solution u € K.

Theorem 3.2. Let f : [0,1] X R — R be a continuous function which satisfies the following
conditions:
(hy) There exists v > 4 and M > 0 such that

0 < vF(z,t) <tf(xz,t) for|t| > M, V€ [0,1].

(h2) limsup)y_ < g, uniformly with respect to x € [0, 1].

Then the problem (P) has at least one nontrivial solution u € K.

F(x,t)
[tI?

Remark 3.1. The hypotheses in Theorems 3.1 and 3.2 are respectively of sublinear and
superlinear types, so they are natural conditions.

We define the functional £ : H}(0,1) — R by
1 o L4 !
B(u) = gallull]” + Zb]lul — ; F(z,u(z))dz.

Because f : [0,1] x R — R is continuous, by using the Lebesgue theorem on dominated
convergence and the compact embedding of H}(0,1) in C([0,1]), we can prove easily that
E € C'(HL0,1),R).

We define the indicator functional of the set K by

0, ifuek
Yrc(u) = {+oo, ifug K.

We remark that the functional i is convex, proper, and lower semicontinuous. So, I =
E + 9y is a Szulkin-type functional.

Proposition 3.1. Every critical point u € H(0,1) of I = E + 9k is a solution of (P).
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Proof. Since u € Hj(0,1) is a critical point of I = E + 1)k, we have
E'(u)(v —u) + Y (v) — Y (u) >0, Vo€ H}0,1).

Note that u belongs to K. For if this were not true we had ¥ i (u) = +oo and taking
v = 0 € K in the above inequality, we obtain a contradiction. We fix v € K. Since

0< E'(u)(v—u)=(at bllﬂlF)A u'(z)(V'(2) — ' (2))dz

1
- [ fe @) - u@)is,
0
the inequality is proved. [
4. PROOF OF THEOREM 3.1

We assume that the hypothesis of Theorem 3.1 is satisfied and prove the existence of a
solution for the problem (P) by using Theorem 2.1.

Proposition 4.1. If the function f satisfies the hypothesis (f1), then I = E + 1k is coercive
and bounded from below in HZ (0, 1).

Proof. We have
1 2 1 4 '
I(u) = E(u) = 3 allul® + §b||u|| — ; F(z,u(x))dz
for every u € K. By the hypothesis (f1), there exists A > 0 such that F(x,t) < 3t2 for

every [t| > A and z € [0, 1]. By using the compactness embedding of HJ (0,1) in L2[0, 1],
we obtain that [|ul[z2(0,1) < ||l g1 (0,1)- Hence

1 1 !
1) = galul + Pl =5 [ (o)da
0
1 1
= Sollul® + 3l — Bl
1 1
> SollulP + Jbllull — Bl

1 1
(30-8) bl + g1,

which implies that the functional I = FE + 1k is coercive. Therefore I is bounded from
below in H}(0,1). If this is not true, there exists a sequence {u,,} in H}(0,1) such that
|lun|| — +o0 and I(u,) — —oo, which is a contradiction with the coerciveness of I. [

Proposition 4.2. If the function f satisfies (f1), then I = E+1 satisfies (PSZ). for every
ceR

Proof. Let ¢ € R be fixed. Let {u,,} be a sequence in H}(0, 1) such that

I(un) = E(un) + Yk (un) — ¢ 2)
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and
E'(un)(v = un) + ¥x(v) = ¥x (un) 2 —enllv — unll, Vv € Hg(0,1), 3)

{en} a sequence in [0, c0) with £, — 0. By (2), we obtain that the sequence {u,,} is in K.
By Proposition 4.1, since I is coercive on H}(0, 1), the sequence {u,,} is bounded in K.
Because the sequence {u,} is bounded in H} (0, 1). Hence there exists a subsequence still
denoted by {u,} which converges weakly in HJ(0,1). So there exists u € HJ(0,1) such
that

u, —u in H3(0,1); C))
Uy, — U in L2(O, 1), &)
u, — u in C([0,1]). (6)

As K is weakly closed, u € K. Setting v = wu in (3), we obtain that
1
(a+bllun?) / U, () (W' (2) — up, (2))dz
0

+ /01 flzyun (@) (un(x) —u(z))de > —en|lu — ug|.

Therefore, for large n € N, we have
1
(a+bllunl®)lu — unl? < (a+bllua|?) / u' () (v (2) — up, (z))dx
0

< (a+ b||un||2)(u,u - un)Hé

1
2

1
gl ( / If(%un(m))Ide) t el — unll

Since {u,,} is bounded in H{ (0, 1), it is also bounded in C([0, 1]). Therefore, there exists a
constant M > 0 such that ||u, ||cc < M, which together with the continuity of f implies that
|f(z,un(x))| < M for some My > 0. We obtain that

(@ + bllunl*)lu = unl* < (@ + bllua|*) (uw, w — un)

+ Mi||u — un||zz + €nllu — unl|- @)
By (4) and the fact that{u,, } is bounded in H}(0, 1), we have

lim(a + b||un ||) (u, u — Un) gz = 0.

We conclude by (5) that the second term in (7) also converges to 0. Since &, — 07, {u,}
converges strongly to u in H (0, 1). This completes the proof. [
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By Proposition 4.2, the functional I satisfies the (PSZ). condition, and by
Proposition 4.1, the functional I is bounded from below. Therefore, the number

cp= inf I(u)
u€HJ(0,1)
is a critical value of I by Theorem 2.1. It remains to apply Proposition 3.1 which concludes
that the critical point u; € H{(0,1) which corresponds to ¢1, is actually an element of K
and a solution of the problem (P).

Example 4.1. Let f : [0,1] x R — R be defined by f(z,t) = z(]t|2 4 1). It satisfies (f; ).
Indeed, we have F'(z,t) = x(%|t|% +t) and

Fz,t)  o(3[t]? +1) ( 2 1)’

T L
SO
F(x,t
lim sup (z,8) =0.
12
[t|—o0

5. PROOF OF THEOREM 3.2

We assume that all the hypotheses of Theorem 3.2 are satisfied. Now we prove the
existence of a nontrivial solution for the problem (P) by using the Mountain Pass theorem of
Szulkin type (see Theorem 2.2).

Proposition 5.1. If the function f satisfies (h1), then the functional I = E + )k satisfies
(PSZ). forevery c € R.

Proof. Let ¢ € R be a fixed number. Let {u,, } be a sequence in H} (0, 1) such that

I{un) = E(un) + ¥x (un) = ¢ (®)
and

E'(un)(v = un) + ¥x(v) = ¥x (un) > —enllv = unll, Vv € Hg(0,1), ©)

where {e,} is a sequence in [0, c0) with €, — 0. By (8), we see that the sequence {u,}
belongs to K. We put v = 2u,, in (9) and obtain

E/(un)(un) > _En”unH

Therefore, we obtain that

1
allun|® + bllun | * — /0 (@, un (2))un (2)de > —en |[un]]. (10)

Because (8) is satisfied for large n € N

1 1
e+ 12 Zalunl + 2l - / F (@, un(2))da. (1
0
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By (h1), we have
vE(z,t) —tf(x,t) < ¢y forz €0,1],t € R.

Multiplying (10) by »—1 and by adding this to (11) and by using (h;), for large n € N, we

obtain that
1 1 9 1 1 4
a n b . n
a(2 ) eall? + (4 ) e
1

Y

1
¢t 1+ —|lunl
1%

(Y vV
=)

N /N
DN | = N |
\ |
= =
SN— N—
=3 e
S 3
o T
+ +

o> > N
7N N
NG IS

\ |

| = | =
N——— N——
3 s
2 3
S S

\

‘Q

A,

Since v > 4 we deduce that the sequence {u,} is bounded in K. So there exists a
subsequence which converges weakly in H}(0,1). We can assume that there exists u €
H}(0,1) such that

u, —u in Hy(0,1); (12)
u, — u in C([0,1]). (13)

As K is weakly closed, © € K. When we put v = w in (9), we obtain that
1
(a+ bHunHQ)/ Uy, () (' () — up, (2))de
0

+ /01 f (@, un (@) (un(2) = u(z))de > —en flu = un |-

Hence, for large n € N, we have
1
(a+bllunl®)[lu — unl?* < (a+bllua|?) / u'(z) (v () — up, (z))dz
0

+ /01 f@,un(x))(un () — u(z))de + eplju — uy ||

< (a+ bllun 1) (v = un) gy + [l = wnlloon)

1
< [ a1 9)lde +eallu— ],
0 SE[-R,R]

where R = [|u|¢(jo,17) + 1. By (12) and the fact that {u, } is bounded in H{(0,1), we have

lim(a + b|jun ||*) (u, v — Un) gz = 0.
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By using (13), the second term in the last expression also tends to 0. Since £, — 07, {u,}
converges strongly to u in H} (0, 1). This completes the proof. [

Proposition 5.2. If the function [ satisfies (h1) and (hs), then the following assertions are
true:

(i)  there exist constants o > 0 and p > 0 such that I(u) > o for all ||u|| = p;
(ii)  there exists e € H((0,1) with |le|| > p and I(e) < 0.

Proof. (i) By condition (h2), there exist e > 0 and p > 0 such that

F(x,t)
t]?

<

Therefore, by using the compactness embedding of H{(0,1) in L*(0,1) with [ju/|z2¢0,1) <
||uHH1(071), we have

a b !
) = Glhl? + 3l = | Plou(@)as
a b a
> g~ [ (32 e
> SllP + el = [ (5 —e) o)
b
= Sl + Zlul* = (5 — <) lull
b
> Sl + Zllul* = (5 = <) lull?
b
= ellul® + Zllull".

For [|u|| = p we have a = £p? + 2p* > 0, and the assertion of (i) holds true.

(ii) The condition (k) implies that the function ¢ — F‘(tT;t) is increasing for ¢ > M and

decreasing for ¢t < —M as one can see by differentiation, so there exists 7; > 0 such that
F(x,t) > rt|”, forx € [0,1],[¢t| > M. Also the function ¢ — F'(z,t) is continuous on
the compact [0, 1] x [—M, M], then there exists o > 0 such that F(x,t) > —ry, forz €
[0,1],|t| < M, so

F(z,t) > rt|” —re, forzel0,1],t €R.

Fix ug € K \ {0}. Letting u = sug (s > 0), we have that

a b 1
I(sug) = 552\\u0||2 + 154Hu0||4 7/0 F(x, sug(z))dz
a b !
< Go%llunlP + g5t ol = [ (115" fuol” — r2)do
2 4 o

a

2

b
5% [luoll® + 184Hu0||4 —r18”[Jug |7y + 72
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Since v > 4 we obtain that I(sug) — —oo as s — +o0. Thus, it is possible to take s so
large such that for e = sug, we have ||e|]| > p and I(e) < 0. The proof of the proposition is
achieved. [

By Proposition 5.1, the functional I satisfies the (PSZ).-condition for every ¢ € R, and
I(0) = 0. By Proposition 5.2 it follows that there exist constants v, p > 0 and e € H}(0,1)
such that I satisfies all the conditions of Theorem 2.2. Therefore,

— inf I
co ng”gl[gﬁ (v(1)),

is a critical value of I with ¢ > o > 0, where
I'={y € C([0,1], X) : 7(0) = 0,7(1) = e}

We remark that the critical point us € H{ (0, 1) associated to the critical value cz cannot be
trivial because I (uz) = ¢ > 0 = I(0). By Proposition 3.1, we conclude that us is a solution
of (P).

Example 5.1. Let f : [0,1] x R — R be defined by f(x t) = 1+ T 2t(1 4+ t2)et”. As we

will show, it satisfies (h1) and (hs). We have F'(z,t) = 1+9c2 “t%e * and
1 2
6F (x,t) — tf(z,t 2—1%)e" <0
(,0) = tf(2,1) = 75 52— e <0,

for all [t| > /2. So there exist v = 6 > 4 and M = /2 > 0 such that

0 < vF(z,t) <tf(x,t).

Moreover
F(z,t) 1 a, a a
limsup ———~ = limsup —— —e"” = - < —.
t—o [t t—o 1+x%4 4 2
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