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Abstract. This paper considers the spectral distribution and the concept of clustering and
attraction in the sense of eigenvalues sequence of g-Toeplitz structures {Tn,g(f)} defined by

Tn,g(f) =

f̂r−gs

n−1

r,s=0
, where g is a given nonnegative parameter, {f̂k } is the sequence

of Fourier coefficients of the function f ∈ L1(Td) with T = (−π, π), d is a positive integer,
and where f is real-valued and essentially bounded. A detailed treatment of the unilevel case
is given, that is, d = 1 and g ∈ N. The generalizations to the blocks and multilevel case are
also presented for the case where g is a vector with nonnegative integer entries.
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1. INTRODUCTION

Let f be a Lebesgue function defined over the domain T = (−π, π). We recall that for a

given nonnegative integer, an n × n matrix An is called g-Toeplitz if An =

f̂r−gs

n−1

r,s=0
.

In that case, a g-Toeplitz matrix is denoted by Tn,g(f) and the sequence {f̂k }k of entries of
Tn,g(f) is the sequence of Fourier coefficients of the symbol f . For the algebraic properties of
such matrices we refer to Section 5.1 of the classical book by Davis [7]. The first motivation

∗ Correspondence to: Department of Mathematics, University of Yaoundé I, 812 Yaoundé, Cameroon. Tel.:
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of this study is due to the variety of fields where such matrices can be encountered, such
as wavelet analysis [6] and in the refinement equations associated with the subdivision
algorithms (see [8] and references therein). In addition, Gilbert Strang [24] has found
interesting relationships between dilation equations in the wavelet context and multigrid
methods [5,10], for the restriction/prolongation operators [11,1] with boundary conditions.
More especially, the analysis of boundary conditions naturally arises when dealing with
signal/image restoration problems or differential equations (see [22,20]).

Let d ∈ N and f ∈ L1(Td) be a real-valued function. For a fixed nonnegative parameter
g = (g1, . . . , gd) we define the sequence {Tn,g(f)}n of g-Toeplitz matrices, where n =
(n1, . . . , nd) with nj ≠ 0 for every j = 1, . . . , d, and we denote by {Λn,g }n the sequence
of its spectra, where Λn,g = {λj : j = 0, 1, . . . , n1n2...nd − 1}. An interesting question

is to know how the spectrum Λn,g can be related to a symbol θ
(g)
f ∈ L∞(Td) when the

generating function f of g-Toeplitz sequences is real-valued or, even if f ∈ L1(Td), to study
the convergence of the sequence of sets {Λn,g }n. When g = 1, an essential result concerning
the sequence of spectra is the famous Szegö theorem which says that, if f is real-valued and
essentially bounded then

lim
n→∞

Σ
λ∈Λn

F (λ) =
1

mes(T)


T

F (f(exp(̂it)))dt, (̂i2 = −1) (1)

for every continuous function F with compact support (see, for example, [13]). Here,
mes(T) denotes the Lebesgue measure, that is, mes(T) = 2π. Furthermore, Tilli and
Tyrtyshnikov/Zamarashkin, independently, showed that relation (1) holds for any integrable
function f which is just real-valued, see [25,26]. Parter is the first researcher who has
obtained the corresponding result for a complex-valued function f and the sequence of
sets of its singular values when replacing f by |f | under the hypothesis of continuous
times uni-modular symbols, see [17], Avram (essentially bounded symbols [2]), and
Tyrtyshnikov/Zamarashkin [25,26], independently, when the symbol f is just integrable. A
large class of test functions F in [25,21,4] satisfies the Eq. (1) and the case of functions
f of several variables (multilevel case) and matrix-valued functions was studied in [25,18]
in the context of preconditioning (other related results were established by Linnik, Widom,
Doktorski, see Section 6.9 in [5]).

In some recent works [15,14,9] we studied the spectral features and asymptotic properties
for g-circulants and g-Toeplitz sequences and we addressed the problem of regularizing
preconditioning of g-Toeplitz sequences via g-circulants, in the case where the sequence of
entries {f̂k }k is the sequence of Fourier coefficients of a function f ∈ L1(T). Such results
were plainly generalized to the block, multilevel case, amounting to choose the symbol f
multivariate, i.e., defined on the set Td for some d > 1, and matrix-valued, i.e., such that
f(x) is a matrix of given size p × q. Here we treat the notion of spectral distribution and
the concept of clustering and attraction in the eigenvalues sequence of g-Toeplitz structures
{Tn,g(f)}n. In particular, we consider the case where the sequence of values {f̂k }k is the
Fourier coefficients of a real-valued function and essentially bounded and the interesting
result is that the distribution function is more sparsely vanishing than the distribution function
obtained in [15] (case where the parameter g ∉ {0; 1}, otherwise the two results are the
same). From this analysis we observe that the g-Toeplitz sequences {Tn,g(f)}n are sparsely
vanishing (for the notion of sparsely vanishing matrix sequences, one can refer to [9]). We
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generalize the results obtained to one dimension, i.e., d = p = q = 1 and g a positive integer
to the block and multilevel case, amounting to choose f ∈ L∞(Td) to be “real-valued” for
some d > 1, that is, f(x) is a matrix of given size p.

We proceed as follows. In Section 2, we recall definitions and main tools. The problem
of eigenvalue distribution of g-Toeplitz sequences is analyzed and discussed in Section 3.
Section 4 generalizes the results obtained in Section 3 to block and multilevel case. We end
the paper by drawing the general conclusion in Section 5.

2. DEFINITIONS AND MAIN TOOLS

In this section, we give some basic definitions and we introduce some general tools for
the spectral distribution (in both cases: eigenvalue and singular value) of matrix sequences
{An}n. As already mentioned in the previous section, if we denote by Tn(f) the standard
Toeplitz matrix generated by f ∈ L1(T), that is, Tn(f) = [ar−c]

n−1
r,c=0 , and by Tn,g(f) the

g-Toeplitz matrix generated by the same symbol, it is proven in [15, page 12] that for n and
g generic,

Tn,g(f) = [ Tn,g |Tn,g] = [Tn(f) Zn,g |Tn,g] (2)

where Tn,g = Tn(f) Zn,g ∈ Cn×µg , (µg = ⌈ n
g ⌉), is the matrix obtained from Tn,g(f)

by considering only its µg first columns, Tn,g ∈ Cn×(n−µg) is the matrix obtained from
Tn,g(f) by considering only its n − µg last columns, and Zn,g is the matrix defined in (3) by
considering only the µg first columns.

Zn,g = [δr−gc]
n−1
r,c where δk =


1, if k ≡ 0 (mod n),
0, otherwise.

(3)

As stated in formula (2), the matrix Tn,g(f) can be written as

Tn,g(f) = [Tn(f) Zn,g |Tn,g] = Tn(f)[ Zn,g |0] + [0|Tn,g]. (4)

To study the spectral distribution and the concept of clustering and attraction in the sense
of eigenvalues sequence of g-Toeplitz structures, the idea is to solve the following problems.
For f ∈ L∞(T) real-valued:

(p1) show that the matrix sequence {Tn,g(f)} is uniformly bounded by a positive constantC independent of n,
(p2) show that ∥[0|Tn,g]∥1 = o(n), n → ∞,
(p3) show that the sequence {Tn(f)[ Zn,g |0]} distributes in the sense of eigenvalues as a

real-valued function θ
(g)
f ∈ L∞(T).

Now, denoting by σ1(An), σ2(An), . . . ,σn(An), the singular values of an n × n matrix
An, for p ∈ [1, ∞) we define ∥An∥p the Schatten p-norm of An (see [3]) to be the lp norm
of the singular values vector

∥An∥p =


n

j=1

(σj(An))p

 1
p

.
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In the following, we are especially interested in the norm ∥ · ∥1 which is known as the Trace
norm and the norm ∥ · ∥ which is the usual operator norm ∥An∥ = supx∈Cn,∥x∥2=1 ∥Anx∥2.
If λj(An), j = 1, . . . , n, are the eigenvalues of An then the spectrum of An is defined by
Λn = {λj(An), 1 ≤ j ≤ n}. So, for any function F defined on C, the symbol Σλ(F,An)
stands for the mean

Σλ(F,An) :=
1
n

n
j=1

F (λj(An)) =
1
n


λ∈Λn

F (λ). (5)

The corresponding symbol Σσ(F,An) denotes the expression with the singular values
obtained by replacing the eigenvalues.

In this work, we are particularly interested in explicit formulae of the distribution results
for g-Toeplitz sequences. Following what is known in the standard case of g = 1 (or g = e in
the multilevel setting), we need to link the coefficients of the g-Toeplitz sequence to a function
θ ∈ L∞(T). We define the matrix sequences as sequences {An} where An is an n × n matrix
and, Toeplitz or g-Toeplitz sequences (where g is a d-dimensional vector of nonnegative

integers) as matrix sequences of the form {An} or {An,g } with An = Tn(f) =

f̂j−r

n−e

j,r=0

and An,g = Tn,g(f) =

f̂j−g◦r

n−e

j,r=0
. Here: d ∈ N∗, g = (g1, . . . , gd), n = (n1, . . . , nd),

j = (j1, . . . , jd), r = (r1, . . . , rd), e = (1, . . . , 1), 0 = (0, . . . , 0), and where f is an
integrable function defined over Td = (−π, π)d the d-fold cartesian product of the unit circle
in the complex plane and {f̂k } is the sequence of Fourier coefficients of f defined by

f̂j = f̂(j1,...,jd)(f) =
1

(2π)d


[−π,π]d

f(t1, . . . , td)

× exp


−î(j1t1 + · · · + jdtd)


dt1 . . . dtd (̂i2 = −1) (6)

for integers jl such that −∞ < jl < ∞, with 1 ≤ l ≤ d. If f is a matrix-valued
function of d variables whose component functions are all integrable, then the (j1, . . . , jd)th
Fourier coefficient is considered to be the matrix whose (r, s)th entry is the (j1, . . . , jd)th
Fourier coefficient of the function [f(t1, . . . , td)]r,s. Of course, the “◦” operation is the
componentwise Hadamard product between vectors or matrices of the same size.

The following definition is motivated by the Szegö and Tilli theorems characterizing the
spectral approximation of a Toeplitz operator (in certain cases) by the spectra of the elements
of the natural approximating matrix sequences {An}, where An is formed by the first n rows
and columns of the matrix representation of the operator.

Definition 2.1. Let C0(C) be the set of continuous functions with bounded support defined
over the complex field, d a positive integer and θ a complex-valued measurable function
defined on a set G ⊂ Cd of finite and positive Lebesgue measure m(G). Here G will be
equal to Td. A matrix sequence {An} is said to be distributed (in the sense of eigenvalues)
as the pair (θ,G), or to have the distribution function θ if, ∀F ∈ C0(C), the following limit
relation holds

lim
n→∞

1
n

n
j=1

F (λj(An)) =
1

m(G)


G

F (θ(t)) dt, ∀F ∈ C0(C) (7)
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where λj(An), j = 1, 2, . . . , n, are the eigenvalues of An. We denote this by {An} ∼λ(θ,G).
If (7) holds for every F ∈ C0(R+

0 ) in place of F ∈ C0(C), with the singular values
σj , j = 1, . . . , n, in place of the eigenvalues, and with |θ(t)| in place of θ(t), we say that
{An} ∼σ(θ,G) or that the matrix sequence {An} is distributed (in the sense of singular
values) as the pair (θ, G). More specifically, for every F ∈ C0(R+

0 ) we have

lim
n→∞


σ

(F,An) =
1

m(G)


G

F (|θ(t)|) dt (8)

where we have in view of (5)


σ

(F,An) =
1
n

n
j=1

F (σj(An)).

Furthermore, in order to treat block Toeplitz matrices, we consider measurable functions
θ : G → MMN , where MMN is the space of M × N matrices with complex entries and
a function is considered to be measurable if and only if the component functions are. In that
case {An} ∼λ(θ,G) means that M = N and

lim
n→∞


λ

(F,An) =
1

m(G)


G

N
j=1

F (λj(θ(t)))

N
dt (9)

∀F ∈ C0(C), where λj(θ(t)) in relation (9) are the eigenvalues of the matrix θ(t).
When N ≠ M , θ takes values in MNM , in that case, we say that {An} ∼σ(θ,G) when

for every F ∈ C0(R+
0 ) we have

lim
n→∞


σ

(F,An) =
1

m(G)


G

min{N,M }
j=1

F (λj(


θ∗(t)θ(t)))

min{N, M }
dt. (10)

Finally, two matrix sequences {An} and {Bn} are equally distributed in the sense of
eigenvalues and/or singular values if ∀F ∈ C0(C), we have

lim
n→∞


ν

(F,An) −


ν

(F,Bn)


= 0 (11)

with ν = λ or ν = σ.

It is important to recall that two matrix sequences having the same distribution function are
equally distributed. The reverse of this result is not true, moreover, two equally distributed
matrix sequences may be not associated with a distribution function at all. For example,
when considering any diagonal matrix sequence {Dn} and for a matrix sequence {An} where
An = Dn − ϵnIn, ϵn → 0 when n → ∞. Then if the matrix sequence {Dn} is not associated
with a distribution function (in the sense of eigenvalues) (example: Dn = (−1)nIn), we
will have {Dn} and {An} equally distributed even though it is not possible to associate a
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distribution function with either of them. On the other hand, if one of them distributes as a
function, then the other necessary has the same one. This is easy to prove using the definitions
(see also [19], Remark 6.1]).

Now, notice that a matrix sequence {An} is distributed as a pair (θ,G) if and only if the
sequence of linear functionals {φn} defined by φn(F ) =


λ(F,An) converges weakly to

the functional φ(F ) = 1
m(G)


G

F (θ(t))dt as in (7).
In this paper, we also introduce the concept of clustering and attraction of sequences {Λn}

to describe what the distribution result (in the sense of eigenvalues) really means about the
asymptotic qualities of the spectrum. Here Λn is the set of eigenvalues of An.

Definition 2.2. A matrix sequence {An} is strongly clustered at s ∈ C (in the sense of
eigenvalues), if for any ϵ > 0, the number of the eigenvalues of An off the disc

D(s, ϵ) := {z ∈ C, |z| < ϵ} (12)

can be bounded by a constant qϵ possibly depending of ϵ, but independent of n. In order
words

qϵ(n, s) := #{j : λj(An) ∉ D(s, ϵ)} = O(1) n → ∞

where #A means the cardinality of the set A.
If every An has only real eigenvalues (at least for large n) then we may assume that s is

real and that the disc D(s, ϵ) is the interval (s − ϵ, s + ϵ).

Definition 2.3. A matrix sequence {An} is strongly clustered as a nonempty closed set
S ⊂ C (in the sense of eigenvalues), if for any ϵ > 0 the number of the eigenvalues of
An off the disc

D(S, ϵ) :=

s∈S

D(s, ϵ)

can be bounded by a constant qϵ(n, S) possibly depending of ϵ, but independent of n.
Moreover

qϵ(n, S) := #{j : λj(An) ∉ D(S, ϵ)} = O(1) n → ∞.

Here


s∈S D(s, ϵ) is called the ϵ-neighborhood of S. If every An has only real eigenvalues
(at least for large n) then S is a nonempty closed subset of R.

Remark. When replacing the term “strongly” by “weakly” in the Definitions 2.2–2.3, one
has

qϵ(n, s) = o(n), qϵ(n, S) = o(n), n → ∞

in the case of a point s or a closed subset S. Finally, if we replace eigenvalues with singular
values we obtain all the corresponding definitions for singular values.

Remark. It is clear that {An} ∼λ(θ,G), with θ ≡ s (s being a constant function) if and only
if {An} is weakly clustered at s ∈ C (for more details and relations between the notions of
equal distribution, equal localization, spectral distribution, spectral clustering etc., see [19,
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section 4]). We introduce another interesting notion concerning the eigenvalues of a matrix
sequence.

Definition 2.4. Let {An} be a matrix sequence and let Λn be the spectrum of An. We say
that {An} is strongly attracted by s ∈ C (in the sense of eigenvalues), if

lim
n→∞

dist(s,Λn) = 0 (13)

where dist(X, Y ) is the usual euclidian distance between two subsets X and Y of the complex
plane. Furthermore, if we order the eigenvalues according to their distance from s, i.e.,

|λ1(An) − s| ≤ |λ2(An) − s| ≤ · · · ≤ |λn(An) − s|

then we say that the attraction to s is of order r(s) ∈ N∗, r(s) is a fixed number if

lim
n→∞

|λr(s)(An) − s| = 0, lim
n→∞

inf |λr(s)+1(An) − s| > 0

and that the attraction is of order r(s) = ∞ if

lim
n→∞

|λj(An) − s| = 0

for every fixed j. Finally, one defines weak attraction by replacing “lim” with “lim inf” in
(13).

Remark. If {An} is at least weakly clustered at a point s, then s strongly attracted {An}
with infinite order. Indeed, if there is an attraction of finite order r(s) then

lim
n→∞

#{λ ∈ Λn : λ ∉ D(s, δ)}
n

= 1

for some δ > 0 and this is impossible if {An} is weakly clustered at s. On the other hand,
there are sequences which are strongly attracted by s with infinite order, but not even weakly
clustered at s. Indeed, the notion of weak clustering does not say anything concerning weak
attraction or attraction of finite order.

Example. Let {An} be a sequence of matrices with An = 1
n+1In, where In is the identity

matrix of order n. Then An has one eigenvalue λn = 1
n+1 of multiplicity n. In addition, the

sequence {An} is strongly attracted by zero with infinite order, but not weakly clustered at
zero. Indeed, setting Λn = { 1

n+1 }, then limn→∞
1

n+1 = 0. But, there exists ϵn = 1
2n such

that qϵn(n, 0) = #{λ ∈ Λn : |λ| ≥ ϵn} = n.

Remark. It is obvious that any of the notions introduced in this section for eigenvalues has
a natural analogy for singular values, as explicitly described for the concept of distribution in
relations (7) and (8).

Now, let us recall the definition of the essential range which plays an important role in the
study of asymptotic properties of the spectrum.
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Definition 2.5. Given a measurable complex-valued function θ defined on a Lebesgue
measurable set G, the essential range of θ is the set S(θ) of points s ∈ C such that, for
every ϵ > 0, the Lebesgue measure of the set θ−1(D(s, ϵ)) := {t ∈ G : θ(t) ∈ D(s, ϵ)} is
positive, with D(s, ϵ) as in (12). The function θ is essentially bounded if its essential range is
bounded. Furthermore, if θ is real-valued, then the essential supremum (infimum) is defined
as the supremum (infimum) of its essential range. Finally, if the function θ is N × N matrix-
valued and measurable, then the essential range of θ is the union of the essential ranges of the
complex-valued eigenvalues λj(θ), j = 1, . . . , N .

Remark. S(θ) is a closed set because its complement in C is open.

Theorem 2.1 ([23]). Let θ be a measurable function defined on G with finite and positive
Lebesgue measure, and S(θ) be the essential range of θ. Let {An} be a matrix sequence
distributed as θ in the sense of eigenvalues, in that case, defining Λn to be the set of
eigenvalues of An, the following facts are true:

(a) S(θ) is a weak cluster for {An},
(b) each point s ∈ S(θ) strongly attracts {An} with infinite order r(s) = ∞,
(c) there exists a sequence {λ(n)}, where λ(n) is an eigenvalue of An such that

lim infn→∞ |λ(n)| ≥ ∥θ∥.

Theorem 2.2 ([12, Theorem 3.4]). Let {Bn} and {Cn} be two matrix sequences, where
Bn is Hermitian and An = Bn + Cn. Assume further that {Bn} is distributed as (θ,G)
in the sense of the eigenvalues, where G is of finite and positive Lebesgue measure, both
{Bn} and {Cn} are uniformly bounded by a positive constant C independent of n, and
∥Cn∥1 = o(n), n → ∞. Then θ is real-valued and {An} is distributed as (θ,G) in the sense
of the eigenvalues. In particular, if S(θ) is the essential range of θ, then {An} is weakly
clustered at S(θ), and S(θ) strongly attracts the spectra of {An} with an infinite order of
attraction for any of its points.

Theorem 2.3 ([23]). Let f, g ∈ L∞(T) be such that h = fg is real-valued. Then
{Bn} ∼λ(h, T) with Bn = Tn(f)Tn(g), S(h) is a weak cluster for {Bn}, and any s ∈ S(h)
strongly attracts the spectra of {Bn} with infinite order.

Theorem 2.4 ([23]). Let d ∈ N+ and let f, g ∈ L∞(Td) be such that h = fg is real-valued.
Setting Bn = Tn(f)Tn(g), then {Bn} ∼λ(h, Td), S(h) is a weak cluster for {Bn}, and any
s ∈ S(h) strongly attracts the spectra of {Bn} with infinite order.

With the above results we begin the study of the spectral distribution and the concept
of clustering and attraction in the sense of eigenvalues sequence of g-Toeplitz structures
{Tn,g(f)}, where f ∈ L∞(Td) is real-valued. As mentioned above, we recall that the aim
of this work is to give the general picture for any nonnegative vector g. Since the notations
can be quite heavy, for the sake of readability, we start with the case d = p = q = 1. Several
generalizations, including also the degenerate case in which g has some zero entries, are given
in Section 4, which imply that the general analysis can be reduced to the case where all the
entries of g are positive, that is, gj > 0, j = 1, . . . , d.
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Let f ∈ L∞(Td) (with d ∈ N) be real-valued, it is known by the famous Szegö theorem
that the Toeplitz sequence {Tn(f)} distributes (in the sense of eigenvalues) as the symbol f .
From relation (4), we can observe that Tn,g(f) = Tn(f)[ Zn,g |0] + [0|Tn,g]. Therefore, we
study separately the distribution of the two sequences {Tn(f)[ Zn,g |0]} and {[0|Tn,g]}, and
then apply Theorems 2.2–2.3 to obtain the distribution of the g-Toeplitz sequences. However,
in that case we have additional difficulties with respect to the Toeplitz sequences (for example,
see [15,16] in the case of singular value distribution). Of course, for g = 1 (unilevel case)
the g-Toeplitz matrix becomes the classical Toeplitz matrix, so the assumption made on the
symbol f guarantees the use of the famous Szegö theorem. In [15, page 22] it was shown that
the sequence {Tn,g(f)} where f ∈ L1(Td) be complex-valued distributes (in the sense of
singular values) as a symbol θf given by

θf (x, t) =


1

g

g−1
j=1

|f |2


x + 2jπ

g


, if t ∈ [0, 1/g),

0, if t ∈ [1/g, 1].

(14)

In the following, we prove that the sequence {Tn,g(f)} distributes in the sense of

eigenvalues as a symbol θ
(g)
f which is sparsely vanishing (in the sense introduced by

Tyrtyshnikov: the functions whose set of zeros has zero Lebesgue measure) if f is sparsely
vanishing, and the symbol θ

(g)
f equals zero whenever the parameter g is strictly greater than

1.

The following remark plays a fundamental role in the study of problem (p1) stated above.

Remark. For f ∈ L∞(T) real-valued and p, q ∈ L1(T) also real-valued, setting h = p + îq
(with î2 = −1) the following inequality holds π

−π

f(x)h(x)dx

 ≤ ∥f ∥∞

 π

−π

h(x)dx

 (15)

where | · | denotes the norm in C.

3. EIGENVALUE DISTRIBUTION OF g-TOEPLITZ SEQUENCES {Tn,g(f)}

In this section, we state main results namely Lemmas 3.1–3.4, and Theorem 3.1 which
are solutions of problems (p1)–(p3) stated at the beginning of Section 2. We deduce the
eigenvalue distribution of the sequence {Tn,g(f)} according to Theorems 2.1–2.2. Moreover,
we establish the relation between the asymptotic properties (clustering and attraction) of g-
Toeplitz sequences and the Toeplitz structures.

Lemma 3.1. The matrix sequence {[ Zn,0|0]} is distributed (in the sense of eigenvalues) as a
real-valued function which is uniformly bounded by a positive constant independent of n.
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Proof. If g = 1, the matrix [ Zn,g |0] = In, otherwise [ Zn,g |0] can be written as

[ Zn,g |0] =


1 0 . . . 0
∗ 0 . . . 0
... ∗

. . .
...

∗ ∗ . . . 0

 , (case where g > 1)

then the spectrum of [ Zn,g |0] (for g > 1) is Λn = {1, 0}, where 1 is an eigenvalue of
multiplicity 1 and 0 the other one of multiplicity n − 1. In addition, [ Zn,g |0] is a lower
triangular matrix, so for every F ∈ C0(C)

lim
n→∞

1
n

n−1
j=0

F (λj) =


F (1), if g = 1,
F (0), if g > 1.

Then

{[ Zn,g |0]} ∼λ(θ(g), T) (16)

where θ(g) =


1, if g = 1,
0, otherwise. is a real-valued function. �

Lemma 3.2. For any f ∈ L∞(T) real-valued, the matrix sequence {Tn,g(f)} is uniformly
bounded by a positive constant C independent of n.

Proof. Let us recall that,

∥Tn,g(f)∥2 = sup
x∈Cn,x≠0

x∗Tn,g(f)∗Tn,g(f)x
x∗x

.

Furthermore,

x∗Tn,g(f)∗Tn,g(f)x =

n−1
k=0

x̄k
¯̂
fk−gj

n−1

j=0

′ 
n−1
l=0

xlf̂l−gp

n−1

p=0

=
n−1
j=0

n−1
k=0

x̄k
¯̂
fk−gj

n−1
l=0

xlf̂l−gj

=
1

4π2

n−1
j=0

n−1
k=0

x̄k

n−1
l=0

xl

 π

−π

f(x) exp(̂i(k − gj)x)dx

×
 π

−π

f(x) exp(−î(l − gj)x)dx

=
1

4π2
Kn
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where

Kn =
n−1
j=0

 π

−π

f(x)
n−1
k=0

xk exp(−î(k − gj)x)dx



×

 π

−π

f(x)
n−1
k=0

xk exp(−î(k − gj)x)dx



=
n−1
j=0


 π

−π

f(x)
n−1
k=0

xk exp(−î(k − gj)x)dx


2

.

According to relation (15), we have that

n−1
j=0


 π

−π

f(x)
n−1
k=0

xk exp(−î(k − gj)x)dx


2

≤ ∥f ∥2
∞

n−1
j=0


 π

−π

n−1
k=0

xk exp(−î(k − gj)x)dx


2

.

So,

Kn ≤ ∥f ∥2
∞

n−1
j=0


 π

−π

n−1
k=0

xk exp(−î(k − gj)x)dx


2

= ∥f ∥2
∞


gj=≤n−1


n−1
k=0

xk

 π

−π

exp(−î(k − gj)x)dx


2

and because
 π

−π
exp(−î(k − gj)x)dx =


2π if k = gj,
0 otherwise, it follows that

Kn ≤ 4π2∥f ∥2
∞


gj=≤n−1

|xgj |2 ≤ 4π2∥f ∥2
∞ ∥x∥2

2. �

Proposition 3.1 ([15, page 21]). The sequence {[0|Tn,g]} is spectrally distributed (in the
sense of singular values) as the null function.

One deduces from Proposition 3.1 the following Lemma.

Lemma 3.3. For every f ∈ L∞(T), the following inequality holds

∥[0|Tn,g]∥1 = o(n), n → ∞.

Proof. Let p ∈ [1, ∞] and A and B be two matrices of size n. We have ∥A + B∥p ≤
∥A∥p + ∥A∥p and ∥AB∥p ≤ ∥A∥ × ∥B∥

p
. It follows from these inequalities and relation (4)
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that

∥[0|Tn,g]∥ = ∥Tn,g(f) − Tn(f)[ Zn,g |0]∥
≤ ∥Tn,g(f)∥ + ∥Tn(f)[ Zn,g |0]∥
≤ ∥f ∥∞ + ∥Tn(f)∥ × ∥[ Zn,g |0]∥
≤ 2∥f ∥∞ (17)

where the second formula follows from Lemma 3.2 and the last one holds because
∥[ Zn,g |0]∥ = 1.

In addition, we know by Proposition 3.1 that the sequence {[0|Tn,g]} is spectrally
distributed (in the sense of singular values) as the null function, whence for every F ∈
C0(R+

0 )

lim
n→∞

1
n

n−1
j=0

F (σj) = 0 (18)

where σj : j = 0, 1, . . . , n − 1, are the singular values of [0|Tn,g]. Relation (18) holds with
F (x) = x (which has a unbounded support), since by inequality (17), ∥[0|Tn,g]∥ ≤ 2∥f ∥∞,
and so the spectra of {[0|Tn,g]} are contained in the interval [0, 2∥f ∥∞]. Hence,

∥[0|Tn,g]∥1 =
n−1
j=0

σj = o(n), n → ∞. � (19)

Remark. The proof of Lemma 3.3 was concluded by taking into account the case where the
parameter g is strictly greater than 1. In the case where g = 1, we have Tn,g(f) = Tn(f) and
so [ Zn,g |0] = In, the matrix [0|Tn,g] becomes the identically null matrix.

Lemma 3.4. Let f ∈ L∞(T) be real-valued. Then the matrix sequence {Tn(f)[ Zn,g |0]} is

distributed (in the sense of eigenvalues) as a real-valued function θ
(g)
f ∈ L∞(T) given by

(see (24))

θ
(g)
f =


f, if g = 1,
0, if g > 1.

Proof. Since f ∈ L∞(T), then the sequences {Tn(f)} and {[ Zn,g |0]} are uniformly
bounded by a positive constant independent of n. According to relation (16), the sequence
{[ Zn,g |0]} is distributed (in the sense of eigenvalues) as the real-valued function θ(g) by
Lemma 3.1. f being real-valued, it follows from the famous Szegö theorem that the sequence
{Tn(f)} is distributed (in the sense of eigenvalues) as the symbol f .

Setting θ
(g)
f = f × θ(g), let us show that the matrix sequences {Tn(f)[ Zn,g |0]} and

{Tn(θ(g)
f )} are equally distributed (in the sense of eigenvalues). Here, it suffices to prove that

the two sequences have the same distribution function. Indeed: since {[ Zn,g |0]} is distributed
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(in the sense of eigenvalues) as the real-valued function θ(g), then the sequences {[ Zn,g |0]}
and {Tn(θ(g))} are equally distributed (in the sense of eigenvalues). Whence

[ Zn,g |0] = Tn(θ(g)) + Rn,g, with ∥Rn,g ∥1 = o(n), n → ∞. (20)

Multiplying equality (20) member by member by the matrix Tn(f), we get

Tn(f)[ Zn,g |0] = Tn(f)Tn(θ(g)) + Tn(f)Rn,g, with

∥Tn(f)Rn,g ∥1 = o(n), n → ∞. (21)

In fact, ∥Tn(f)Rn,g ∥1 ≤ ∥Tn(f)∥ × ∥Rn,g ∥1 ≤ ∥f ∥∞ × ∥Rn,g ∥1 = o(n), n → ∞.
Since f, θ(g) ∈ L∞(T) are real-valued then f × θ(g) is real-valued, so it follows from
Theorem 2.3 that the sequence {Tn(f)Tn(θ(g))} is distributed as the symbol θ

(g)
f = f × θ(g),

so the sequences {Tn(f)Tn(θ(g))} and {Tn(θ(g)
f )} are equally distributed (in the sense of

eigenvalues). One can write

Tn(f)Tn(θ(g)) = Tn(θ(g)
f ) + Rn,g, with ∥ Rn,g ∥1 = o(n), n → ∞. (22)

It follows from relations (21) and (22) that

Tn(f)[ Zn,g |0] = Tn(θ(g)
f ) + Rn,g, with ∥Rn,g ∥1 = o(n), n → ∞ (23)

where

θ
(g)
f =


f, if g = 1,
0, if g > 1.

(24)

From the assumption that f ∈ L∞(T) is real-valued, it follows that θ
(g)
f ∈ L∞(T) is also

real-valued. According to Szegö theorem, the sequence {Tn(θ(g)
f )} is distributed (in the sense

of eigenvalues) as the symbol θ
(g)
f . More precisely, {Tn(θ(g)

f )} is a sequence of Hermitian
matrices which are uniformly bounded by a positive constant independent of n. It is also

obvious that the sequence {Rn,g } is uniformly bounded by a positive constant independent
of n. So, we deduce from Theorem 2.2 that the sequence {Tn(f)[ Zn,g |0]} is distributed (in

the sense of eigenvalues) as θ
(g)
f . �

Remark. Setting S(θ(g)
f ) and S(f) the essential range of θ

(g)
f and f , respectively, then

S(θ(g)
f ) =


S(f), if g = 1,
{0}, for g > 1.

(25)

It follows from Theorems 2.1–2.2 that {Tn(f)[ Zn,g |0]} is weakly clustered at S(θ(g)
f ), and

S(θ(g)
f ) strongly attracts the spectra of {Tn(f)[ Zn,g |0]} with an infinite order of attraction

for any of its points.

Theorem 3.1. Let f ∈ L∞(T) be real-valued and g ∈ N∗, where g < n is a fixed
parameter independent of n. Then the matrix sequence {Tn,g(f)} is distributed (in the
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sense of eigenvalues) as the real-valued function θ
(g)
f ∈ L∞(T) given by (24). In addition,

{Tn,g(f)} is weakly clustered at S(θ(g)
f ) (in the sense of Definitions 2.2–2.3) and S(θ(g)

f )
strongly attracts the spectra of {Tn,g(f)} with an infinite order of attraction for any of its
points (in the sense of Definition 2.4).

Proof. One deduces from (4) and Lemmas 3.3 and 3.4 that

Tn,g(f) = Tn(θ(g)
f ) + Qn,g, with ∥Qn,g ∥1 = o(n), n → ∞ (26)

where Qn,g = Rn,g + [0|Tn,g]. The rest of proof follows from Theorems 2.1–2.2 and the
Szegö theorem. �

We end this section by a simple example which confirms our distribution result. For the
sake of simplicity, we consider the case where the symbol f ∈ L∞(T) is a constant function
and the parameter g is strictly greater than 1. For g = 1, Tn,g(f) is the classical Toeplitz
matrix Tn(f) and so the distribution formula (26) holds thanks to the famous Szegö theorem.

Example. Let f = α be a non null constant function. The entries of Tn,g(f) are given by

f̂r−gs =
1
2π

 π

−π

α(x) exp(−î(r − gs)x)dx =


α, if r = gs,
0, otherwise,

for r, s = 0, 1, . . . , n − 1. So, Tn,g(f) is a lower triangular matrix having as eigenvalues α of
multiplicity 1 and 0 of multiplicity n − 1. So, for every F ∈ C0(C) continuous with bounded
support, we have

Σλ(F, Tn,g(f)) =
1
n

F (α) +


1 − 1
n


F (0)

then

lim
n→∞

Σλ(F, Tn,g(f)) = F (0) =
1
2π

 π

−π

F (0)dt.

So

{Tn,g(f)} ∼λ(0, T).

Remark. Another useful argument of our distribution result (given by Theorem 3.1) is
justified by the fact that the distribution function θ

(g)
f given by (24) is more sparsely vanishing

than the distribution function θf (·, ·) given by (14) (case of singular values). For more notions
on the sparsely vanishing functions and also the sparsely vanishing matrix sequences (for
example, see [9]). The reason follows from the fact that the number of non zero eigenvalues
of a matrix is less or equal than the number of its non zero singular values. There is equality
if the matrix is Hermitian (or at least normal). To see this, let us consider the matrix [ Zn,g |0],
with g > 1 defined in relation (4). According to the proof of Lemma 3.1, the eigenvalues
of this matrix are 1 (with multiplicity 1) and 0 (with multiplicity n − 1). Furthermore, it is
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easy to prove that [ Zn,g |0]∗[ Zn,g |0] =


Iµg 0
0 0


where Iµg

is the identity matrix of size

µg = ⌈ n
g ⌉. Then its singular values are 1 (of multiplicity µg) and 0 (of multiplicity n − µg).

Remark. The fact that the distribution function is not unique should not be a surprise. In this
work, we have assumed that the symbol f of Toeplitz (or g-Toeplitz) sequences is real-valued
and essentially bounded in view to use the Szegö theorem (for eigenvalue distribution of
Toeplitz sequences). Now, the question is to know if something can be said on the eigenvalue
distribution of g-Toeplitz sequences when the generating function is just real-valued. In
that precise case the idea is to use the result of Tilli, Tyrtyrshnikov/Zamarashkin ([25,26],
1990) which says that a Toeplitz sequence generated by a real-valued integrable function is
distributed in the sense of eigenvalues as the symbol.

4. GENERALIZATION TO BLOCK AND MULTILEVEL SETTING

We start this section by recalling that it is proven in [23] that the sequence {Tn(f)Tn(g)}
is distributed (in the sense of eigenvalues) as the symbol h = fg with f, g ∈ L∞(Td) (d ∈ N,
d > 1, T = (−π, π)) such that h = fg is real-valued. If S(h) denotes the essential range
of h, then S(h) is a weak cluster for {Tn(f)Tn(g)}, and any s ∈ S(h) strongly attracts the
spectra of {Tn(f)Tn(g)} with infinite order (see also Theorem 2.4). This fact is sufficient for
extending the proof of the relation {Tn,g(f)} ∼λ(θ(g)

f , T) to the case where θ
(g)
f is defined as

in (24) with the function f ∈ L∞(Td) is real-valued.
Let us consider the general multilevel case, where f ∈ L∞(Td) is real-valued and matrix-

valued. When g is a positive vector, we have

{Tn,g(f)} ∼λ(θ(g)
f , Td) (27)

where

θ
(g)
f =


f, if g = e,
0, for g > e,

S(θ(g)
f ) =


S(f), if g = e,
{0}, for g > e,

(28)

and all the arguments are extended componentwise, that is, g = e and g > e, respectively,
means that gr = 1 and gr > 1 for r = 1, . . . , d. In addition, S(θ(g)

f ) is a weak cluster for

{Tn,g(f)} (in the sense of Definitions 2.2–2.3) and any s ∈ S(θ(g)
f ) strongly attracts the

spectra of {Tn,g(f)} with an infinite order (in the sense of Definition 2.4).

5. GENERAL CONCLUSIONS

In this paper, we have studied the spectral distribution in the eigenvalues sequence of g-
Toeplitz structures and then we have provided an analysis of the concept of clustering and
attraction of these sequences. The generalization to the block and multilevel setting (case
where the parameter g is a vector with positive integer entries) has been considered. We have
also worked under the hypotheses that the generating function f of g-Toeplitz sequences
is both real-valued and essentially bounded so that the famous Szegö can be used for the
Toeplitz case. Since Tilli, Tyrtyshnikov/Zamarashkin [25,26], independently, have proven the
same distribution formula under the only assumption that the symbol f ∈ L1(T) is real-
valued, this latter point will be the subject of our future investigation for the g-Toeplitz
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structures. Other interesting problems will be the study of eigenvector behaviors both for
g-Toeplitz and g-circulant matrices.
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