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Abstract. We give an existence result of a renormalized solution for a class of non-

linear parabolic equations @bðx;uÞ
@t � divðaðx; t; u;ruÞÞ þ gðuÞjrujp ¼ f , where the right

side belongs to L1(X · (0,T)), b(x,u) is an unbounded function of u and

�div(a(x, t,u,�u)) is a Leray–Lions type operator with growth Œ�u Œp�1 in �u, but

without any growth assumption on u. The function g is just assumed to be continuous

on R and satisfying a sign condition.
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1. INTRODUCTION

Let X be a bounded open subset of RN; ðN P 1Þ, T > 0 and let Q:¼X · (0,T).
We prove the existence of a renormalized solution for a class of nonlinear parabolic
equations of the type:
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@bðx; uÞ
@t

� divðaðx; t; u;ruÞÞ þ gðuÞjrujp ¼ f inQ; ð1:1Þ

bðx; uÞðt ¼ 0Þ ¼ bðx; u0Þ in X; ð1:2Þ
u ¼ 0 on @X� ð0;TÞ: ð1:3Þ
In Problem 1.1, 1.2 and 1.3, the framework is the following: the data f and b(x,u0) are
respectively in L1(Q) and L1(X). The operator �div(a(x,t,u,�u)) is a Leray–Lions oper-
ator which is coercive and which grows like Œ�uŒp�1 with respect to �u, but which is
not restricted by any growth condition with respect to u (see assumptions 2.4, 2.5
and 2.6 of Section 2). The function g is just assumed to be continuous on R and satis-
fying a sign condition.

We use in this paper the framework of renormalized solutions. This notion was
introduced by Lions and Di Perna [25] for the study of Boltzmann equation (see also
Lions [21] for a few applications to fluid mechanics models), (see also [7,24] for nonlin-
ear parabolic equations with natural growth). For elliptic versions of 1.1, 1.2 and 1.3
we refer to [12] and [22,23]. The equivalent notion of entropy solutions has been devel-
oped independently by [1] for the study of nonlinear elliptic problems.

The existence and uniqueness of renormalized solution of 1.1, 1.2 and 1.3 have been
proved in [26,27] in the case where g = 0 and a(x,t,s,n) is replaced by a(x,t,s,n) + U(s).
Where b(x,u) = u, g = 0 and f is replaced by f+ div(F), the existence and uniqueness
of renormalized solution have been proved in [5,24]. In the case where a(x,t,s,n) is inde-
pendent of s and g = 0, existence and uniqueness of renormalized solution have been
established in [3,4]. In the case where b(x,u) = b(u), g = 0 (where b(r) is strictly increas-
ing function of r that can possibly blow up for some finite r0) and a(x,t,s,n) is indepen-
dent of s and linear with respect to n, existence and uniqueness of renormalized
solution have been established in [9], and in the case where b(x,u) = b(u) (where b is
a maximal monotone graph on R) and a(x,t,s,n) is independent of t, existence and
uniqueness of renormalized solution have been established in [8], (see also [7,15–17]).

The paper is organized as follows : Section 2 is devoted to specify the assumptions
on b, a(x,t,s,n), g, f and u0 needed in the present study and to give the definition of a
renormalized solution of 1.1, 1.2 and 1.3. In Section 3 (Theorem 3.1) we establish the
existence of such a solution.

2. ASSUMPTIONS ON THE DATA AND DEFINITION OF A RENORMALIZED SOLUTION

Throughout the paper, we assume that the following assumptions hold true: X is a
bounded open set on RN (N P 1) T > 0 is given and we set Q= X · (0,T).

Hypothesis. [H1]
b;
@b

@s
: X� R! R ð2:1Þ
are Carathéodory functions such that, for almost every x 2 X, b(x,s) is a strictly
increasing C1-function with b(x,0) = 0.
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For any K> 0, there exist kK > 0 and a function AK in L1(X), such that
kK 6
@bðx; sÞ
@s

6 AKðxÞ; ð2:2Þ
for almost every x 2 X, for every s such that Œs Œ 6 K.
For any s 2 R, the function @bðx;sÞ

@s
belongs to L1

locðXÞ and for any K> 0, there exists a
function BK in Lp(X) such that
rx

@bðx; sÞ
@s

� �����
���� 6 BKðxÞ; ð2:3Þ
for almost every x 2 X, for every s such that Œs Œ 6 K.

Hypothesis. [H2]
a : Q� R� RN ! RN ð2:4Þ
is a Carathéodory function such that: for any K > 0, there exist bK > 0 and a function
CK in Lp0(X) such that
aðx; t; s; nÞn P ajnjp; ð2:5Þ

jaðx; t; s; nÞj 6 CKðx; tÞ þ bKjnj
p�1
; ð2:6Þ
for almost every (t,x) 2 Q, for every s such that Œs Œ 6 K, and for every n 2 RN.
½aðx; t; s; nÞ � aðx; t; s; n0Þ�½n� n0� > 0; ð2:7Þ

for any s 2 R, for any ðn; n0Þ 2 R2N and for almost every (x,t) 2 Q.

Hypothesis. [H3]
g : R! R is a continuous function such that s gðsÞP 0 8s 2 R: ð2:8Þ
f is an element ofL1ðQÞand f P 0: ð2:9Þ
u0 is an element of L1ðXÞ such that u0 P 0 and bðx; u0Þ 2 L1ðXÞ: ð2:10Þ
Remark 2.1. As already mentioned in the introduction, Problem 1.1, 1.2 and 1.3 does
not admit, in general a weak solution under assumptions (2.1)–(2.9) and (2.10) (even
when b(x,u) = u), since the growth of a(x,t,u,�u) with respect to u is not controlled
(so that the term a(x,t,u,�u) is not defined as a distribution in general, even when u
belongs Lpð0;T;W1;p

0 ðXÞ).

Throughout the paper, TK denotes the truncation function at height K P 0,
TK(r) = min(K,max(r, �K)). We denote by: hn(s) = Tn+1(s) � Tn(s).

The definition of a renormalized solution for Problem 1.1, 1.2 and 1.3 is given
below.
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Definition 2.2. A measurable function u defined on Q is a renormalized solution of
Problem 1.1, 1.2 and 1.3 if
TKðuÞ 2 Lp 0;T;W1;p
0 ðXÞ

� �
8K P 0; u P 0 a:e:; and bðx; uÞ 2 L1ð0;T;L1ðXÞÞ;

ð2:11Þ
gðuÞjrujp 2 L1ðQÞ; ð2:12ÞZ
fðt;xÞ2Q; n6uðx;tÞ6nþ1g

aðx; t; u;ruÞrudx dt! 0 as n! þ1; ð2:13Þ
and if, for every function S in W2;1ðRÞ such that S0 has a compact support, we have
@bSðx; uÞ
@t

� div S0ðuÞaðx; t; u;ruÞð Þ þ S00ðuÞaðx; t; u;ruÞru

þ S0ðuÞgðuÞjrujp

¼ fS0ðuÞ in D0ðQÞ; ð2:14Þ

bSðx; uÞðt ¼ 0Þ ¼ bSðx; u0Þ in X; ð2:15Þ

where bSðx; rÞ ¼

R r

0

@bðx;sÞ
@s

S0ðsÞds.

Eq. (2.14) is formally obtained through pointwise multiplication of Eq. (1.1) by
S0(u). Recall that for a renormalized solution, due to (2.11), each term in (2.14) has
a meaning in L1ðQÞ þ Lp0 ð0;T;W�1;p0 ðXÞÞ (see e.g. [4–8]. . . ).

We have
@bSðx; uÞ
@t

belongs to Lp0 ð0;T;W�1;p0 ðXÞÞ þ L1ðQÞ: ð2:16Þ
The properties of S, assumptions (2.2) and (2.3) imply that if K is such that supp
S0 � [�K,K]
jrbSðx; uÞj 6 kAKkL1ðXÞjDTKðuÞjkS0kL1ðRÞ þ KkS 0kL1ðRÞBKðxÞ ð2:17Þ
and
bSðx; uÞ belongs to Lp 0;T;W1;p
0 ðXÞ

� �
: ð2:18Þ
Then (2.16) and (2.18) imply that bS(x,u) belongs to C0([0,T];L1(X)) (for a proof of this
trace result see [24]), so that the initial condition (2.15) makes sense.

Remark 2.3. For every S 2W1;1ðRÞ, nondecreasing function such that supp
S0 � [�K,K], in view of (2.2) we have
kKjSðrÞ � Sðr0Þj 6 jbSðx; rÞ � bSðx; r0Þj 6 kAKkL1ðXÞjSðrÞ � Sðr0Þj; ð2:19Þ
for almost every x 2 X and for every r; r0 2 R.
3. EXISTENCE RESULT

This section is devoted to establish the following existence theorem.
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Theorem 3.1. Under assumptions 2.5,2.6,2.7,2.8,2.9 and 2.10 there exists at least a
renormalized solution u of Problem 1.1,1.2 and 1.3.

Proof. The proof is divided into 8 steps. In Step 1, we introduce an approximate prob-
lem. Step 2 is devoted to establish a few a priori estimates. In Step 3, the limit u of the
approximate solutions ue is introduced with b(x,u) belonging to L1(0,T;L1(X)) and
(2.11) is established. Then the main argument consists in proving the strong conver-
gence of the truncations TK(u

e) and this is done through a monotonicity method (as
in [6–8,24],. . .). To this end, we define a time regularization TK (u)l of the field TK (u)
in Step 4 and we also state Lemma 3.2 which allows us to control the parabolic con-
tribution that arises in this method. In Step 5, we deal with the elliptic terms by treating
separately the positive part of TK (u

e) � TK (u)l. We prove an energy estimate (Lemma
3.3) which is a key point for the monotonicity arguments which are developed in Step
6. In Step 6 we prove the monotonicity estimate and the strong Lp convergence of
�TK(u

e). In Step 7, we prove that u satisfies (2.13). At last, Step 8 is devoted to prove
that u satisfies (2.14) and (2.15) of Definition 2.2

Step 1. For e > 0 fixed, let us introduce the following regularizations of the data
beðx; sÞ ¼ bðx;T1
e
ðsÞÞÞ þ e s a:e: in X; 8s 2 R; ð3:1Þ

aeðx; t; s; nÞ ¼ aðx; t;T1
e
ðsÞ; nÞ a:e: in Q; 8s 2 R; 8n 2 RN; ð3:2Þ

geðsÞ ¼ g T1
e
ðsÞ

� �
; ð3:3Þ

f e 2 Lp0 ðQÞ; f e P 0 satisfies f e ! f in L1ðQÞ as e tends to 0; ð3:4Þ
ue
0 2 C10 ðXÞ; ue

0 P 0 satisfies be x; ue
0

� �
! bðx; u0Þ in L1ðXÞ as e tends to 0: ð3:5Þ
Let us now consider the following regularized problem.
@beðx; ueÞ
@t

� divðaeðx; t; ue;rueÞÞ þ gðueÞjruejp ¼ f e in Q; ð3:6Þ

ue ¼ 0 on ð0;TÞ � @X; ð3:7Þ
beðx; ueÞðt ¼ 0Þ ¼ be x; ue

0

� �
in X: ð3:8Þ
In view of (3.1), be satisfies (2.1) and due to (2.2), we have for e > 0
e 6
@beðx; sÞ
@s

6 A1
e
ðxÞ þ e and rx

@beðx; sÞ
@s

� �����
���� 6 B1

e
ðxÞ a:e: in X;

8s 2 R:
In view of (3.2), ae satisfies (2.5) and (2.7), and due to (2.6) we have
jaeðx; t; s; nÞj 6 C1
e
ðx; tÞ þ b1

e
jnjp�1 a:e: in Q; 8s 2 R; 8n 2 RN:
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As a consequence, with the above regularizations, proving existence of a weak solution
ue 2 Lp 0;T;W1;p

0 ðXÞ
� �

and ue P 0 a.e. of 3.6, 3.7 and 3.8 follows from a straightfor-
ward adaptation of the techniques developed in [2,14].

Step 2. The estimates derived in this step rely on usual techniques for problems of
type 3.6, 3.7 and 3.8 and we just sketch the proof of them (the reader is referred
to [3–6,9,11] or to [12,22,23] for elliptic versions of 3.6, 3.7 and 3.8).

Using TK(u
e) as a test function in (3.6) leads to
Z
X
be
Kðx; ueÞðtÞdxþ

Z t

0

Z
X
aeðx; t; ue;rueÞrTKðueÞdx ds

þ
Z t

0

Z
X
geðueÞjruejpTKðueÞdx ds

¼
Z t

0

Z
X
f eTKðueÞdx dsþ

Z
X
be
Kðx; ue

0Þdx; ð3:9Þ
for almost every t in (0,T), and where be
Kðx; rÞ ¼

R r

0
TKðsÞ @beðx;sÞ

@s
ds. Since ge satisfies the

sign condition, we have
Z t

0

Z
X
geðueÞjru�jpTKðueÞdx ds P 0; ð3:10Þ
for almost any t 2 (0,T).
Due to the definition of be

K we have
0 6

Z
X
be
K x; ue

0

� �
dx 6 K

Z
X
be x; ue

0

� �
dx:
Since ae satisfies (2.5), the behaviors of f e and ue
0 permit to deduce from (3.9) that
TKðueÞ is bounded in Lp 0;T;W1;p
0 ðXÞ

� �
ð3:11Þ
independently of e for any K P 0.
Proceeding as in [4,9,5], we have for any S 2W2;1ðRÞ such that S0 has a compact

support (supp S0 � [�K,K])
be
Sðx; ueÞ is bounded in Lp 0;T;W1;p

0 ðXÞ
� �

ð3:12Þ
and
@be
Sðx; ueÞ
@t

is bounded in L1ðQÞ þ Lp0 ð0;T;W�1;p0 ðXÞÞ ð3:13Þ
independently of e. Indeed, we have first
rbe
Sðx; ueÞ

�� �� 6 kAKkL1ðXÞjDTKðueÞjkS0kL1ðRÞ
þ KkS0kL1ðRÞBKðxÞ a:e: in Q: ð3:14Þ
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As a consequence of (3.11) and (3.14) we then obtain (3.12). To show that (3.13) holds
true, we multiply the equation for ue in (3.6) by S0(ue) to obtain
@be
Sðx; ueÞ
@t

¼ divðS0ðueÞaeðx; t; ue;rueÞÞ � S00ðueÞaeðx; t; ue;rueÞrue

� geðueÞjruejpS0ðueÞ þ feS0ðueÞ in D0ðQÞ; ð3:15Þ
where be
Sðx; rÞ ¼

R r

0
S0ðsÞ @beðx;sÞ

@s
ds. Since supp S0 and supp S00 are both included in

[�K,K], ue may be replaced by TK(u
e) in each of these terms. As a consequence, each

term in the right hand side of (3.15) is bounded either in Lp0 ð0;T;W�1;p0 ðXÞÞ or in
L1(Q) which shows that (3.13) holds true.

Now for fixed K> 0: ae(x,t,TK (u
e),�TK(u

e)) = a(x,t,TK (u
e),�TK (u

e)) a.e. in Q as
soon as e < 1

K, while assumption (2.6) gives
jaeðx; t;TKðueÞ;rTKðueÞÞj 6 CKðt; xÞ þ bKjrTKðueÞjp�1;
where bK > 0 and CK 2 Lp0 ðQÞ. In view (3.11), we deduce that,
aeðx; t;TKðueÞ;rTKðueÞÞ is bounded in ðLp0 ðQÞÞN; ð3:16Þ
independently of e for e < 1
K
.

Step 3. Arguing again as in [4–7,9,24] estimates (3.12) and (3.13) imply that, for a
subsequence still indexed by e,

b ðx; ueÞ converges to v almost every where in Q: ð3:17Þ
e
Since b�1 is continuous (3.17) shows that (3.16),
ue converges to u ¼ b�1ðvÞ almost every where in Q; ð3:18Þ

and (3.11) and (3.16) then give
TKðueÞ converges weakly to TKðuÞ in Lpð0;T;W1;p
0 ðXÞÞ; ð3:19Þ

hnðueÞ* hnðuÞ weaklyin Lpð0;T;W1;p
0 ðXÞÞ; ð3:20Þ

aeðx; t;TKðueÞ;DTKðueÞÞ* rK weakly in ðLp0 ðQÞÞN; ð3:21Þ
Under the sign condition on the function g, the fact that b(x,u) belongs to
L1(0,T;L1(X)) is very standard as well as the following behavior of the energy (using
the admissible test function (Tn+1 � Tn)(u

e) in (3.6))
lim
n!þ1

lim
e!0

Z
fn6ue6nþ1g

aeðx; t; ue;rueÞruedx dt ¼ 0: ð3:22Þ

Step 4. This step is devoted to establish Lemma 3.2 below which is the original part
of the present article. The estimates given in this lemma allows us to perform the
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monotonicity method which will be developed in Step 5 and Step 6. Let us notice
that similar lemmas have been established in [8] (see Lemmas 2.1 and 2.3), where
Stefan’s type problems are investigated, but that here they cannot be used as such
because of the term g(u) Œ�u Œp in Eq. (1.1).

For K P 0 fixed, we will use the now usual time regularization of the function TK (u)
introduced in [20] (see Lemma 6 and Propositions 3 and 4) and more recently
extensively exploited to solve a few nonlinear evolution problems with L1 or measure
data (see e.g. [10,18]).

Let vl
0

� �
l be a sequence of functions defined on X such that
vl
0 2 L1ðXÞ \W1;p

0 ðXÞ for all l > 0; ð3:23Þ
kvl

0kL1ðXÞ 6 K 8l > 0; ð3:24Þ

vl
0 ! TKðu0Þ a:e: in X and

1

l
kvl

0kLpðXÞ ! 0; as l! þ1: ð3:25Þ
Existence of such a subsequence vl
0ð Þl is easy to establish (see e.g., [19]). For fixed

K P 0 and l > 0, let us consider the unique solution TKðuÞl 2 L1ðQÞ \ Lp

0;T;W1;p
0 ðXÞ

� �
of the monotone problem:
@TKðuÞl
@t

þ lðTKðuÞl � TKðuÞÞ ¼ 0 in D0ðQÞ; ð3:26Þ

TKðuÞlðt ¼ 0Þ ¼ vl
0 in X: ð3:27Þ
Remark that due to (3.26), we have for l > 0 and K P 0,
@TKðuÞl
@t

2 Lp 0;T;W1;p
0 ðXÞ

� �
: ð3:28Þ
The behavior of TK (u)l as l fi +1 is investigated in [20] (see also [18,19]) and we just
recall here that (3.26) and (3.27) imply that
TKðuÞl ! TKðuÞ a:e: in Q in L1ðQÞ weak I and strongly in Lp 0;T;W1;p
0 ðXÞ

� �
;

ð3:29Þ

as l fi +1 with
kTKðuÞlkL1ðQÞ 6 max kTKðuÞkL1ðQÞ; kv
l
0kL1ðXÞ

� �
6 K ð3:30Þ
for any l and any K P 0.
We also introduce a sequence of increasing C1ðRÞ-functions Sn such that
SnðrÞ ¼ r for jrj 6 n; supp S 0n
� �

� ½�ðnþ 1Þ; nþ 1�; kS 00n kL1ðRÞ 6 1;
for any n P 1. We recall that
be;Snðx; rÞ ¼
Z r

0

@beðx; sÞ
@s

S0nðsÞds ð3:31Þ
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At last we will use the function UkðsÞ ¼ seks2 for k > 0 which has been introduced
in [13] in order to deal with term g(u) Œ�u Œp. In what follows, we denote by w(e,l)
and w(e,l,n) quantities such that
lim sup
l!þ1

lim sup
e!0

wðe; lÞ ¼ 0; lim sup
n!þ1

lim sup
l!þ1

lim sup
e!0

wðe; l; nÞ ¼ 0:
The main estimates are given in the following lemma.

Lemma 3.2.

We have, for any K> 0 and any integer n such that k < n + 1
Z T

0

@be;Snðx; ueÞ
@t

; ðT� tÞðTKðueÞ � TKðuÞlÞ
þ

	 

dt P wðe; lÞ ð3:32Þ
and for any k > 0,
Z T

0

@beðx; ueÞ
@t

; ðT� tÞUkðue � TKðuÞlÞ
�

	 

dt 6 wðe; lÞ ð3:33Þ
where Æ , æ denotes the duality pairing between L1ðXÞ þW�1;p0 ðXÞ and L1ðXÞ \W1;p
0 ðXÞ.

Proof. Let n and K be fixed such that K < n + 1. Defining ueðtÞ ¼ ue
0 for t < 0 (see

(3.5)), we have
Xe;l ¼
R T

0

be;Sn ðx;ueÞ
@t

; ðT� tÞðTKðueÞ �TKðuÞlÞ
þ

D E
dt

¼ lim
l!0

R T

0
ðT� tÞ

R
X

be;Sn ðx;ueðtÞÞ�be;Sn ðx;ueðt�lÞÞ
l

h i
� ðTKðueÞ �TKðuÞlÞ

þ
dx dt: ð3:34Þ
Now since be;Snðx; :Þ is nondecreasing the following inequality holds true for all real
numbers z1 P 0 and z2 P 0 and for a.e. t and x
R z2
z1

@be;Sn ðx;zÞ
@z
ðTKðzÞ � TKðuÞlðt; xÞÞ

þ
dz

6 ðbe;Sn
ðx; z2Þ � be;Snðx; z1ÞÞðTKðz2Þ � TKðuÞlðt; xÞÞ

þ
: ð3:35Þ
Then (3.34) gives
Xe;l P
1

l

Z
Q

ðT� tÞ
Z ueðtÞ

ueðt�lÞ

@be;Snðx; zÞ
@z

ðTKðzÞ � TKðuÞlðt; xÞÞ
þ
dz dx dtþ xðlÞ

¼ Ye;l;l þ xðlÞ; ð3:36Þ
where limlfi0x(l) = 0. In what follows we pass to the limsup in the right hand side of
(3.36) as tends to 0; e tends to 0 and l tends to +1. To this end let us set for
t 2 ½0;T�; z 2 R and almost any x 2 X
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F e;lðt; x; zÞ ¼ @be;Snðx; zÞ
@z

ðTKðzÞ � TKðuÞlðt; xÞÞ
þ
;

Ge;lðs; t; xÞ ¼
Z ueðsÞ

0

F e;lðt; x; zÞdz;
and
He;lðt; l; xÞ ¼
Z t

t�l
Ge;lðs; tÞds:
Remark that F e,l(t,x,z) P 0 so that since ue is nonnegative, Ge,l(s,t,x) P 0
and He,l(t,l,x) P 0. With these notations the definition of Ye,l,l (see (3.36))
leads to
Ye;l;l ¼
1

l

Z
X
ðT� tÞHe;lðt; l; xÞdx� 1

l

Z
X
THe;lð0; l; xÞdx

� 1

l

Z
Q

Z t

t�l
ðT� tÞ @G

e;l

@t
ðs; tÞds dx dt

P � 1

l

Z
X
THe;lð0; l; xÞdx� 1

l

Z
Q

Z t

t�l
ðT� tÞ @G

e;l

@t
ðs; tÞds dx dt: ð3:37Þ
Now
He;lð0; l; xÞ ¼
Z 0

�l
Ge;lðs; tÞds ¼ l

Z ue
0

0

F e;lðt; x; zÞdz
so that using the definition of Fe and (3.35)
He;lð0; l; xÞ 6 l

Z
X
ðbe;Sn

ðx; ue
0Þ � be;Snðx; 0ÞÞ TK ue

0

� �
� TK vl

0ð Þ
� �þ

dx: ð3:38Þ
Due to the convergences of ue
0 and vl

0 to u0 we obtain
lim sup
l!0

lim sup
e!0

lim sup
l!þ1

� 1

l
He;lð0; l; xÞ

� �
P 0: ð3:39Þ
As far as the last term in (3.37) is concerned, we have
Ze;l;l ¼ 1

l

Z
Q

Z t

t�l
ðT� tÞ @G

e;l

@t
ðs; tÞds dx dt

¼ 1

l

Z
Q

ðT� tÞ
Z t

t�l

Z ueðsÞ

0

@Fe;l

@t
ðt; x; zÞdz dx dt

¼
Z
Q

ðT� tÞ
Z ueðtÞ

0

@Fe;l

@t
ðt; x; zÞdz dx dtþ xðlÞ: ð3:40Þ
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Using the definition of F e,l gives
Ze;l;l ¼ �
Z
Q

ðT� tÞ
Z ueðtÞ

0

@be;Sn
ðx; zÞ
@z

sgþðTKðzÞ � TKðuÞlÞ

�
@TKðuÞl
@t

dz dx dtþ xðlÞ; ð3:41Þ
and with the definition of TK (u)l it follows that
Ze;l;l ¼ l
Z
Q

ðT� tÞ
Z ueðtÞ

0

@be;Snðx; zÞ
@z

sgþðTKðzÞ � TKðuÞlÞðTKðuÞl

� TKðuÞÞdz dx dtþ xðlÞ: ð3:42Þ
Now since indeed
@be;Sn ðx;zÞ

@z
¼ 0 for z > n + 1, ue(t) can be replaced by Tn+1(u

e)(t)

in the above expression of Ze,l,l and this allows to pass to the limit as e tends to 0.
It gives
Ze;l;l ¼ l
Z
Q

Z Tnþ1ðuðtÞÞ

0

@bSnðx; zÞ
@z

sgþðTKðzÞ � TKðuÞlÞðTKðuÞl

� TKðuÞÞdz dx dtþ xðl; eÞ: ð3:43Þ
For n + 1 > K, in the above integral the integrand is equal to 0 except for the (z,x,t)’s
such that TK (u)l(t,x) < TK (z) 6 TK (Tn+1(u(x,t))) = TK ((u(x,t)) in which case it is
negative. As a consequence, we get for n + 1 > K and for any l > 0
lim sup
l!0

lim sup
e!0

� 1

l

Z
Q

ðT� tÞ
Z t

t�l

@Ge;l

@t
ðs; tÞds dx dt

� �
P 0: ð3:44Þ
The definition (3.34) of Xe,l together with the inequalities 3.36, 3.37, 3.39 and 3.44
show that (3.32) holds true.

We carry on by proving (3.33). We have
Ue;l¼
Z T

0

@be;Sn
ðx;ueÞ
@t

;ðT� tÞUk ue�TKðuÞl
� ��	 


dt

¼
Z T

0

Z
X
ðT� tÞ be;Sn

ðx;ueðtÞÞ�be;Snðx;ueðt� lÞÞ
l

� �
Ukðue�TKðuÞlÞ

�
dxdtþxðlÞ:

ð3:45Þ
Since the function Uk(z � TK(u)l)
� is non-increasing with respect to z, the following

inequality holds true for all real numbers z1 P 0 and z2 P 0 and for a.e. t and x
Z z2

z1

@be;Snðx; zÞ
@z

Ukðz� TKðuÞlðx; tÞÞ
�
dz P ðbe;Sn

ðx; z2Þ

� be;Snðx; z1ÞÞUkðz2 � TKðuÞlðx; tÞÞ
�
;
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so that (3.45) gives
Ue;l
6

1

l

Z
Q

ðT� tÞ
Z ueðtÞ

ueðt�lÞ

@be;Snðx; zÞ
@z

Ukðz� TKðuÞlðx; tÞÞ
�
dz dx dt

þ xðlÞ
¼ Ve;l;l þ xðlÞ; ð3:46Þ
In what follows we pass to the limsup in the right hand side of (3.46) as tends to
0, e tends to 0 and l tends to +1. To this end let us set for t 2 [0,T], z 2 R and almost
any x 2 X
Re;lðt; x; zÞ ¼ @be;Snðx; zÞ
@z

Ukðz� TKðuÞlðx; tÞÞ
�
;

T e;lðs; t; xÞ ¼
Z ueðsÞ

TKðuÞlðtÞ
Re;lðt; x; zÞdz;
and
Ze;lðt; l; xÞ ¼
Z t

t�l
T e;lðs; t; xÞds:
With these notations the definition of Ve,l,l (see (3.36)) leads to
Ve;l;l ¼
1

l

Z T

0

ðT� tÞ
Z

X

Z ueðtÞ

TKðuÞlðtÞ
Re;lðt; x; zÞdz dx dt

� 1

l

Z T

0

ðT� tÞ
Z

X

Z ueðt�lÞ

TKðuÞlðtÞ
Re;lðt; x; zÞdz dx dt

¼ 1

l

Z T

0

ðT� tÞ
Z

X
T e;lðt; t; xÞdx dt

� 1

l

Z T

0

ðT� tÞ
Z

X
T e;lðt� l; t; xÞdx dt; ð3:47Þ
or equivalently
Ve;l;l ¼
1

l

Z
Q

ðT� tÞ @Z
e;l

@t
ðt; l; xÞdx dt� 1

l

Z
Q

Z t

t�l

@T e;l

@t
ðs; t; xÞds dx dt: ð3:48Þ
Integrating by parts the first term in (3.48) gives
Ve;l;l ¼
1

l

Z
Q

Ze;lðt; l; xÞdx dt� T

l

Z
Q

Z e;lð0; l; xÞdx dt

� 1

l

Z
Q

Z t

t�l

@Te;l

@t
ðs; t; xÞds dx dt: ð3:49Þ
According to the definition of Re,l, T e,l and Ze,l we obtain using also Uk(0) = 0,
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Ve;l;l ¼
1

l

Z
Q

Z t

t�l
T e;lðs; t; xÞds dx dt� T

Z
X

Z ue
0

v
l
0

Re;lð0; x; zÞdz dx

� 1

l

Z
Q

Z t

t�l

Z ueðsÞ

TKðuÞlðtÞ

@be;Snðx; zÞ
@z

Ukðz� TKðuÞlðx; tÞÞ
�vfz6TKðuÞlðx;tÞg

�
@TKðuÞl
@t

ðt; xÞds dx dt ð3:50Þ
As far as the first term in (3.50) is concerned, we have (using again Uk(z � TK(u)l)
�= 0

if z > K)
1

l

Z
Q

Z t

t�l
Te;lðs; t; xÞds dx dt ¼ 1

l

Z
Q

Z t

t�l

�
Z TKðueðsÞÞ

TKðuÞlðtÞ
@be;Snðx; zÞ@zUk z� TKðuÞlðx; tÞ

� ��
ds dx dt

¼
Z
Q

Z TKðueðtÞÞ

TKðuÞlðtÞ

@be;Snðx; zÞ
@z

Ukðz� TKðuÞlðx; tÞÞ
�
dx dtþ xðlÞ:
Due to the strong convergence of TK (u
e) to TK (u) (i.e. in L1(Q)) as e tends to 0, to the

strong convergence of TK (u)l to TK (u) as l tends to infinity and to the uniform
bounded character of

@be;Sn ðx;zÞ
@z

with respect to e, it follows that
1

l

Z
Q

Z t

t�l
T e;lðs; t; xÞds dx dt ¼ xðl; e; lÞ: ð3:51Þ
Similarly for the second term in (3.50), the strong convergence of TKðue
0Þ to TK (u0) (i.e.

in L1(Q)) as e tends to 0 and the strong convergence of vl
0 to u0 in L1(Q) as l tends to

+1 gives
Z
X

Z ue
0

v
l
0

Re;lð0; x; zÞdz dx ¼ xðe; lÞ: ð3:52Þ
In view of the definition of TK (u)l, the third term in (3.50) is equal to
We;l;l ¼ �
1

l

Z
Q

Z t

t�l

Z TKðueðsÞÞ

TKðuÞlðtÞ

� @be;Sn
ðx; zÞ
@z

U0kðz� TKðuÞlðx; tÞÞ
�vfz6TKðuÞlðx;tÞglðTKðuÞ � TKðuÞlÞ

� ðt; xÞds dx dt:
Passing to the limit as l tends to 0 and then as e tends to 0 gives
We;l;l ¼ �
Z
Q

Z TKðuðtÞÞ

TKðuÞlðtÞ

@bSnðx; zÞ
@z

U0kðz� TKðuÞlðx; tÞÞ
�vfz6TKðuÞlðx;tÞglðTKðuÞ

� TKðuÞlÞðt; xÞds dx dtþ xðl; eÞ:
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Since bSnðx; :Þ and Uk are nondecreasing functions, we have
We;l;l 6 xðl; eÞ: ð3:53Þ

Gathering together 3.45, 3.46, 3.50, 3.51 and 3.52 finally shows that (3.33) holds true.
h

Step 5. In this step we prove the following Lemma which is the key point for the
monotonicity arguments that are developed in Step 6.
Lemma 3.3. The subsequence of ue defined in Step 3 satisfies for any K P 0
Z
Q

ðT� tÞaeðx; t; ue;rueÞrðTKðueÞ � TKðuÞlÞ
þ
dx dt 6 wðe; lÞ ð3:54Þ
and
 Z
fue6TKðuÞlg

ðT� tÞaeðx; t; ue;rueÞrðue � TKðuÞlÞdx dt ¼ wðe; lÞ ð3:55Þ
Proof. For K> 0, we choose We = (T � t)(TK (u
e) � TK (u)l)

+ as a test function in
(3.6), we obtain
Z T

0

@beðx; ueÞ
@t

; We

	 

dtþ

Z T

0

Z
X
aeðx; t; ue;rueÞrW edx dt

þ
Z T

0

Z
X
geðueÞW ejruejp dx dt ¼

Z T

0

Z
X
f eW e dx dt: ð3:56Þ
We use (3.32) and since ge(u
e) is positive, we easily obtain
Z

Q

ðT� tÞaeðx; t; ue;rueÞrðTKðueÞ � TKðuÞlÞ
þ
dx dt

6

Z
Q

f eW e dx dtþ wðe; lÞ: ð3:57Þ
Thanks to 3.4, 3.18, 3.29 and 3.57 we obtain (3.54).
Let us prove (3.55). Using (T � t)Uk(u

e � TK(u)l)
� as a test function in (3.6)

gives
Z T

0

@beðx; ueÞ
@t

; ðT� tÞUk ue � TKðuÞl
� ��	 


dt

þ
Z
Q

ðT� tÞaeðx; ue;rueÞrUkðue � TKðuÞlÞ
�
dx dt

þ
Z
Q

ðT� tÞgeðueÞUk ue � TKðuÞl
� ��

jruejp dx dt

¼
Z
Q

ðT� tÞfeUkðue � TKðuÞlÞ
�
dx dt: ð3:58Þ
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Upon applying (3.33) of Lemma 3.2 to the first term of (3.58), we obtain
Z
fue6TKðuÞlg

ðT� tÞaeðx; ue;rueÞrðue � TKðuÞlÞU0kðue � TKðuÞlÞ
�
dx dt

6

Z
Q

ðT� tÞgeðueÞUkðue � TKðuÞlÞ
�jruejp dx dt

�
Z
Q

ðT� tÞfeUkðue � TKðuÞlÞ
�
dx dtþ wðe; lÞ

6
qK

a

Z
Q

ðT� tÞUkðue � TKðuÞlÞ
�
aeðx; ue;rueÞrue dx dtþ wðe; lÞ;

ð3:59Þ
for K 6 1
e and where qK = max06s6K(g(s)). It follows that
Z

fue6TKðuÞlg
ðT� tÞðaeðx;rueÞ � aeðx;rTKðuÞlÞÞrðue � TKðuÞlÞ U0k �

qK

a
Uk

� �
dx dt

¼
Z
fue6TKðuÞlg

ðT� tÞaeðx; t; ue;rueÞrðue � TKðuÞlÞ
�U0kðue � TKðuÞlÞ

�
dx dt

� qK

a

Z
Q

ðT� tÞUkðue � TKðuÞlÞ
�
aeðx; t; ue;rueÞrue dx dt

þ qK

a

Z
Q

ðT� tÞaeðx; t; ue;rueÞrTKðuÞlUkðue � TKðuÞlÞ
�
dx dt

þ
Z
Q

ðT� tÞaeðx; t; ue;rTKðuÞlÞrðue � TKðuÞlÞ
� U0k �

qK

a
Uk

� �
dx dt:

ð3:60Þ
For fixed l, the sequence
ae x; ue;rueð ÞUkðue � TKðuÞlÞ
� ¼ ae x;TK ueð Þ;rTK ueð Þð ÞUk TK ueð Þ � TK uð Þl

� ��
;

weakly converges in Lp0 ðQÞN, as e tends to zero so that (using also (3.18))
qK

a

Z
Q

ðT� tÞae x; t; ue;rueð ÞrTKðuÞlUkðue � TKðuÞlÞ
�
dx dt

¼ qK

a

Z
Q

ðT� tÞaðx;TKðuÞ;rTKðuÞÞrTKðuÞlUkðTKðuÞ � TKðuÞlÞ
�
dx dtþ wðeÞ:

ð3:61Þ
Because TK (u)l converges to TK(u) strongly in Lp 0;T;W1;p
0 ðXÞ

� �
and almost every-

where in Q as l tends to infinity, we obtain
qK

a

Z
Q

ðT� tÞaeðx; t; ue;rueÞrTKðuÞlUkðue � TKðuÞlÞ
�
dx dt ¼ wðe; lÞ: ð3:62Þ
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Observe that
aeðx; t; ue;rTKðuÞlÞrðue � TKðuÞlÞ
� ¼ aeðx; t;TKðueÞ;rTKðuÞlÞrðTKðueÞ � TKðuÞlÞ

�
;

a.e. in Q, and weakly converges in L1(Q), as e tends to zero, and the sequence
U0k �

qK
a Uk

� �
ðTKðueÞ � TKðuÞlÞ is uniformly bounded with respect to e and converges

a.e. in Q to U0k �
qK
a Uk

� �
ðTKðuÞ � TKðuÞlÞ, we have
Z
Q

ðT� tÞaeðx; t; ue;rTKðuÞlÞrðue � TKðuÞlÞ
� U0k �

qK

a
Uk

� �
dx dt

¼
Z
Q

ðT� tÞaðx;TKðuÞ;rTKðuÞlÞrðTKðuÞ � TKðuÞlÞ
� U0k �

qK

a
Uk

� �
dx dtþ wðeÞ;

ð3:63Þ
because TK (u)l converges to TK (u) strongly in Lp 0;T;W1;p
0 ðXÞ

� �
and almost every-

where in Q as l tends to infinity, we obtain
Z
Q

ðT� tÞaeðx; t; ue;rTKðuÞlÞrðue � TKðuÞlÞ
� U0k �

qK

a
Uk

� �
dx dt ¼ wðe; lÞ: ð3:64Þ
As a consequence of 3.59, 3.60, 3.62 and 3.64 we are in a position to deduce that
Z
fue6TKðuÞlg

ðT� tÞðaeðx;rueÞ � aeðx;rTKðuÞlÞÞrðue � TKðuÞlÞ U0k �
qK

a
Uk

� �
dx dt

6 wðe; lÞ; ð3:65Þ
Choosing k large enough so that U0kðsÞ �
qK
a UkðsÞ

� �
P 1

2
for every s 2 R, and we use the

weak convergence of TK (u
e), the strong convergence of TK (u)l in Lp 0;T;W1;p

0 ðXÞ
� �

, we
obtain
1

2

Z
fue6TKðuÞlg

ðT� tÞaeðx; t; ue;rueÞrðue � TKðuÞlÞdx dt

6

Z
fue6TKðuÞlg

ðT� tÞðaeðx; t; ue;rueÞ � aeðx; ue;rTKðuÞlÞÞrðue � TKðuÞlÞ

� U0k �
qK

a
Uk

� �
dx dt ¼ wðe; lÞ � ð3:66Þ
Step 6. In this step we prove the following monotonicity estimate and the strong
(Lp(Q))N convergence of �TK (u

e) as e tends to 0:
Lemma 3.4. The subsequence of ue defined in Step 3 satisfies for any K P 0
lim
e!0

Z
Q

ðT� tÞaðx;ue;rTKðueÞÞrTKðueÞdx dt 6

Z
Q

ðT� tÞrKrTKðuÞdx dt; ð3:67Þ

lim
e!0

Z
Q

ðT� tÞ½aðx;rTKðueÞÞ � aðx;rTKðuÞÞ�½rTKðueÞ �rTKðuÞ�dx dt ¼ 0; ð3:68Þ
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and
TKðueÞ ! TKðuÞ strongly in Lp 0;T;W1;p
0 ðXÞ

� �
: ð3:69Þ
Proof. Because (ue � TK(u)l)
�= (TK(u

e) � TK(u)l)
�, we can write
Z
Q

ðT� tÞaeðx; t; ue;rTKðueÞÞrðTKðueÞ � TKðuÞlÞdx dt

¼
Z
Q

ðT� tÞaeðx; t; ue;rTKðueÞÞrðTKðueÞ � TKðuÞlÞ
þ
dx dt

þ
Z
fue6TKðuÞlg

ðT� tÞaeðx; t; ue;rueÞrðue � TKðuÞlÞdx dt ð3:70Þ
Thanks to 3.21, 3.54 and 3.55 and since TK(u)l strongly converges to TK(u) in
Lp 0;T;W1;p

0 ðXÞ
� �

, then it is possible to conclude (3.67).
The monotone character of a(x,t,s,n) together with the definition of rK and (3.67)

allow to conclude through the usual monotonicity argument that (3.68) holds true.

From (3.68) and due to the strict monotonicity of a(x,t,s,n), then it possible to
conclude (3.69) (see Lemma 5 [13] and Lemma 4 [6]). h
Step 7. In this step we prove that u satisfies (2.13). To this end, remark that for any
fixed n P 0 one has

Z

fðt;xÞ=n6juej6nþ1g

aeðx; t; ue;rueÞrue dx dt

¼
Z
Q

aeðx; t; ue;DueÞ½rTnþ1ðueÞ � rTnðueÞ�dx dt

¼
Z
Q

aðx; t;Tnþ1ðueÞ;rTnþ1ðueÞÞrTnþ1ðueÞdx dt

�
Z
Q

aðx; t;TnðueÞ;rTnðueÞÞrTnðueÞdx dt;
for e < 1
ðnþ1Þ. According to (3.69), one is at liberty to pass to the limit as e tends to 0 for

fixed n P 0 and to obtain
lim
e!0

Z
fðt;xÞ=n6juej6nþ1g

aeðx; t; ue;rueÞrue dx dt

¼
Z
Q

aðx; t;Tnþ1ðuÞ;rTnþ1ðuÞÞrTnþ1ðuÞdx dt

�
Z
Q

aðx; t;TnðuÞ;rTnðuÞÞrTnðuÞdx dt

¼
Z
fðt;xÞ=n6juj6nþ1g

aðx; t; u;ruÞru dx dt: ð3:71Þ
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Taking the limit as n tends to +1 in (3.71) and using the estimate (3.22) show that u
satisfies (2.13).

Step 8. In this step, u is shown to satisfy (2.14) and (2.15). Let S be a function in
W 2;1ðRÞ such that S0 has a compact support. Let K be a positive real number such
that supp S0 � [�K,K]. Pointwise multiplication of the approximate Eq. (3.6) by
S0(ue) leads to

@be ðx; ueÞ
S

@t
� divðS0ðueÞaeðx; t; ue;rueÞÞ þ S00ðueÞaeðx; t; ue;rueÞDue

þ S0ðueÞgeðueÞjruejp ¼ f eS0ðueÞ in D0ðQÞ; ð3:72Þ
where be
Sðx; rÞ ¼

R r

0

@beðx;sÞ
@s

S 0ðsÞds.
In what follows we pass to the limit as e tends to 0 in each term of (3.72).

qLimit of
@be

Sðx;u
eÞ

@t . Since S is bounded, and be
Sðx; ueÞ converges to bS (x,u) a.e. in Q and

in L1(Q) weak q, then
@be

Sðx;u
eÞ

@t converges to @bS ðx;uÞ
@t in D0(Q) as e tends to 0.

qLimit of – div(S0(ue)ae(x,t,u
e,� ue)). Since supp S0 � [�K,K], we have for

e < 1
K : S0ðueÞaeðx; t; ue;rueÞ ¼ S0ðueÞaeðx; t; T KðueÞ;rT KðueÞÞ a.e. in Q.

The pointwise convergence of ue to u as e tends to 0, the bounded character of S
and (3.69) of Lemma 3.4 imply that S0(ue)ae(x,t,TK (u

e), �TK(u
e)) converges

to S0(u)a(x,t,TK(u),�TK (u)) weakly in ðLp0 ðQÞÞN, as e tends to 0, because S0(u) = 0
for Œu Œ P K a.e. in Q, and the term S0(u)a(x,t,TK(u),� TK(u)) = S0(u)a(x,t,u,�u) a.e.
in Q.

qLimit of S00(ue) ae(x,t,u
e,�ue)� ue. Since supp S00 � [�K,K], we have for

e 6 1
K : S00ðueÞaeðx; t; ue;rueÞrue ¼ S00ðueÞaeðx; t; T KðueÞ;rT KðueÞÞrT KðueÞ a.e. in Q.

The pointwise convergence of S00(ue) to S00(u) as e tends to 0, the bounded character
of S00 and (3.69) of Lemma 3.4 allow to conclude that S00(ue)ae(u

e,� ue)�ue converges to
S00(u) a(x,t,TK (u),�TK (u))�TK (u) weakly in L1(Q), as e tends to 0, and S00(u)
a(x,t,TK (u),�TK (u))� TK(u) = S00(u)a(x,t,u,�u)�u a.e. in Q.

qLimit of S0(ue)ge(u
e)Œ�ue Œp. The pointwise convergence of S0(ue) to S0(u) as e tends

to 0, the bounded character of S and (3.69) of Lemma 3.4 allow to conclude
that S0(ue)ge(TK (u

e)) Œ�TK (u
e) Œp converges to S0(u)g(TK(u)) Œ�TK(u) Œp strongly in

L1(Q), as e tends to 0.

q Limit of f eS0(ue). Due to (3.4) and (3.18), we have f e S0(ue) converges to f S0(u)
strongly in L1(Q), as e tends to 0.

As a consequence of the above convergence result, we are in a position to
pass to the limit as e tends to 0 in Eq. (3.72) and to conclude that u satisfies
(2.14).
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It remains to show that bS(x,u) satisfies the initial condition (2.15). To this end,
firstly remark that, S0 has a compact support, we have be

Sðx; ueÞ is bounded in L1(Q).

Secondly, (3.72) and the above considerations on the behavior of the terms of this

equation show that
@be

Sðx;ueÞ
@t is bounded in L1ðQÞ þ Lp0 ð0;T;W�1;p

0 ðXÞÞ. As a conse-

quence, an Aubin’s type Lemma (see e.g., [28, Corollary 4]) implies that be
Sðx; ueÞ lies in

a compact set of C0([0,T];W�1,s(X)) for any s < inf p0; N
N�1

� �
. It follows that, on one

hand, be
Sðx; ueÞðt ¼ 0Þconverges to bS(x,u)(t = 0) strongly in W�1,s(X). On the order

hand, the smoothness of S implies that be
Sðx; ueÞðt ¼ 0Þ converges to bS(x,u)(t= 0)

strongly in Lq(X) for all q < +1. Due to (3.5), we conclude that
be
Sðx; ueÞðt ¼ 0Þ ¼ be

Sðx; ue
0Þ converges to bS(x,u)(t= 0) strongly in Lq(X). Then we

conclude that bS(x,u)(t = 0) = bS(x,u0) in X.

As a conclusion of Steps 3, 7 and 8, the proof of Theorem 3.1 is complete. h
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