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Abstract. By proving the required auxiliary results, two Boehmian spaces are con-
structed for the purpose of extending the curvelet transform to the context of Boechmian
spaces. A convolution theorem for curvelet transform is proved. As an application, the
curvelet transform is consistently extended from one Boehmian space into the other
Boehmian space and its properties like linearity, injectivity and continuity with respect
to J-convergence and A-convergence are obtained.
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1. NOTIONS AND NOTATIONS

We denote the set of all natural numbers, the set of all non-negative integers, the set of
all real numbers, the set of all complex numbers and the set of k-tuples of real numbers,
respectively by, N, No, R, C and R¥, where k € N. We also use the following notations
in this article.

1. S=(0,a) x R* x [-7,n] C R, for some a, € (0,7?).

2. 2R = {1 R = C:|fll, = (Ju F P dx) < o0} p=1,2,

3. f(t) = [o f(x)e™ ™ dx,Vt € R, for each f € #'(R?), where X - t is the usual
scalar product of x and t in R>.

4. Z(f) = f = £* —lim,_.f,, where f, € Z'(R*)NL*(R*),VneN and f =
£? —lim, .. f,, for each f € Z*(R?).
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5. L2 (R) ={f e L (R): f(t)=0,vt € E}, where ECRxR is the set
{re’w:0<r<% or —7r<a)<\/a_0}.

6. Z(R?) is the Schwartz space of all infinitely differentiable complex valued func-
tions on R? with compact supports.

7. Z=F(2(R?), the image of Z(R?) under Fourier transform.

8. 7, (R?) is the space of all infinitely differentiable complex valued functions on
R? such that [, |f® (x)|* dx < +oo, Vk € NJ. For more details about this space,
we refer to [19]. The dual space of Z,:(R?) is denoted by Z/,,(R?).

Since the classical Fourier transform represents a given signal in terms of its fre-
quency contents but with no time information, it is not efficient to process the non-sta-
tionary signals. By the introduction of wavelet transform, signals can be localized in
both time and frequency. There are plenty of nice works on wavelets in the literature,
to mention a few, we refer to [7-10,12—-14]. As a refinement of wavelet transform, ridg-
elet transform is introduced by E.J. Candes [2,3], which is a hybrid integral transform
formed by using wavelet transform, radon transform and Fourier transform. Since the
ridgelet transform represents the images in recto-polar grids, the series representation
of the signal by ridgelets converges faster than that by wavelets. Later, the curvelet
transform has been recently introduced by E.J. Candes and D.L. Donoho [4,5], which
has the ridgelet transform as a component and it is widely applied in image processing
[27,28].

Now we recall the theory of continuous curvelet transform on fﬁo (R?) from [5]. Let
W,V € 2(R) satisty the following admissibility conditions.

(AD) W(u) > 0,5u € (5,2), W(u) = 0,%u ¢ (},2), and [} (W ()’ L= 1.
(A2) V(1) > 0,Vr € (—1,1),¥(t) =0, Ve ¢ (~1,1) and [*, (V(1))* de = 1.

For 0 < a < ay, let 7,4, be the inverse Fourier transform of A,, where

A (re”) = W(a r)V(w/ya)a*, vre® € R*\ {0}, with —n <o < 7. (1.1)
We observe that 7,90 € Z as A, € Z(R?), for all a € (0,a). We also define
Pan0(X) = Taoo(Ro(x — b)), ¥x € R, (1.2)
where Ry = cos 0 sin0 , which is the 2-by-2 planar rotation matrix effecting
—sinf cos@

clock-wise rotation by 0 radians; in other words, Ry(x —b) is simply the product of
the two complex numbers e and x — b.

Definition 1 (Curvelet transform). For f € #*(R?) the curvelet transform is defined by

(T/)(a,b, 0) = / TanaKI(x) dx, ¥(a,b,0) € S. (1.3)

R

Theorem 2. Let '€ £*(R?) have a Fourier transform vanishing for |&| < % Then the
inversion formula of the curvelet transform is given by
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flix) = /g(l“f)(a,b,O)yanbﬁ(x)%dbdﬁ, Vx € R2. (L.4)

lf“z = |Hrﬂ||2

While we probe into the proof of the above theorem, to know the reason for introduc-

Under the same assumption, we also get the Parseval’s identity,

ing the condition that fis vanishing on the open ball B(O, %) in R?, we could observe that

the authors of the paper [5] introduced this condition to achieve the identity
2 ~

o 02 " War)? V(%) a*?d0% = 1,Vre™ on the support of £, which is required to prove

both conclusions of this theorem. Though, the above condition is useful to get

a'? [ war)’a¥? % =1, for r > - we note that o (‘“ 9) df = a'’* could not be ob-

tained for all we (—mn,n) or for all e (0,2n). Indeed, f (“”f)d@z

a

a'? [%, v(1)*dr, which is equal to a'/? iff (—=1,1) C (“\/2" y-) since V is supported on
g

(—1,1)and fll V(1)*dt = 1. This is possible only for @ € (v/a,2n — +/a). Hence it is nec-
essary to restrict @ such that (—1,1) C (‘”&5“ , %) and the bounds of w should be indepen-

dent of a. The one possible better restriction on @ so that (—1,1)C (“’&5“,‘7”0) is

Vay < o < m. Thus the above theorem is valid if the condition “f(&) = 0, for |¢] < 020 ”
is modified as “f(rei®) = 0, for 0 < r < Lor —m << \/d.”

This is the motivation for introducing the space Efto (R?) at the beginning of this section.

On the other hand, motivated from the Boehme’s regular operators [1], the concept of
Bochmians was first introduced by J. Mikusinski and P. Mikusinski [15] and two notions of
convergence called 6-convergence and A-convergence on a Boehmian space are introduced
and discussed in [16]. From these remarkable works, a new avenue was opened in the area
of generalized functions and lot of integral transforms have been extended on different
Boehmian spaces. For a complete bibliography on Boehmians, we refer the reader to the
website http://mikusinski.cos.ucf.edu/boehmians.pdf. In particular, the wavelet transform
and ridgelet transform are also extended to the context of Boehmians. See [20-26].

In this article, we prove a suitable convolution theorem for the curvelet transform.
Further, very first time the curvelet transform is extended to the context of Bohmians
by constructing two Boehmian spaces, one is for the domain and the another is for the
codomain of the extended curvelet transform. Then we prove that the extended curvelet
transform is well-defined, consistent with the classical curvelet transform, linear, one-
to-one and continuous with respect to the two notions of convergences in the context of
Boehmians. Finally, we justify that the domain of the extended curvelet transform is
properly larger than &, (R?).

2. BOEHMIAN SPACES
From [18], we briefly recall the construction of an abstract Boehmian space

% =2%(G,(S,-),®,A), where G is a topological vector space over C, (S, -) is a commu-
tative semi-group, ® : G X S — G satisfies the following conditions:
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L. (g +8)0s=g 0s+g Os,Vg,8 € Gand Vs € S,

2. (cg) ©s=c(g®s),YceC,Vge Gand Vs €S,
3.20(s-t)=(g®s)®t,Vge Gand Vs, € S,

4. Ifg, - gasn—ooinGandse S, theng, ©s —gOs as n— oo;

and A is a collection of sequences from S with the following properties:

1. If (s,), (¢,) € A, then (s, - 1,) € A,
2.Ifg,—gin Gasn— oo and (s,) €A, then g, ®s, » gasn — oo in G.

A pair of sequences ((g,), (s,)) with g, € G,Vn € N and (s,) € Ais called a quotient if

g, O Sm =g, Os,, Ym,n € N and is denoted by g" . The equivalence class { (gﬂ contain-

1ng (&) 1nduced by the equivalence relation ~ deﬁned on the collection of all quotients by

(gn) (ha) .
~ lfgnQI,n:hm@Sn, V}’n’nef\]
(S”) (tn)

is called a Boehmian and the collection of all Boechmians % is a vector space with
respect to the addition and scalar multiplication defined as follows.

] - [ -]

Every member g € G can be uniquely identified as a member of % by [g”’)”} where

(t,) € A is arbitrary and the operation ©@ is also extended to # xS by

(sn)
and A-convergence which are defined as follows.

|:9n } Ot = [gnv/ } There are two notions of convergence on # namely J-convergence

Definition 3 [16, o-convergence]. We say that X, 2 X as m — oo in A, if there exist

S & € G,mneN and (s,) € A such that X, = [(f;':’;)},)(: {(g:))] and for each
neN, g, —g,asm— ooin G.

Definition 4 [16, A-convergence]. We say that X, A X as m— oo in A, if there exist
g, €G,YmeN and (s,) €A such that (X, — X)®s, = [%] and g, — 0 as
m — oo in G.

We construct the Boehmian space %, (R*) = #(Z; (R*), (£'(R*), *),*, A7), where
x denotes the convolution that is defined by

/fx— y) dy, Vx € R® (2.1

and A7 is a collection of all sequences (¢,) from £'(R?) satisfying the following
conditions.

(A1) [o ¢u(x) dx =1,Yn € N.
(A) [ |¢ | dx < M,¥n € N, for some M > 0.
(As) For each 6 > 0, [, x|, (x)| dx — 0 as n — co.
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This collection of sequences is similar to the one introduced by P. Mikusinski in [17].
Lemma 5. If f€ £ (R*) and ¢ € L' (R?), then [+ ¢ € £, (R?).
Proof. First we prove that

1+ ¢l < AN (2.2)

If ||¢]l, = O, then the inequality is obvious. Otherwise, |¢(y)| Hi_\yll is a probability mea-
sure on R?. Thus, we get

ol = [ | [ Aix=viotw) ay
<llolf | (/ -9 1)
<o} [ [ nx= 9Pl s

(since > > is a convex function on [0, o)

2
dx

and by Jensen’s inequality)

<10l [, [ 1nx=nPiocy )‘d"nqsnl

(by Fubini’s theorem)

= ol [, [ 1) da foto) ay

(Applying the change of variable z=x —y)

= RNl

For f, € #'(R*) N #*(R?),¥n € N such that f, — f in #*(R?) as n — oo, we have
foxd — fx ¢ in Z*(R?) as n — oo (by the estimate (2.2)) and hence

(/+9) =2~ lim(f,+§) = £~ lim].$ = ]3.

Thus (f* (33) vanishes at all points at Whichf vanishes. This completes the proof of this
lemma. O

Lemma 6. If f,g € 32(]([R§2), ¢, € L' (R*) and o € C, then

L (f+g*dp=f+dp+gxg.
2. (af)x ¢ =oa(f * ).

3. px =Yg

4 fx(dxyp) = (f* ).

The proof of the lemma is well known.
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Lemma 7. Iff, — fin ffio([l%z) and ¢ € L1 (R?), then fy, ¢ — f* ¢ asn— oo in ,ffﬁo(Rz).
The proof of this lemma follows immediately from the estimate (2.2).
Lemma 8. 1f(¢n)7 (l//n) € AT’ then (¢n * l//n) € AT-

Proof. Since verifying the first two properties (A;) and (A,) of (¢, * ) is straightfor-
ward, we prove the property (Asz) for (¢, *,).

Let € > 0 be given.

X n*Vn) X dx = X n\X = n dy|dx
[0 /|| | [ sx v

/x|>5/ X[, (x = y)[[¥,(y)|dydx

< / / N = I )y

(by Fubini’s theorem)

< [0 = vl v)lasdy

< [ [ v el o, )iy
< [ [ 31+ i@l o)y

< [ [ W16.@10, 3 deay
[ [ o,y

=1, + J, (say)

Using [\ [¥I[¥,(y)ldy — 0 as n — oo, we choose N; € N such that [, |y[[,(y)|dy
<e€Vn = Ny
Now for n = Ny, we have

I" N /[R2 /Rz |y‘|¢”(z)||l//n(y)|dZdy
= [ W01 1o ay

<y [ Iyl
:

- M y ’ 1
M yl<e d n ) d;

<M (M + 1)e.
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Therefore, I, — 0 as n — oo. By a similar argument, we get that J, — 0 as n — oo and
hence (¢, xy,) € Ar. O

Lemma 9. If f € Lﬁio(W) and (¢p,) € Az, then fx ¢, — fas n — oo in gio([Rz).
Proof. For a given ¢ >0, using the denseness of C.(R?) in #*(R*), we choose

g € C.(R?) such that ||f — g||, < e. Since g is uniformly continuous on R?, there exists
6 > 0 such that

lg(x) — g(y)| < ¢, whenever x,y € R* with |x —y| < 4.

Now, for each n € N, we get

lex ¢~ glh = [ 1+ (0 - g0

— [ | [t =iy - et [ aumdy
(by using property (A1) of (4,))

/(/ lg(x = ¥) = g(x)l[, (¥ )|dy)2dx
= [ ([ 1oietx—v - <>|'”¢<”f' y) s

2 16,(3)]
</ / 14, 17l20x ~ ) — 200 5 Ly

(Since > #* is a convex function on [0, c0)

2
dx

and by Jensen’s inequality.)

= 10ull [ [ letx =) = g0 16,5y
1l [ [ letx =) = et i (vl

(by Fubini’s theorem)

< [ [ letx =) - gl g,y

(where M > 0 is as in property (A;) of (¢,))

<M g(x —y) — g(x)*|, (y)|dxdy

ly|<é JR?

+M lg(x = y) — g(x)[*|, (y)|dxdy

ly|>o JR?

= Ti(n) + Tx(n) (Say)
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Now

nw<M/5£ﬂmwam

where K is a compact set containing (Bs(0) + supp g).

gm%m/ b, (y) |y

lyl<o
where m(K) is the Lebesgue measure of K.
< MPém(K).
Next by using the property (A;) of (¢,) € Ar, we choose Ny € N such that

[ ligvdy < e, v > o
[y|=é
Therefore, for n = Ny, we have

i <o [ ([ Getx= i+ et e ), )y
<nr [ ([ 206ty +le0Paix) (6,01

ly|>é

<antlel [ vl vllgnlay

ME
< 4M|gl35 e,
Therefore,
lg * ¢, — glli < Me(Mem(K) +4[lgl0 ™) (2.3)

Now, for n = Ny, using the estimate (2.2), we obtain that

“f* (rbn 7f”2 = “f* (,an —g* (rbn +g* (rbn 7g+g7<ﬂ|2
<|fx o, —g*dull, + llg* ¢, —gll, + If — 2l

<G~ bl + e Mam(K) + 41135 ) +

<= gllleall, + \/Me(Mem(K) n 4||g||§5-1) +e

< Me+ \/Me(Mem(K) + 4||g||§5_1) +e

Therefore [+ ¢, — fin 2 (R*) asn — oo. [

ap

Lemma 10. If f, — fasn — oo in gﬁo(ﬂ%z) and (¢,) € Az, then [, x ¢, — fasn — oo in
22 (R?).
ap

Proof. For alln e N,
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Vo x b =Sl < NUn = 1) % bl + [If* b = A1l
< NG =DMl pully + 1+ by =1l
< Mfu =1l + I+ ¢ = Al

where M > 0 is as in the property (A;) of (¢,). On the right hand side, the first term
tends to zero by hypothesis, and the second term tends to zero by applying the previous
lemma, as n — oo. Hence the lemma follows. [

Next we prove the auxiliary results required to construct another Boehmian space
which will contain the extended curvelet transforms of square integrable Boehmians.

In the following sequel, we shall use the notation £*(S) to denote

1/2
{F:S — C:|||All, < oo}, where |||l = ([ [Fa,b, 0) " & dbdb)

Definition 11. Let F € £(S) and let ¢ € #'(R?). Define
(Fx ¢)(a,b,0) :/ F(a,b—1y,0)p(y) dy, Y(a,b,0) €S
RZ

Lemma 12. If Fc €X(S) and ¢ € LY (R?), then |||Fx |||, <||Fll,Io|l, and
Fx ¢ e 2X(S).

Proof. If ¢ is identically zero, then the lemma follows obviously So, we assume that ¢
is not identically zero. Therefore, ||¢||, # 0 and hence |p(y)| 2~ T4 is a probability mea-
sure on R?. Using Jensen’s inequality and Fubini’s theorem, we get that

e ol = [ | [ Flab 3. 0005
<loti [ ([, ran-vo) oy >|”¢|1) 44 o

dy da
<1l [ [ 1Fab =y 0o G

(since > > is a convex function on [0, o))
da
=19l [, [ 1Ft@b .07 %5 vaoloy)] ay

da
ol [, [ 1Fae.0) 55 dedol ()] y
r2 Js a
(Applying the change of variable ¢ =b —y)
= [[IF ]l

This completes the proof of this lemma. [

" da S dbdo

Lemma 13. If F, — F in €%(S) as n — oo and ¢ € L (R?), then F, x ¢ — Fx ¢ in
2(S) as n — .
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Proof. The lemma follows from the inequality, |||F x ¢|||, < |||F]||,|l¢]l;» which is
obtained in the proof of the previous lemma. [

Lemma 14. Let F,F\,F, € £X(S),c1,¢; € C and ¢, $,, p, € L (R?). Then

(01F1+02F2)X¢:C1(F1X¢)+CQ(F2X¢).
2.F x (¢ ) = (F X ) X ¢,

Proof. The proof of the first statement is straightforward and hence we prove only the
second statement. Let (a,b,8) € S be arbitrary. Using Fubini’s theorem, we get

(Fx (% §2))(a,b, 0) = /F( —x9/d> X~ y)a(y) dy dx

/Rz /R 0)$1(x —y) dxy(y) dy

— [ [ Fab— @+ y).000,) douty) dy
R? JR?
(replacing x by z through z = x —y)

= [(Fx @)@ - y.000u(y) dy
P

= ((Fx ¢,) x ¢,)(a,b,0).

This completes the proof of this lemma. O
We can prove the following two lemmas by slightly modifying the proofs of Lemmas

9 and 10.
Lemma 15. If F € €%(S) and ($,) € Az, then F x ¢, — F x ¢ in 2*(S) as n — oo.
Lemma 16. If F, — Fin £(S) as n — oo and (¢,) € Az, then F, x ¢, — F in £(S) as
n— oo.

Thus the Bohmian space %*(S) = 2(2*(S), (£ (R?),*), x,As) has been con-
structed. Next, we prove the convolution theorems which are applied to extend the
curvelet transform to the Boehmian space %’ﬁo(Rz) in the next section.

Lemma 17. For 0 < a < ay and 0 € [—n, 7,
a00(re®) = W(a r)V((w — 0)/va)a"?*, Yre® € R*\ {0}.

Proof. First we observe that if x - y is the usual scalar product of two vectors in R,
then

eiw . ei(n+9) i(w—0)

e e’ (2.4)

For 0 < a < ap and 0 € [—=, 7],
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Va() g(re’“) [Rz Va,o,o(Ro(peié)) —irel®. pelt d(pe’t)
B /[Rez Taoo(peED)e e g pet)
/ Taoo(pe™)e e el d(pe™)

(using the change of variable n = { — 0)
— / Va,o,o(Pem) —irel(©@=0). peil d(pein) (using 24)
R?

- Vaoo(”e(w )
= W(a r)V((w—0)/va)a** (using 1.1)

Hence the lemma follows. 0O

Theorem 18 (Convolution theorem). If f€ ,Sﬁio([Rz) and ¢ € L' (R?),

[(f+ ¢) = (If) x ¢.

Proof. Let (a,b,6) € S be arbitrary. Applying Fubini’s theorem, we get that

(= ) (@b.0)z = [ T $)() ds

/ /abe /fx— y) dy dx
— [ [ eax = y) dxty) ay
= [ [ i@y desiy) a

(applying the change of variable z =x —y)
= [ [ sa@) de b(y) dy - (Using (1.2)

= [ o=yt dy

= ((If) x ¢)(a,b,0).
Thus the proof is completed. O

3. EXTENDED CURVELET TRANSFORM

then

Definition 19. The extended curvelet transform I : %fm(ﬂ%z) — %%(S) is defined by

r({&”}ﬂ) — [(T£)/(6)).
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Lemma 20. The above definition is well defined.

Proof. Let [f" } € B (R%). Then f, € £ (R*),Vn € N and (¢,) € Ar.

This implies that I'f, € 2*(S),Vn € N and

fl"l * ¢m :fm * ¢n7 vmﬂn 6 N
Applying Theorem 18, we get

(Tf) x ¢,, = (Tfy) X ¢,, Ym,n € N.
Therefore, [(I'f,)/(¢,)] is a Boehmian in %, (R*). Next we show that the definition of I
is independent of the choice of the representatives of the Boehmians. If [%} = {%} in
@iO(W). Then we have

f;l * lp”'l = gm * (bn? vm”/l 6 N'
By applying curvelet transform and by using Theorem 18, we obtain that

rf;l X lpﬂ‘l = rg"1 X ¢)77 vm’n E N'

Thus, T ([((? ) = F( {%D in #°(S) and hence I : %2 (R*) — #°(S) is a well defined
function. ™ | ' '

We note that the extended curvelet transform I : QQO(W) — #(S) is consistent
with the classical curvelet transform I': .2 ([Riz)—>22(8). More explicitely, if
I L (Rz) &’ ([F\Rz) and .7, : ¢4(S) — 932(§) are the identification mappings
deﬁned by

(/* ¢)

71 = [w”}mmmnzwxam@m

where (¢,) € Ar is arbitrary, then (I'o ) (f) = (S20T)(f), Vf € 330([}'\?2)
Indeed, if f € S’iﬂ(Rz), then

wofmn:rwg?q=Knﬂ¢mmm»=Mmevwm=c%omw.

Theorem 21. The extended curvelet transform T : f%’iu(l}%z) — B%(S) is linear.

Proof. Proof of this theorem is straightforward by using Theorem 18 and the linearity
of the curvelet transform T : 33()([R€2) — 2%s). O

Theorem 22. The extended curvelet transform T : @fto(Rz) — B%(S) is one-to-one.

Proof. Let X € %, (R?) be such that "X = 0. If X = {(/n } then by assumption, we have
[(Tf,)/(¢,)] =0, and hence I'f, x ,, =0, Vm,n € N. Then, applying Theorem 18, we
get I(fy ) =0, Vm,n € N. Using the injectivity of I' : > (R*) — £3(S), we obtain
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that £, «,, = 0, Vm,n € N. So, by Lemma 9, we have f, = lim,,_.«f, * 4, = 0,Vn € N.

Therefore, X = 0 and hence I is one-to-one, since it is a linear map. O

Theorem 23. The range of extended curvelet transform T : %, (R*) — #°(S) is the
subspace of #*(S) consisting of all Y having a representation [(F,)/(\r,)] with
F, e T(Z; (R*)),Vn € N.

Proof. By definition, if Y € F(ﬁi(j(ﬂ%z)), then there exists {(({;’ } € ,%2 (Rz) such that

F([((g’)D =Y. Obviously, [(Tf,)/(¢,)] itself is a required representation of Y.

Conversely, let Y € #*(S) be such that Y has a representation [(F,)/(y,)] such that
F, e F(fﬁo(RQ)), vn e N. Then, there exists f, € $§0(R2) such  that

I'f,=F,vneN. We claim that [&”)J is a Boehmian in %’flo(Rz). From
[(F.)/(,)] € #°(S), we have

(Tf) x ¥, = F, x, = F, xy, = (If,) x,,Vm,n e N.
Then Theorem 18 implies that

I'(fu«y,) =Tn*y,), Vmn e N.
By invoking the injectivity of I : .,?in(ﬂ%z) — £%(S), we obtain thatf, xy, =
S, Vmn €N and hence our claim holds. Then, {(’—)} € %4, (R*) and

()
r([@#]) = @) = (E/w,)] O

As an immediate consequence of the previous theorem, we can describe the range
I'(#. (R%)) as the Boehmian space @3( (32 (Rz)) (ZLY(R?), %), ><,AT>. At this junc-

[}

ture, we point out that characterizing l"(ffm( 2)) is an interesting open problem.

Definition 24. The extended inverse curvelet transform F(%flo([REz)) —n@flo(Rz) is
defined by T'[(F,)/(¢,)] = "G5, VI(F)/(6,)] € T(#8 (RY)).

Theorem 25. If X € #, (R*) and ¢ € L' (R?), then T(X = ¢) = T'(X) x ¢.

(¢n)

)

(T * )/ ()]
(Tfa x )/ (b )]
(I7, )/( w)] X

Proof. Let X = [(f")] Then, applying Theorem 18, we obtain that

[
[
[

I'(X) x
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Thus the theorem follows. O

Theorem 26. The extended curvelet transform T : %>

HO(RQ) — B%(S) is continuous with
respect to d-convergence as well as A-convergence.

Proof. Let XmiX as m — oo in ;%’io([Riz). Then by [16, Lemma 2.4], there exists

SonmSu € L5 (R?) and (¢,) € Ar such that X,, = [Y;}’;:’;},X: [((;:)J and

foreachn e N, f,, — f, in fﬁo(Rz) as m — oo.
Since I": fﬁo(W) — £%(S) is continuous we have
Ifyn — If, as m — oo in £(S).

Since TX,, = [(Tfun)/($,)], Vm € N and TX = [(T£,)/(¢,)], we get TX, >TX as
n — oo in #(S).

Let X,—X as n—oo in @flo(ﬂ%z). Then by definition, there exists
h, € .,%lzlo(le),Vn € N and (¢,) € Ar such that

hn * ¢k
br

Since the curvelet transform I : £, (R*) — £*(S) is continuous, I, — 0 as n — oo in
2%(S). Applying Theorems 21 and 25, for each n € N, we obtain that

(X"X)*d)n[ },VnGNandhnHOinfio(le)asnﬂoo.

TX,—-TX)x ¢,=T(X, — X) x ¢,
= F((‘Xn - X) * d)n)
_ (hn * d)k)
=[5
= [(F(h" * ‘f’k))/(d’k)]
= [(Thy x &) /(1))

Therefore, it follows that I'X,, A I'XYasn— oo in ﬂz(S). Hence, I is continuous with
respect to A-convergence. [

By a similar set of arguments used for extended curvelet transform, one can prove
that extended inverse curvelet transform also is consistent with the inverse curvelet
transform on I’ fio([l%z) and continuous with respect to d-convergence as well as
A-convergence.

4. CONCLUSION

We slightly modify the example of a Boehmian not representing any distribution given
in [16], so that it belongs to ﬁﬁO(RZ). Since Za((';;!))! =Y ;=5 < oo, by Denjoy-
Carleman theorem [11,6], we conclude that C{(2n)!} is not a quasi-analytic class.
Therefore there exists ¢ € Z(R*) such that ¢(0)#0 and ¢*(0) =0, Vk € N2 with
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sup,.p2| ™ (x)| < BB¥(2K)!, for some B, B € (0,00), where k = (ky, k), [k| = k| + k»,
and (2k)! = (2k)!(2k,)!. For each n € N, define

- ¢,(1k>(x) 2 2
fu(x) = ZW, Vx € R*, where ¢,(x) = n*¢(nx), Vx € R.

If X= {((q’;”))], then X is a C*°-Boehmian and it does not represent any distribution. To

prove that this Boehmian X belongs to ﬁﬁU(Rz), we first note that if
Yy e 2'(RHN gio([Riz) is such that [ (x) dx =1 and [ [x| [¥(x)| dx < co, then

() € Az, where ,(x) = n*y(nx), Vx € R?, Vn € N.
If we choose, (,) € Ar as described above, by using Lemmas 5 and 8, we get
o, € £ (R),VneN (since f, € 2(R’)c £'(R°) and , € Z; (R*) and

(¢, x,) € Ar. Therefore, X = [((Q)J - [&”i‘ﬁ;ﬂ € %, (R*). In fact, the space
(wsy)

',»(R?) is identified as a proper subspace of %y by the map u— [W}’ where (1,)
is as described above and (u * ¥, )(x) = (u(t), ¥, (x —t)), ¥Vx € R%.
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