Estimates for Monge–Ampère operators acting on positive plurisubharmonic currents

MONCEF TOUJANI

Institut Superieur des Sciences Appliquèes et de Technologie de Mateur, Route de Tabarka, 7030 Mateur, Tunisie

Received 1 February 2012; revised 10 August 2012; accepted 3 September 2012 Available online 23 September 2012

Abstract. Let $\widetilde{\Omega}$ be an open subset of $\mathbb{C}^N = \mathbb{C}^n \times \mathbb{C}^m$, let *T* be a positive plurisubharmonic (psh: meaning $dd^e T \ge 0$) current of bidegree (k, k) on $\widetilde{\Omega}$ and let *U* be the Lelong-Skoda potential current associated to the *d*-closed positive current $dd^e T$. We denote $(z,t) \in \mathbb{C}^n \times \mathbb{C}^m$ and consider $\varphi: (z,t) \mapsto \varphi(z)$ a C^2 positive semi-exhaustive plurisubharmonic (psh: meaning $dd^e \varphi \ge 0$) function on $\widetilde{\Omega}$ such that $\log \varphi$ is also plurisubharmonic on the open set $\{\varphi > 0\}$. For $p \in \mathbb{N}$ such that $1 \le p \le n - k$, we generalize some properties of the current $U \wedge (dd^e \omega)^\rho$ where $\omega = \log \varphi$, known when $\omega(z) = \log |z|$ (see [12]). Finally we want to define the current $T \wedge (dd^e \omega)^\rho$ and as an application, we prove a version of the chern-Levine-Nirenberg for a positive or negative psh current which is defined out side a pluripolar set $A \subset \widetilde{\Omega}$.

Mathematics subject classification: 31C10; 32U40; 28A78

Keywords: Plurisubharmonic current; Potential; Monge-Ampère operator

1. INTRODUCTION

Let $\Omega \subset \subset \widetilde{\Omega}$ be two open subsets of $\mathbb{C}^N = \mathbb{C}^n \times \mathbb{C}^m$, let *T* be a positive plurisubharmonic current of bidegree (k,k) on $\widetilde{\Omega}$ where $1 \leq k \leq n$, we refer to Lelong's paper [14] for the basic properties of positive currents.

We denote $(z, t) \in \mathbb{C}^n \times \mathbb{C}^m$ and consider a C^2 positive plurisubharmonic function φ : $(z, t) \mapsto \varphi(z)$ on $\widetilde{\Omega}$, semi-exhaustive on $\widetilde{\Omega} \cap (\mathbb{C}^n \times \{0\})$ i.e. $\varphi : \widetilde{\Omega} \cap (\mathbb{C}^n \times \{0\})$ $\rightarrow [-\infty, +\infty[$ satisfies the following condition: there exists a real number R such that for all c < R, we have:

$$\{z, \ \varphi(z) < c\} \subset \subset \widetilde{\Omega} \cap (\mathbb{C}^n \times \{0\}).$$

Tel.: +216 97771108. *E-mail address:* moncef_toujani@yahoo.fr Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

1319-5166 © 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ajmsc.2012.09.002 We suppose also that $\log \varphi$ is also plurisubharmonic on the open set $\{\varphi > 0\}$. Let U be The potential associated to the positive d-closed current $dd^c T$.

For $p \in \mathbb{N}$ such that $1 \leq p \leq n-k$, we generalize some properties of the current $U \wedge (dd^c \omega)^p$ where $\omega = \log \varphi$, known when $\omega(z) = \log |z|$ (see [12]). Let $(\chi_j)_{j \in \mathbb{N}}$ be a family of smooth regularizing kernels which only depend on |(z, t)| where

$$(z = (z_1, \dots, z_n), t = (t_1, \dots, t_m)) \in \mathbb{C}^n \times \mathbb{C}^m = \mathbb{C}^N; \quad |(z, t)|^2 = |z|^2 + |t|^2$$

with

$$|z|^2 = \sum_{j=1}^n z_j \overline{z_j}; \quad |t|^2 = \sum_{j=1}^m t_j \overline{t_j}.$$

We denote $U_j = U^*_{\chi j}$, $T_j = T^*_{\chi j}$ and let $(\omega_j)_{j \in \mathbb{N}}$ be a decreasing sequence of smooth plurisubharmonic functions converging pointwise to $\log \varphi$, then we have:

Theorem 1. Let $p \in \mathbb{N}$ such that $1 \leq p \leq n - k$, then: $U_j \wedge (dd^c \log \varphi)^p$ converges weakly (i.e. in the sense of currents) in Ω to a negative current denoted by $U \wedge (dd^c \log \varphi)^p$.

Theorem 2. Under the hypothesis of Theorem 1 and with the following additional condition: $(\bigwedge_{2(N-p-k)}(\{\varphi = 0\}) = 0, \text{ where } \bigwedge_{2q} \text{ is the Hausdorff 2q-dimensional measure})$ we have: $T_j \wedge (dd^c \omega_j)^p$ converges weakly in Ω to a current denoted by $T \wedge (dd^c \log \varphi)^p$.

This theorem generalizes the results of Siu [17], Alessandrini and Bassanelli [1] who noticed that in some cases the family $T_j \wedge dd^c \omega_j$ is bounded in mass. Similarly these results of the previous theorems are a generalizations of Feki's result where $\varphi(z) = |z|$ (see [12]). The case of the d-closed positive current T and $\varphi(z) = |z|$ was proved by Ben Messaoud-El Mir (see [5]). If ω is a plurisubharmonic non bounded function with Hausdorff measure condition and T a d-closed positive current then the current $T \wedge (dd^c \omega)^p$ is defined by Demailly (see [10]) and Cegrell (see [6]).

As an application, we prove a version of the chern-Levine–Nirenberg (see [7]) for a positive or negative psh current which is defined out side a pluripolar set $A \subset \widetilde{\Omega}$ and this result is given by the following theorem.

Theorem 3. Let A be a closed complete pluripolar subset of an open $\widetilde{\Omega}$ of \mathbb{C}^N and let T be a positive or negative plurisubharmonic (psh) current of bidimension (p,p) on $\widetilde{\Omega} \setminus A$ such that $1 \leq p \leq N$.

Let v_1, \ldots, v_q be a plurisubharmonic C^2 functions and locally bounded in $\widetilde{\Omega} \setminus A$ with $l \leq q \leq p$. If K, and L are two compact subsets of $\widetilde{\Omega}$ such that $K \subset L$, then there exists a positive constant $C_{K,L}$ independent of T and v_i such that:

$$\|T \wedge dd^{\epsilon}v_{1} \wedge \ldots \wedge dd^{\epsilon}v_{q}\|_{K \setminus A} \leq C_{K,L} \Big(\|T\|_{L \setminus A} + \|dd^{\epsilon}T\|_{L \setminus A}\Big) \Pi_{j=1}^{q} \|v_{j}\|_{\infty(L \setminus A)}.$$

Under the hypothesis of Theorem 3, H.Ben Messaoud, M.Toujani [3] when $A = \emptyset$, have proved In 2004 the following inequality:

$$\|T \wedge dd^{c}v_{1} \wedge \ldots \wedge dd^{c}v_{q}\|_{K} \leq C_{K,L} \|T\|_{L} \Pi_{j=1}^{q} \|v_{j}\|_{\infty(L)}$$

In 2007 by using another technique Sibony and Dinh [16] have also proved the inequality of Theorem 3 when $A = \emptyset$, T is a positive current and dd^cT has order zero.

2. BASIC DEFINITIONS

Let Ω be an open subset of \mathbb{C}^N and $0 \leq p,q \leq N$. A continuous linear functional on the space $D_{N-p,N-q}(\Omega)$ of the smooth (N-p,N-q) differential forms with compact support in Ω is called current of bidimension (p,q) or of bidegree (N-p,N-q). We can also say: a (p,q) current on Ω is a (p,q) differential form whose coefficients are distributions on Ω .

Let T be a current of bidimension (p,p), T is called positive if the distribution $T \wedge i\psi_1 \wedge \overline{\psi}_1 \wedge \ldots \wedge i\psi_p \wedge \overline{\psi}_p$ is a positive measure on Ω for all $\psi_1, \ldots, \psi_p \in D_{(1,0)}(\Omega)$, T is called negative if -T is positive, T is called plurisubharmonic (resp harmonic) if $dd^c T$ is positive (resp = 0). In ([2]) Bassanelli introduced the notion of current C-flat as follows: T is said \mathbb{C} -flat if there exist a currents F, G, H where their coefficients belong to $L^1_{loc}(\Omega)$ such that $T = F + \partial G + \overline{\partial}H$. Let T be a current of order zero (its coefficients are measures) of bidimension (p,p), the mass of T over Ω_1 (where Ω_1 is an open subset of Ω) which is noted $||T||_{\Omega_1}$ is defined by:

$$\|T\|_{\Omega_1} = \sup\{|T(\psi)|, \ \psi \in D_{(p,p)}(\Omega_1), \ \|\psi\| \leqslant 1\}$$

and if T is positive we have the following result:

$$T \wedge \frac{\left(dd^{\epsilon}|z|^{2}\right)^{p}}{2^{p}p!}(\boldsymbol{\Omega}_{1}) \leqslant \|T\|_{\boldsymbol{\Omega}_{1}} \leqslant cT \wedge \left(dd^{\epsilon}|z|^{2}\right)^{p}(\boldsymbol{\Omega}_{1})$$

(where $z \in \mathbb{C}^N$ and c > 0 is a constant). If *K* is a compact subset of Ω and *T* is a positive or negative current of bidimension (p,p) on Ω , we often identify the mass $||T||_K$ and $|\int_K T \wedge (dd^r |z|^2)^p|$. Let *A* be a closed subset of Ω , let (χ_n) be a smooth bounded sequence such that $0 \leq \chi_n \leq 1$ which vanishes in a neighborhood of *A* and $\lim_{n\to+\infty}(\chi_n) = 1_{\Omega\setminus A}$ (where $1_{\Omega\setminus A}$ is the characteristic function of $\Omega\setminus A$). Let *T* be a current of bidimension (p,p) defined on $\Omega\setminus A$. If $\chi_n T$ has a limit which does not depend on (χ_n) , then the limit of $\chi_n T$ is called the trivial extension of *T* by zero across *A* and is noted by \widetilde{T} , moreover for $\psi \in D_{(p,p)}(\Omega)$ we define

$$\langle \widetilde{T}, \psi \rangle = \lim_{n \to +\infty} \langle \chi_n T, \psi \rangle.$$

If A is a closed locally complete pluripolar set (i.e. $\forall z \in \Omega, \exists r > 0$ such that $B(z,r) = \{z \in \Omega; |z| < r\} \subset \Omega, \exists \phi : \Omega \mapsto \mathbb{R} \cup \{-\infty\}$ a plurisubharmonic function, $\phi \equiv -\infty$ on Ω such that $A \cap B(z,r) = \{z \in \Omega, \phi(z) = -\infty\}$), then we can find a sequence of smooth psh functions $u_n, 0 \leq u_n \leq 1$, which vanish near A, converges to $1_{\Omega \setminus A}$ and such that $\lim_{n \to +\infty} u_n T = \widetilde{T}$ weakly (see [16]).

On the other hand, \tilde{T} exists if and only if the mass of T is locally finite on Ω moreover we have:

T exists
$$\iff \forall$$
 compact $K \subset \Omega$, $||T||_{K \setminus A} < +\infty$.

M. Toujani

In the same way, we have the following result: Let T be a positive current of bidimension (p,p) on Ω of \mathbb{C}^N and if $\{T_v\}_{v\in\mathbb{N}}$ is a sequence of positive currents of Ω such that $\lim_{v\to\infty} T_v = T$ weakly in Ω , then

$$\lim_{\nu \to \infty} \int_{V} T_{\nu} \wedge \psi = \int_{V} T \wedge \psi \tag{1}$$

for every smooth differential form ψ on Ω and for every open relatively compact V of Ω such that $||T||(\partial V) = 0$ (where ∂V is the boundary of V).

Let *T* be a positive plurisubharmonic current of bidimension (p,p) in the open subset $\widetilde{\Omega}$ of $\mathbb{C}^N = \mathbb{C}^n \times \mathbb{C}^m$, let $\eta \in D(\widetilde{\Omega})$, $0 \leq \eta \leq 1$ such that $\eta = 1$ in a neighborhood of $\overline{\Omega}$ where Ω is an open such that $\Omega \subset \subset \widetilde{\Omega}$, let $\beta(z-x) = dd^{\varepsilon}(|z-x|^2)$; $\beta^{N-1}(z-x) = \underline{\beta(z-x) \wedge \beta(z-x) \wedge \ldots \wedge \beta(z-x)}$, then the potential $U = U(\widetilde{\Omega}, dd^{\varepsilon}T)$ associated to U(N-1) times

the positive d-closed current dd^cT is the current of bidimension (p + 1, p + 1) on \mathbb{C}^N defined by

$$U(z) = -c_N \int_{x \in \mathbb{C}^N} \eta(x) T(x) \wedge \frac{\beta^{N-1}(z-x)}{|z-x|^{2N-2}}, \quad N \ge 2, \quad c_N = \frac{1}{(N-1)(4\pi)^N}.$$

U is a negative current on \mathbb{C}^N and $dd^c U - dd^c T \in C^{\infty}(\Omega)$ (see [4] or [18]). Now, we shall use the following notations:

We denote $(z, t) \in \mathbb{C}^n \times \mathbb{C}^m$ and consider a C^2 positive psh function on $\widetilde{\Omega} \varphi$: $(z, t) \mapsto \varphi(z)$ such that $\log \varphi$ is also psh on the open set $\{\varphi > 0\}$.

We suppose $\varphi : \widetilde{\Omega} \cap (\mathbb{C}^n \times \{0\}) \to [-\infty, +\infty[$ semi-exhaustive i.e., there exists a real number *R* such that for all c < R, we have

$$\{z, \ \varphi(z) < c\} \subset \subset \widetilde{\Omega} \cap (\mathbb{C}^n \times \{0\})$$

For simplicity we shall use the following notations:

If $z = (z_1, \ldots z_n) \in \mathbb{C}^n$ and $t = (t_1, \ldots t_m) \in \mathbb{C}^m$ we denote:

$$|z|^{2} = \sum_{j=1}^{n} z_{j} \overline{z_{j}}; \quad |t|^{2} = \sum_{j=1}^{m} t_{j} \overline{t_{j}}; \quad \beta(z) = dd^{c}(|z|^{2}); \quad \beta(t) = dd^{c}(|t|^{2});$$

 $\beta = \beta(z) + \beta(t)$ is the Euclidean form on $\mathbb{C}^N = \mathbb{C}^n \times \mathbb{C}^m$.

$$\beta^p = \underbrace{\beta \land \beta \land \ldots \land \beta}_{p \ times}.$$

Recall that; if $z \in \mathbb{C}^n$ we have:

$$\partial = \sum_{j=1}^{n} \frac{\partial}{\partial z_j} dz_j; \quad \bar{\partial} = \sum_{j=1}^{n} \frac{\partial}{\partial \bar{z}_j} d\bar{z}_j; d = \partial + \bar{\partial}; \quad d^c = i(\bar{\partial} - \partial); dd^c = 2i\partial \overline{\partial}.$$

If w is a locally bounded function in $\widetilde{\Omega} \subset \mathbb{C}^N$ and if $K \subset \widetilde{\Omega}$ is a compact, we denote:

$$||w||_{\infty(K)} = \sup_{(z,t)\in K} |w(z,t)|.$$

3. Monge-Ampère operator

We first prove the following theorem:

Theorem 1. Let T be a positive psh current of bidegree (k,k) in the open subset $\widetilde{\Omega}$ of $\mathbb{C}^N = \mathbb{C}^n \times \mathbb{C}^m$ with $1 \leq k \leq n$, let $U = U(\widetilde{\Omega}, dd^e T)$ be the potential of the positive d-closed current $dd^e T$ in Ω where Ω is an open such that $\Omega \subset \subset \widetilde{\Omega}$ and consider a C^2 positive semi-exhaustive plurisubharmonic function

 $\varphi: (z,t) \mapsto \varphi(z)$ on $\widetilde{\Omega}$, such that $\log \varphi$ is also psh on the open set $\{\varphi > 0\}$.

Let $(\chi)_{j\in\mathbb{N}}$ be a family of smooth regularizing kernels. If $U_j = U^*\chi_j$ and $1 \le p \le n - k$, then we have:

 $U_j \wedge (dd^c \log \varphi)^p$ converges weakly (i.e. in the sense of currents) in Ω to a negative current denoted by $U \wedge (dd^c \log \varphi)^p$.

Proof. If $T_j = T^*\chi_j$, then in the paper of M.Toujani (see [19]) we have proved that:

$$\sup_{j} \int_{V} T_{j} \wedge \left(dd^{c} \log \varphi(z) \right)^{p} \wedge \beta^{N-k-p} < +\infty,$$
(2)

where V is an open such that $V \subset \subset \Omega$.

As the problem of convergence is local, therefore according to the formula (2), the sequence $(T_j \wedge (dd^c \log \varphi)^p)_j$ is bounded in mass. Since, $dd^c U = dd^c T + R$ (see [5]) with R is a C^{∞} form of bidegree (k + 1, k + 1) in Ω and as the notion of U is local, we can assume that R is a negative form, therefore the current T - U is a positive and plurisubharmonic, hence by using the formula (2), the sequence $(T - U)_j \wedge (dd^c \log \varphi)^p$ is bounded in mass. As the sequence $T_j \wedge (dd^c \log \varphi)^p$ is bounded in mass, then the sequence $U_j \wedge (dd^c \log \varphi)^p$ is also bounded in mass. Now, the function h which is defined by $h(t) = \frac{-1}{(N-1)(4\pi)^N |t|^{2N-2}}$ is subharmonic, therefore according to Ben Messaoud–El Mir [5], the family of currents $(U_j)_j$ which is defined by

$$U_j(z) = \int_{x \in \mathbb{C}^N} \eta(x) (h * \chi_j)(z - x) T(x) \wedge \beta^{N-1}(z - x)$$

is a decreasing sequence of negative currents. Hence, $U_j \wedge (dd^c \log \varphi)^p$ converges weakly in Ω to a current denoted by $U \wedge (dd^c \log \varphi)^p$. square

The Main Theorem of this paper is given by

Theorem 2. Let $\Omega \subset \subset \widetilde{\Omega}$ be two open subsets of $\mathbb{C}^N = \mathbb{C}^n \times \mathbb{C}^m$, let T be a positive plurisubharmonic current of bidegree (k,k) on $\widetilde{\Omega}$ where $1 \leq k \leq n$, consider a C^2 positive semi-exhaustive plurisubharmonic function $\varphi: (z,t) \mapsto \varphi(z)$ on $\widetilde{\Omega}$, such that $\log \varphi$ is also plurisubharmonic on the open set $\{\varphi > 0\}$, we suppose that $\bigwedge_{2(N-k-p)}(\{\varphi = 0\}) = 0$ (where \bigwedge_{2q} is the Hausdorff 2q-dimensional measure). Let $(\omega_j)_{j\in\mathbb{N}}$ be a decreasing sequence of smooth plurisubharmonic functions converging pointwise to $\log \varphi$, let $(\chi)_{j\in\mathbb{N}}$ be a family of smooth regularizing kernels. If $T_j = T^*\chi_j$ and $1 \leq p \leq n-k$, then we have:

M. Toujani

- $T_j \wedge (dd^c \log \varphi)^p$ converges weakly (i.e. in the sense of currents) in Ω to a positive current denoted by $T \wedge (dd^c \log \varphi)^p$.
- $T \wedge (dd^c \omega_i)^p$ converges weakly in Ω to $T \wedge (dd^c \log \varphi)^p$.
- $T_i \wedge (dd^c \omega_i)^p$ converges weakly in Ω to $T \wedge (dd^c \log \varphi)^p$.

Proof. The problem of convergence is useful when $\log \varphi$ is unbounded about of neighborhood of $\{\varphi = 0\}$. As in the previous theorem, we will prove that the sequence $T_j \wedge (dd^c \log \varphi)^p$ is bounded in mass, (moreover, this sequence is defined as follows:

$$\langle T_j \wedge (dd^c \log \varphi)^p, \psi
angle = \int_{\widetilde{\Omega}} T_j \wedge (dd^c \log \varphi)^p \wedge \psi$$

when ψ is a smooth (N - k - p, N - k - p) differential form with compact support in $\widetilde{\Omega}$).

- (1) We suppose that T is pluriharmonic (i.e. dd^cT = 0.)Using the techniques of I.Feki-H.El Mir (see [12]) as follows:As T_j ∧ (dd^clog φ)^p is bounded in mass, we can consider two weak limits μ₁ and μ₂ of the sequence of currents T_j ∧ (dd^clog(φ))^p, the current μ = μ₁ μ₂ which is of order zero and of bidegree (k + p, k + p) is supported in {φ = 0} and it is pluriharmonic (i.e. dd^cμ = 0).
 - If p < n k, then we have N (k + p) = n + m k p > m, the subset K := {φ = 0} = {log φ = -∞} is a locally complete pluripolar because log φ is plurisubharmonic and it has Lebesgue measure zero in C^N. As φ is semi-exhaustive then K = {φ = 0} ⊂⊂ Ω ∩ (Cⁿ × {0}), therefore K is a compact of Ω ∩ (Cⁿ × {0}). We know that ∧_{2(N-k-p)}(suppμ) = 0 (because the current μ = μ₁ μ₂ is supported in {φ = 0}), from the theorem of support for the current C-flat (see [2]) μ₁ = μ₂.
 - If p = n k, consider 0 < r < r' < 1 such that $K \subset \{|z| < r\}$ and $\{|z| < r'\} \times \{|t| < r'\}$ is relatively compact in $\widetilde{\Omega}$. Let g(z) be a positive smooth function supported in $\{|z| < r'\}$ such that $g \equiv 1$ on $\{|z| < r\}$ and h(t) be a positive smooth function supported in $\{|z| < r'\}$ such that $g \equiv 1$ on $\{|z| < r\}$ and h(t) be a positive smooth function supported in $\{|t| < r'\}$, we have:

$$\begin{split} \langle T_j \wedge (dd^{\varepsilon} \log \varphi)^{n-k}, \, g(z)h(t)\beta(t)^m \rangle \\ &= \int_{\widetilde{\Omega}} \log \varphi (dd^{\varepsilon} \log \varphi)^{n-k-1} \wedge dd^{\varepsilon} (g(z)T_j) \wedge h(t)\beta(t)^m \\ &= \int_{\widetilde{\Omega}} \log \varphi (dd^{\varepsilon} \log \varphi)^{n-k-1} \wedge dd^{\varepsilon} g \wedge T_j \wedge h(t)\beta(t)^m \int \\ &- \sum_{\widetilde{\Omega}} \log \varphi (dd^{\varepsilon} \log \varphi)^{n-k-1} \wedge d^{\varepsilon} g \wedge dT_j \wedge h(t)\beta(t)^m \int \\ &+ \int_{\widetilde{\Omega}} \log \varphi (dd^{\varepsilon} \log \varphi)^{n-k-1} \wedge dg \wedge d^{\varepsilon} T_j \wedge h(t)\beta(t)^m \int \\ &+ \int_{\widetilde{\Omega}} \log \varphi (dd^{\varepsilon} \log \varphi)^{n-k-1} \wedge dd^{\varepsilon} T_j \wedge g(z)h(t)\beta(t)^m. \end{split}$$

We have $dd^c T = 0$ therefore $dd^c T_j = 0$. As the functions $d^c g$, dg, and $dd^c g$ vanish on an open neighborhood of $K := \{\varphi = 0\}$, then the first three integrals converge, the last integral vanishes since $dd^c T_j = 0$, hence the sequence $\langle T_j \wedge (dd^c \log \varphi)^{n-k}, g(z)h(t)\beta(t)^m \rangle$ converges. We will have therefore

$$\forall h \in D(\{|t| < r'\}), \int_{\varphi=0} \mu h(t) \beta(t)^m = 0, \text{ hence } \mu \equiv 0$$

(2) We suppose that dd^cT ≥ 0, let U be the potential associated to the positive d-closed current dd^eT, since dd^eU = dd^eT + R (see [5]) with R is a C[∞] form of bidegree (k + 1, k + 1) in Ω. According to Hörmander [13] there exists a C[∞] positive form R₁ of bidegree (k,k) such that dd^eR₁ = R, hence R̃ := T - U + R₁ is a positive pluriharmonic current of bidegree (k,k), therefore the sequence R̃_j ∧ (dd^e log φ)^p is convergent. Since R₁ is a C[∞] positive form and from the previous theorem we know that the sequence U_j ∧ (dd^e log φ)^p converges in Ω, we deduce then the convergence of the sequence T_j ∧ (dd^e log φ)^p in Ω. The convergence of the sequences T ∧ (dd^eω_j)^p and T_j ∧ (dd^eω_j)^p can be proved in the same way. □

4. APPLICATIONS

As an application we prove the following result:

Theorem 3. em Let A be a closed complete pluripolar subset of an open set $\widetilde{\Omega}$ of \mathbb{C}^N and let T be a positive or negative plurisubharmonic (psh) current of bidimension (p,p) on $\widetilde{\Omega} \setminus A$, such that $1 \leq p \leq N$.

Let $v_1, \ldots v_q$ be a psh C^2 functions and locally bounded in $\widetilde{\Omega} \setminus A$ with $1 \leq q \leq p$. If K, L are two compact subsets of $\widetilde{\Omega}$, such that $K \subset L$, then there exists a positive constant $C_{K,L}$ independent of T and v_i such that:

$$\|T \wedge dd^{\epsilon}v_{1} \wedge \ldots \wedge dd^{\epsilon}v_{q}\|_{K \setminus A} \leqslant C_{K,L} \Big(\|T\|_{L \setminus A} + \|dd^{\epsilon}T\|_{L \setminus A}\Big) \Pi_{j=1}^{q} \|v_{j}\|_{\infty(L \setminus A)}$$

Proof. By induction, it is sufficient to prove the result for q = 1 and $v_1 = v$, in all the proof of theorem, we can assume $T \ge 0$.

- If ||T|| or $||dd^cT||$ is infinite near A, then the result of theorem is true.
- If the mass of T and $dd^c T$ is locally finite near A, then the current $dd^c T$ is a positive d-closed current on $\Omega \setminus A$ and it has locally finite mass near A, according to El Mir [11], the trivial extension of $dd^c T$ by zero across A noted by $dd^c T$ exists and it is a positive d-closed current. In the same way the trivial extension of T by zero across A noted by \tilde{T} exists and it is a positive current, by means of Elkhadhra–Dabbek–El Mir [8] we have $dd^c \tilde{T} = d\tilde{d}^c T S$ where S is a positive d-closed current supported on A. The function v is plurisubharmonic (psh) of class C^2 bounded in neighborhood of every point of A, therefore v admit an extension \tilde{v} on Ω , which is psh continuous definite by v on $\Omega \setminus A$ and if $a \in A$ we have: $\tilde{v}(a) = \limsup_{x \in \Omega \setminus A} (v(x))$ when $x \to a$.

M. Toujani

We may write also: $\tilde{v}(a) = \lim_{\epsilon \to 0} v_{\epsilon}(a)$ with $v_{\epsilon} = v * \rho_{\epsilon}$ and ρ_{ϵ} be a family of smooth regularizing kernels. There is a covering of *K* by a family of balls $B'_{j} \subset B_{j} \subset C$, therefore it is sufficient to prove the theorem on two balls B,B' of center 0 such that $B \subset B'$. *A* is closed complete pluripolar, according to El Mir [11] or Zeriahi [20] there exists a psh negative function ϕ on *B*, smooth on $B \setminus A$ such that $A = \{\phi = -\infty\}$. Consider a decreasing sequence of smooth plurisubharmonic functions $\tilde{v}_{j} = \tilde{v} * \rho_{1}$, converging pointwise to \tilde{v} . Following standard lemma (which is used by Demailly [9]).

Lemma 1. Let f_k be a decreasing sequence of upper semi-continuous functions converging to a function f on an open set $\widetilde{\Omega} \subset \mathbb{C}^N$, let μ_k be a sequence of positive measures converging weakly to a measure μ on $\widetilde{\Omega}$, then every weak limit v of $f_k\mu_k$ satisfies $v \leq f\mu$.

Remark 1. Let f_k be a increasing sequence of lower semi-continuous functions converging to f, under the assumptions of the previous lemma, we have $v \ge f\mu$.

Continuation of the proof of Theorem 3

According to Sibony (see p. 8 in [15]) there is a sequence of smooth psh positive functions u_k , $0 \le u_k \le 1$ on $B \setminus A$, vanishing near A and increasing to $1_{B \setminus A}$, thus we have $u_k T \to \tilde{T}$ when $k \to +\infty$. As \tilde{T} is a positive current and $dd^e \tilde{T}$ has order zero (its coefficients are measures), hence by means of Elk–Dab–El Mir (see [8]) we have: $dd^e \tilde{T} = d\tilde{d}^e T - S$ with the current S is d-closed positive supported on A and $d\tilde{d}^e T$ is the trivial extension by zero of $dd^e T$, thanks to El Mir (see [11]), the current $d\tilde{d}^e T$ is d-closed positive. By using the Main Theorem, the family $(\mu_j = T \wedge dd^e \tilde{v} \wedge \beta^{p-1})_j$ is a sequence of positive measures converging weakly to $\mu = T \wedge dd^e \tilde{v} \wedge \beta^{p-1}$. By means of the previous remark, we obtain then

$$\int_{B\setminus A} T \wedge dd^{e} v \wedge \beta^{p-1} = \int_{B} 1_{B\setminus A} T \wedge dd^{e} v \wedge \beta^{p-1} \leq \liminf_{j \to +\infty} \int_{B} u_{j} T \wedge dd^{e} \tilde{v}_{j} \wedge \beta^{p-1}$$
$$= \int_{B} \widetilde{T} \wedge dd^{e} \tilde{v} \wedge \beta^{p-1}.$$

According to Sibony–Dinh (see pp. 359–360 in [16]) we will have:

$$\int_{B}\widetilde{T}\wedge dd^{\epsilon}\widetilde{v}_{j}\wedge\beta^{p-1}\leqslant C_{B,B'}\Big(\|\widetilde{T}\|_{B''}+\|dd^{\epsilon}\widetilde{T}\|_{B''}\Big)\|\widetilde{v}\|_{\infty}(B'').$$

B'' is a neighborhood of B in B', $C_{B,B'}$ is a positive constant depending only on B and B', since $dd^c \widetilde{T} = dd^c T - S$ with $S := \lim_{k \to +\infty} T \wedge dd^c u_k$, then

$$\|dd^{c}\widetilde{T}\| \leq \|\widetilde{dd^{c}T}\| + \|S\|,$$

hence

$$\int_{B} \widetilde{T} \wedge dd^{\epsilon} \widetilde{v} \wedge \beta^{p-1} \leqslant C_{B,B'} \Big(\|\widetilde{T}\|_{B''} + \|\widetilde{dd^{\epsilon}T}\|_{B''} + \|S\|_{B \cap A} \Big) \|\widetilde{v}\|_{\infty}(B'').$$

Definition 1. Let *T* be a current of bidimension (p,p) defined on an open set $\hat{\Omega}$ of \mathbb{C}^N , we say that *T* is a normal current if *T* and *dT* are of order zero (its coefficients are measures). We say that *T* is a pluripositive current if *T* is a normal positive or negative current and dd^cT is positive.

If T is of bidimension (p,p), To proceed further, we use the current $T \wedge \beta^{p-1}$, which is a current of bidimension (1, 1). In order, we use the following lemma (which is proved by Sibony (see [15]) when T is a positive pluripositive current).

Lemma 2. Let A be a closed complete pluripolar subset of an open $\widetilde{\Omega}$ of \mathbb{C}^N and T be a positive or negative plurisubharmonic (psh) current of bidimension (1,1) on $\widetilde{\Omega} \setminus A$. Assume that $||T||_{\widetilde{\Omega}\setminus A}$ and $||dd^cT||_{\widetilde{\Omega}\setminus A}$ are finite. Let K' be a compact in $\widetilde{\Omega}$, then there exists a constant $C_{K',\widetilde{\Omega}} > 0$, such that for every smooth bounded psh function u on $\widetilde{\Omega}$ vanishing near A and for every a, b, 0 < a < b < 1, we have the following estimate:

$$\int_{(a \leq |u| \leq b) \cap K'} T \wedge du \wedge d^{\varepsilon} u \leq C_{K', \widetilde{\Omega}}(b-a) (\|T\|_{\widetilde{\Omega} \setminus A} + \|dd^{\varepsilon}T\|_{\widetilde{\Omega} \setminus A}).$$

The proof for the lemma when T is a pluripositive current still holds true in this case (i.e. if T is a positive psh current) (see p. 31 in [15]).

By using the last lemma and consider the positive functions u_k which previously defined, we will have:

$$\int_{(a \leq u_k \leq b) \cap K'} T \wedge du_k \wedge d^{\epsilon} u_k \leq C_{K',\widetilde{\Omega}}(b-a)(\|\widetilde{T}\|_{\widetilde{\Omega}} + \|\widetilde{dd^{\epsilon}T}\|_{\widetilde{\Omega}}),$$

write

$$dd^{\epsilon}u_{k}\wedge T:=u_{k}dd^{\epsilon}T-dd^{\epsilon}(u_{k}T)+d(d^{\epsilon}u_{k}\wedge T)-d^{\epsilon}(du_{k}\wedge T)$$

Let χ is a real-valued smooth function, $0 \le \chi \le 1$ supported on *K'*, therefore on *supp*(χ) we can write:

$$\begin{aligned} \|dd^{e}u_{k}\wedge T\|_{supp(\chi)} &\leqslant \int_{supp(\chi)} \chi dd^{e}u_{k}\wedge T \leqslant \int_{K'} \chi dd^{e}u_{k}\wedge T \\ &= \int_{K'} \chi u_{k} dd^{e}T - \int_{K'} dd^{e}\chi \wedge u_{k}T - \int_{K'} d\chi \wedge d^{e}u_{k}\wedge T + \int_{K'} d^{e}\chi \\ &\wedge du_{k}\wedge T. \end{aligned}$$

By using a gain the lemma of Sibony–Dinh (see pp. 359–360 in [16]) we then obtain:

$$\begin{split} \int_{(a \leqslant u_k \leqslant b) \cap K'} \lim_{k \to +\infty} T \wedge dd^{\epsilon} u_k \wedge \beta^{p-1} \leqslant \lim_{k \to +\infty} \int_{(a \leqslant u_k \leqslant b) \cap K'} T \wedge dd^{\epsilon} u_k \wedge \beta^{p-1} \\ \leqslant C'_{K',\widetilde{\Omega}}(\|\widetilde{T}\|_{\widetilde{\Omega}} + \|\widetilde{dd^{\epsilon}T}\|_{\widetilde{\Omega}}). \end{split}$$

Therefore for every compact K' of $\widetilde{\Omega}$ we have:

$$\|S\|_{K'\cap B\cap A} \leqslant C''_{K',\widetilde{\Omega}}(\|\widetilde{T}\|_{B''} + \|\widetilde{dd'T}\|_{B''}).$$

Hence

$$\int_{B\setminus A} T \wedge dd^{\epsilon} v \wedge \beta^{p-1} \leqslant C_{B,B'}' \Big(\|\widetilde{T}\|_{B''} + \|\widetilde{dd^{\epsilon}T}\|_{B''} \Big) \|\widetilde{v}\|_{\infty}(B'').$$

Finally, we get:

$$\|T \wedge dd^{\epsilon}v\|_{K \setminus A} \leqslant C_{K,L} \Big(\|T\|_{L \setminus A} + \|dd^{\epsilon}T\|_{L \setminus A} \Big) \|v\|_{\infty} (L \setminus A). \qquad \Box$$

REFERENCES

- L. Alessandrini, G. Bassanelli, Lelong numbers of positive plurisubharmonic currents, Results Math. 30 (1996) 1–42.
- [2] G. Bassanelli, Cut off theorem of plurisubharmonic currents, Forum. Math. 6 (1994) 576-595.
- [3] H. Ben Messaoud, M. Toujani, Prolongement d'un courant plurisousharmonique avec condition sur les tranches, C.R. Acad. Sci. Paris 339 (Série I) (2004) 543–548.
- [4] H. Ben Messaoud, H. El Mir, Opérateur de Monge-Ampère et formule de tranchage pour un courant positif fermé, C.R. Acad. Sci. Paris 321 (Série I) (1995) 252–277.
- [5] H. Ben Messaoud, H. El Mir, Opérateur de Monge-Ampère tranchage des courant positifs fermés, J. Geometric Anal. 10 (I) (2000) 139–168.
- [6] U. Cegerell, An estimate of the complexe Monge Ampère operator, Lec. Notes Math. 1039 (1982) 84-87.
- [7] Chern Levine-Nirenberg, Intrinstic Norms on a Complex Manifolds, Univ. of Tokyo Press, 1969, pp. 119–139.
- [8] K. Dabbek, F. Elkhadhra, H. El Mir, Extension of plurisubharmonique currents, Mathematische Zeitschrift. 245 (2003) 455–481.
- [9] J-P. Demailly, Potential theory in several complex variables, cours École d'été C.I.M.P.A, Nice, juillet 89.
- [10] J-P. Demailly, 1991; Monge Ampère operator, Lelong numbers and intersection theory, Complex analysis and Geometry V. Ancona A. Silva, CIRM, univ. de Trento.
- [11] H. El Mir, Sur le Prolongement des courants positifs fermés, Acta Math. 153 (1984) 1-45.
- [12] I. Feki, H. El Mir, Prolongement et controle d'un courant positif fermé par ses tranches, C.R. Acad. Sci. Paris 327 (Série I) (1998) 797–802.
- [13] L. Hörmander, Linear Partial Differential Operators, Grundlehren der math. Wissenschaften, Band 116, Springer, Verlag, Berlin, 1963.
- [14] P. Lelong, Fonctions Plurisousharmoniques et formes différentielles positives, Dunod Paris Gordon Beach, New York, 1968.
- [15] N. Sibony, Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J. 52 (1985) 157–197.
- [16] N. Sibony, Tien-Cuong DinhPull-back of currents by holomorphic maps, vol. 123, Springer-Verlag, 2007.
- [17] Y-T. SIU, Analycity of sets associated to Lelong number and the extension of closed positive currents, Invent. Math. (27) (1974) 53–156.
- [18] H. Skoda, Nouvelle méthode pour l'étude des potentiels, in Sém, in: P. Lelong (Ed.), Lecture Notes in Math., vol. 410, Springer, pp. 117–141.
- [19] M. Toujani, Nombre de Lelong directionnel d'un courant positif plurisousharmonique, C.R. Acad. Sci. Paris 343 (Série I) (2006) 705–710.
- [20] A. Zeriahi, Ensembles pluripolaires exceptionnels pour la croissance partielle des fonctions holomorphes, Ann. polon. Math. 50 (1989) 81–91.