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Abstract. Let R be a commutative ring and I be an ideal of R. The ideal
based zero-divisor graph, denoted by ΓI(R), is the graph with the vertex set
{x ∈ R − I : xy ∈ I for some y ∈ R − I} and two distinct vertices x and y are adjacent
if and only if xy ∈ I . In this paper, we classify all finite quotient rings R/I and ideals I of R

for which the crosscap of ΓI(R) is at most one. Moreover, we investigate certain properties
on the crosscap of ΓI(R) in the general case also.

Keywords: Zero-divisor graph; Ideal based zero-divisor graph; Local ring; Crosscap of a
graph
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1. INTRODUCTION

Through out this paper R denotes a commutative ring with 1 ≠ 0. Let I be an ideal
of R and Z(R) be the set of all zero-divisors of R. The study of zero-divisor graphs has
become an exciting research topic in the last twenty years, leading to many fascinating
results and developments. The concept of the zero-divisor graph of a commutative ring
was due to Anderson and Livingston in [3]. For a commutative ring R, the zero-divisor
graph of R, denoted as Γ (R), is the graph whose vertices are the non-zero zero-divisors
of R and two distinct vertices x and y are adjacent if and only if xy = 0. Several au-
thors extensively studied about the zero-divisor graph of a commutative ring R, for in-
stance see [2,3,10]. Recently, Redmond [11] generalized the concept of zero-divisor graph
and introduced the ideal based zero-divisor graph of R. For an ideal I of R, the ideal based
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zero-divisor graph ΓI(R) is a graph with vertex set {x ∈ R − I : xy ∈ I for some y ∈ R − I}
and in which distinct vertices x and y are adjacent if and only if xy ∈ I . In the case of
I = {0}, ΓI(R) = Γ (R). Also note that if I is a prime ideal of R, then the graph ΓI(R)
is empty. The ideal based zero-divisor graph ΓI(R) provides an excellent setting for study-
ing some aspects of algebraic properties of commutative rings. Especially, the embeddings
of ideal based zero-divisor graph ΓI(R) help us to explore some interesting results related
to algebraic structures of rings. Certain domination properties of the ideal based zero-divisor
graph of a near-ring were studied by authors in [15].

The main objective of topological graph theory is to embed a graph into a surface. There
are many studies [1,4,5,9,12–14,16] concerning embeddings of the zero-divisor graph and
other graphs. In [17], similar embeddings were discussed for ideal based zero-divisor graphs.
Recently, Hsieh [8] investigated the crosscap (i.e., genus of non-orientable surface) of the
zero-divisor graph Γ (R) and illustrated all finite commutative rings R (up to isomorphism)
for which Γ (R) has crosscap one.

In this connection, we establish a goal for an embedding of ΓI(R) in a non-orientable
surface. In Section 2, first we state some known results and easy observations in order to
obtain our main results. We give some necessary and sufficient conditions for the crosscap
to be of at most one. Also we give some embeddings to show that there exist ideal based
zero-divisor graphs with crosscap one. In Section 3, we investigate the crosscap of ΓI(R) in
general case. Finally we give a sufficient condition, for a general commutative ring R and a
nonzero ideal I of R such that crosscap upper bound of ΓI(R) is one.

Let G be a simple graph with vertex set V (G). A graph G is said to be complete bipartite
graph if V (G) can be partitioned into two disjoint sets V1, V2 such that no two vertices of V1

or V2 are adjacent and every vertex of V1 is adjacent to every vertex of V2. Km,n denotes the
complete bipartite graph where |V1| = m and |V2| = n. A graph G is complete if each pair
of distinct vertices in G is adjacent and Kn denotes the complete graph with n vertices. For
notations and terminology and basic results on graph theory, we refer [7].

Let S̄k denote the sphere with k crosscaps, where k is a non-negative integer, that is, S̄k is
a non-oriented surface with k crosscaps. The crosscap of a graph G, denoted as γ̄(G), is the
minimal integer n such that the graph G can be embedded in S̄n. Intuitively, G is embedded
in a surface if it can be drawn in the surface so that its edges intersect only at their common
vertices. We say a graph G is planar if γ̄(G) = 0, and projective if γ̄(G) = 1. It is easy
to see that γ̄(H) ≤ γ̄(G) for all subgraphs H of G. The following results are useful in the
subsequent sections.

Lemma 1.1 ([6]). Let m, n be integers and for a real number x, ⌈x⌉ is the least integer that
is greater than or equal to x. Then

(i) γ̄(Kn) =

 
1

6
(n − 3)(n − 4)


if n ≥ 3 and n ≠ 7;

3 if n = 7.

(ii) γ̄(Km,n) =


1
2 (m − 2)(n − 2)


, where m, n ≥ 2.

Lemma 1.2 ([8]). Suppose that H and H ′ are two subgraphs of a graph G such that H and
H ′ are isomorphic to K3,3 or K5. If H ∩H ′ = {v}, where v is a vertex of G, then γ̄(G) > 1.
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2. CROSSCAP ONE IN THE FINITE CASE

In this section, we determine all finite quotient rings R/I and ideals I of R for which the
crosscap of ΓI(R) is at most one. To attain this, we need the following results.

Theorem 2.1 ([11], Theorem 7.2). Let R be a finite ring and I be a nonzero ideal of R.
Then ΓI(R) is planar if and only if Γ (R

I ) contains no cycles and either (a) |I| = 2 or (b)
|Γ (R

I )| = 1 with |I| ≤ 4.

Theorem 2.2 ([9], Theorem 3.5.1). Let (R,M) be a finite local ring which is not a field. Then
Γ (R) is planar if and only if R is isomorphic to one of the following 29 rings: Z4, Z8, Z9,
Z16, Z25, Z27, Z2[x]

(x2) , Z2[x]
(x3) , Z2[x]

(x4) , Z2[x,y]
(x2,xy,y2) , Z2[x,y]

(x2,y2) , Z2[x,y]
(x3,xy,y2−x2) , F4[x]

(x2) , Z3[x]
(x2) , Z3[x]

(x3) , Z4[x]
(x2) ,

Z4[x]
(x2+x+1) , Z4[x]

(2x,x2) , Z4[x]
(x2−2,x4) , Z4[x]

(x3−2,x4) , Z4[x]
(x2−2,x3) , Z4[x]

(x3,x2−2x) , Z4[x]
(x3+x2−2,x4) , Z4[x,y]

(x2,y2,xy−2) ,
Z4[x,y]

(x3,x2−2,xy,y2−2) , Z5[x]
(x2) , Z8[x]

(x2−4,2x) , Z9[x]
(x2−3,x3) , Z9[x]

(x2+3,x3) .

Theorem 2.3 ([8], Theorem 2.8). Let (R,M) be a finite local ring which is not a field.
Then γ̄(Γ (R)) = 1 if and only if R is isomorphic to one of the following 13 rings. Z32,
Z49, Z2[x]

(x5) , Z2[x,y]
(x3,xy,y2) , Z4[x]

(x3−2,x5) , Z4[x]
(x4−2,x5) , Z4[x]

(x3,2x) , Z4[x,y]
(x3,x2−2,xy,y2) , Z7[x]

(x2) , Z8[x]
(x2,2x) , Z8[x]

(x2−2,x5) ,
Z8[x]

(x2−2x+2,x5) , Z8[x]
(x2+2x−2,x5) .

Lemma 2.4 ([17], Lemma 4.5). If (R,M) is a finite local ring, t = | R
M | and k is the smallest

integer for which Mk = 0, then |M i| = tni |M i+1| for i = 0, . . . , k − 1. In particular, |R|
= tn for some n.

For later use, we list out some properties of ΓI(R) from [11,17].

Remark 2.5. Let I be an ideal of R.

(i) If {xλ + I : λ ∈ Λ} is the set of non-zero zero-divisors in R
I , then by the definition of

ΓI(R), the vertex set of Γ (R
I ) is {xλ + a : λ ∈ Λ, a ∈ I}, and hence |V (ΓI(R))| =

|I|.|V (Γ (R
I ))|.

(ii) Let I = {a1, . . . , at} and {x1 + I, . . . , xm + I} be the set of non-zero zero-divisors of
R
I . Then the vertex set of ΓI(R) is {xj +ai : 1 ≤ i ≤ t, 1 ≤ j ≤ m} and the edge set of
ΓI(R) is {(xj + ai)(xℓ + ak) : xjxℓ ∈ I}. From this, if Γ (R

I ) ∼= Km,n, then Kmt,nt

is a subgraph of ΓI(R). Also, if Γ (R
I ) ∼= Kn, then Kt,t,...,t(n times)

is a subgraph of
ΓI(R).

(iii) If R
I has no nilpotent elements, then Γ (R

I ) ∼= Km,n implies ΓI(R) ∼= Kmt,nt. Further
if Γ (R

I ) ∼= Kn, then ΓI(R) ∼= Kt,t,...,t(n times)
. If every element in Z(R

I ) is nilpotent,

then Γ (R
I ) ∼= Kn implies ΓI(R) ∼= Knt.

(iv) By (i), (ii) and (iii), ΓI(R) depends on R
I and |I|. From this, the graphs ΓI(R) and

Γ(0)×A(R
I × A) are isomorphic, where A is any ring with |A| = |I|. For example, if

R ∼= Z2 × Z2 × Z2 and I = (0) × (0) × Z2, then ΓI(R) ∼= K2,2. Here R
I

∼= Z2 × Z2.
Therefore Γ(0)×(0)×A(Z2 ×Z2 ×A), |A| = 2 and so Γ(0)×(0)×Z2(Z2 ×Z2 ×Z2) ∼= K2,2.
Hence ΓI(R) ∼= Γ(0)×(0)×A(Z2 × Z2 × A).
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The following results provide effective criterion for discussing crosscap one in the finite
case.

Lemma 2.6. Let R be a commutative ring and I be a nonzero ideal of R such that (R
I , M

I )
is a finite local ring with (M

I )2 ≠ (0) and | R
M | ≥ 3. Then γ̄(ΓI(R)) > 1.

Proof. Let k be the index of M
I and k ≥ 3. By Lemma 2.4, |(M

I )k−1 − (0)| ≥ | R
M | − 1 ≥ 2

and |(M
I )k−2 − (M

I )k−1| ≥ (| R
M | − 1)|(M

I )k−1| ≥ 4. Therefore there are distinct elements
u1, u2 ∈ (M

I )k−1 − {0} and v1, v2 ∈ (M
I )k−2 − (M

I )k−1. Since k ≥ 3, uivj = 0 for all i, j.
Thus K2,2 is a subgraph of Γ (R

I ). In view of |I| ≥ 2 and Remark 2.5, K4,4 is a subgraph of
ΓI(R), so that Lemma 1.1 gives γ̄(ΓI(R)) > 1. �

Lemma 2.7. Let R ∼= Z2 × S, where S is a finite local ring. Then the following holds:

(i) If |V (Γ (S))| ≤ 1, then Γ (R) is planar and contains no cycles;
(ii) If |V (Γ (S))| > 1, then K3 and K2,2 are subgraphs of Γ (R).

Proof. (i) If |V (Γ (S))| = 0, then S is a finite field and so Γ (R) ∼= K1,|S|. Hence Γ (R) is

planar and contains no cycles. If |V (Γ (S))| = 1, then by Theorem 2.2, S ∼= Z4 or S ∼= Z2[x]
(x2) ,

so that R ∼= Z2 × Z4 or Z2 × Z2[x]
(x2) . By Fig. 1 [10], Γ (R) are trees.

(ii) Suppose that |V (Γ (S))| = 2. Then by Theorem 2.2, S ∼= Z9 or S ∼= Z3[x]
(x2) , so

that R ∼= Z2 × Z9 or Z2 × Z3[x]
(x2) . Again by Fig. 12 [10], K3 and K2,2 are subgraphs of

Γ (R). If |V (Γ (S))| > 2, then there exist three distinct elements a, b, c ∈ V (Γ (S)) such that
ab = ac = 0. Let u1 = (0, b), u2 = (0, c), v1 = (1, 0) and v2 = (1, a), then uivj = 0 for
all i, j, so K2,2 is a subgraph of Γ (R). Also v1 − (0, a) − u1 − v1 is a triangle in Γ (R) and
hence K3 is a subgraph of Γ (R). �

Lemma 2.8. Let I be a nonzero ideal of R and R
I

∼= R1 × R2 × · · · × Rk, where Ri is a finite
local ring for every i and k ≥ 3. If γ̄(ΓI(R)) ≤ 1, then k = 3 and Ri

∼= Z2 for every i.

Proof. Suppose that k = 4. Let u1 = (1, 0, 0, 0), u2 = (0, 1, 0, 0), v1 = (0, 0, 1, 0) and
v2 = (0, 0, 0, 1). Then uivj = 0 for all i, j, so that K2,2 is a subgraph of Γ (R

I ). By
Remark 2.5 and |I| ≥ 2, we get that K4,4 is a subgraph of ΓI(R). Therefore by Lemma 1.1,
γ̄(ΓI(R)) > 1. Hence R

I
∼= R1 × R2 × R3. If there exists at least one i such that |Ri| ≥ 3,

without loss of generality, say |R3| ≥ 3. Let u1 = (1, 0, 0), u2 = (0, 1, 0), v1 = (0, 0, 1) and
v2 = (0, 0, 2). Now uivj = 0 for all i, j, so that K2,2 is a subgraph of Γ (R

I ) which implies
that K4,4 is a subgraph of ΓI(R). Thus γ̄(ΓI(R)) > 1, a contradiction. �

Lemma 2.9. Let R be a finite ring and I be a non-zero ideal of R. Suppose the following
holds:

(i) R
I is local with unique maximal ideal M

I ;
(ii) | R

M | = 2;
(iii) γ̄(Γ (R

I )) = 1.

Then γ̄(ΓI(R)) > 1.
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Proof. By (i) and (iii), R
I is isomorphic to one of the rings in the statement of Theorem 2.3.

In view of (ii) and Theorem 2.3, K2,2 is a subgraph of corresponding zero-divisor graph of
Γ (R

I ). Thus by Lemma 1.1, γ̄(ΓI(R)) > 1. �

The following theorem plays an important role in this paper.

Theorem 2.10. Let R be a finite ring and I be a non-zero ideal of R. Suppose that
ω(Γ (R

I )) ≥ 4 or γ̄(Γ (R
I )) ≥ 1. Then γ̄(ΓI(R)) > 1.

Proof. Let R
I

∼= R1 × R2 × · · · × Rk, where Ri is a finite local ring for every i. If k ≥ 4,
then by Lemma 2.8, γ̄(ΓI(R)) > 1. Therefore, we assume that k ≤ 2 or R

I
∼= Z2 × Z2 × Z2.

However, R
I

∼= Z2 × Z2 × Z2 implies that ω(Γ (R
I )) = 3 and Γ (R

I ) is planar, a contradiction.
Hence k ≤ 2. Now suppose that R

I is not local and R
I

∼= R1 × R2. If |R1| ≥ 3 and |R2| ≥ 3,
then K2,2 is a subgraph of Γ (R

I ), so that γ̄(ΓI(R)) > 1. Hence we assume that R1
∼= Z2.

By Lemma 2.7, γ̄(ΓI(R)) > 1.
Finally, let R

I be a local ring with unique maximal ideal M
I .

Case 1: (M
I )2 = (0). Since ω(Γ (R

I )) ≥ 4 or γ̄(Γ (R
I )) ≥ 1, there exist distinct non-zero

zero-divisors u1, u2, u3, u4 ∈ R
I such that uiuj = 0 for all i, j, so that K2,2 is a subgraph of

Γ (R
I ) implies K4,4 is a subgraph of ΓI(R). Thus by Lemma 1.1, γ̄(ΓI(R)) > 1.

Case 2: (M
I )2 ≠ (0). If | R

M | ≥ 3, then Lemma 2.6 gives that γ̄(ΓI(R)) > 1. Hence we
assume that | R

M | = 2. As mentioned Lemma 2.4, |V (Γ (R
I ))| = 2n − 1 for some positive

integer n. Since ω(Γ (R
I )) ≥ 4 or γ̄(Γ (R

I )) ≥ 1, n ≥ 3. By Lemma 2.9, the assumption
γ̄(Γ (R

I )) ≥ 1 yields that γ̄(ΓI(R)) > 1. Suppose ω(Γ (R
I )) = 4 and Γ (R

I ) is planar.
As Γ (R

I ) is planar and |V (Γ (R
I ))| = 2n−1, Theorem 2.2 gives that |V (Γ (R

I ))| = 7.

Again by Theorem 2.2, R
I is isomorphic to one of the following rings Z16, Z4[x,y]

(x2,y2,xy−2) ,
Z4[x,y]

(x3,x2−2,xy,y2−2) , Z2[x,y]
(x2,y2) , Z4[x]

(x2) , Z2[x,y]
(x3,xy,y2−x2) , Z4[x]

(x3,x2−2x) and Z8[x]
(x2−4,2x) . One can check

that corresponding zero-divisor graphs Γ (R
I ) have ω(Γ (R

I )) = 3, a contradiction. �

Theorem 2.11. Let R be a finite ring and I be a non-zero ideal of R. Suppose that
ω(Γ (R

I )) ≤ 2. Then γ̄(ΓI(R)) ≤ 1 if and only if one of the following holds:

(i) R
I

∼= Z2 × Z2 and |I| ≤ 3;

(ii) R
I

∼= Z2 × Z4 and |I| = 2;

(iii) R
I

∼= Z2 × Z2[x]
(x2) and |I| = 2;

(iv) R
I

∼= Z2 × Fq , q ≥ 3 and |I| = 2;
(v) R

I
∼= Z4, and |I| ≤ 6;

(vi) R
I

∼= Z2[x]
(x2) and |I| ≤ 6;

(vii) R
I

∼= Z9, and |I| ≤ 3;

(viii) R
I

∼= Z3[x]
(x2) and |I| ≤ 3;

(ix) R
I

∼= Z8, and |I| = 2;

(x) R
I

∼= Z2[x]
(x3) and |I| = 2;

(xi) R
I

∼= Z4[x]
(x2−2,x3) and |I| = 2.
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Proof. Assume that ω(Γ (R
I )) ≤ 2 and γ̄(ΓI(R)) ≤ 1. Let R

I
∼= R1 × R2 × · · · × Rk, where

Ri is a finite local ring for every i. By Lemma 2.8, R
I

∼= Z2 × Z2 × Z2 or R
I is local or R

I is
a product of two local rings. If R

I
∼= Z2 × Z2 × Z2, then ω(Γ (R

I )) = 3, a contradiction.
Suppose that R

I
∼= R1 × R2. As seen in the proof of Theorem 2.10, R1

∼= Z2. By
Lemma 2.7, R2 is either a field or satisfies |V (Γ (R2))| = 1, otherwise γ̄(ΓI(R)) > 1. It
follows that R

I is isomorphic to one of the following rings: Z2 × Z2, Z2 × Z4, Z2 × Z2[x]
(x2) and

Z2 × Fq , q ≥ 3.
If R

I
∼= Z2 × Z2, then Γ (R

I ) ∼= K2. Since R
I has no nilpotent elements, ΓI(R) ∼= Kt,t,

|I| = t. By Lemma 1.1, |I| ≤ 3.
If R

I
∼= Z2 × Fq , q ≥ 3, then Γ (R

I ) ∼= K1,q . Since R
I has no nilpotent elements,

ΓI(R) ∼= Kt,tq , |I| = t, it follows that |I| = 2, by Lemma 1.1.

If R
I

∼= Z2 × Z4 or Z2 × Z2[x]
(x2) , then K1,3 is a subgraph of R

I . By Lemma 1.1, |I| = 2 and
by Theorem 2.1, ΓI(R) is planar.

Finally assume that R
I is local with maximal ideal M

I . By Theorem 2.10, Γ (R
I ) is planar,

so we need to consider only the rings in Theorem 2.2.

Case 1: (M
I )2 = (0). Then Γ (R

I ) ∼= Kt if | M
I | = t + 1, so that Γ (R

I ) is K1 or K2 as

ω(Γ (R
I )) ≤ 2, it follows that R

I is isomorphic to the following rings: Z4, Z2[x]
(x2) , Z9 and Z3[x]

(x2) .

If R
I is isomorphic to Z4 or Z2[x]

(x2) , then ΓI(R) ∼= Kt if |I| = t. By Lemma 1.1, |I| ≤ 6. If
R
I is isomorphic to Z9 or Z3[x]

(x2) , then every element a ∈ Z(R
I ) is nilpotent, by Remark 2.5,

ΓI(R) ∼= K2t if |I| = t, it follows that |I| ≤ 3, by Lemma 1.1.

Case 2: (M
I )2 ≠ (0). By Lemma 2.6, | R

M | = 2. That is, |V (Γ (R
I ))| = 2n − 1 for

some positive integer n and so by Theorem 2.2, |V (Γ (R
I ))| = 1, 3, 7. From the above,

|V (Γ (R
I ))| = 3, 7. However, if |V (Γ (R

I ))| = 7, then by Theorem 2.2, R
I is isomorphic

to one of the following rings: Z16, Z2[x,y]
(x2,y2) , Z2[x,y]

(x3,xy,y2−x2) , Z4[x]
(x2) , Z4[x]

(x3,x2−2x) , Z4[x,y]
(x2,y2,xy−2) ,

Z4[x,y]
(x3,x2−2,xy,y2−2) and Z8[x]

(x2−4,2x) . In each of these cases, ideal based zero-divisor graphs Γ (R
I )

contains K3, a contradiction. Thus |V (Γ (R
I ))| = 3 and so Γ (R

I ) ∼= K1,2. Therefore, R
I is

isomorphic to one of the following rings: Z8, Z2[x]
(x3) , Z4[x]

(x3,x2−2) . Then Kt,2t is a subgraph of
ΓI(R) if |I| = t. By Lemma 1.1, |I| = 2 and by Theorem 2.1, ΓI(R) is planar. �

Theorem 2.12. Let R be a finite ring and I be a non-zero ideal of R. Suppose that
ω(Γ (R

I )) = 3. Then γ̄(ΓI(R)) ≤ 1 if and only if |I| = 2 and R
I is isomorphic to one

of the following rings: Z2 × Z2 × Z2, Z16, Z2[x,y]
(x2,xy,y2) , Z4[x]

(2x,x2) , F4[x]
(x2) , and Z4[x]

(x2+x+1) .

Proof. Suppose that γ̄(ΓI(R)) ≤ 1. Since R is finite, let R
I

∼= R1 × R2 × · · · × Rk, where
Ri is a finite local ring for every i. From Lemma 2.8, R

I
∼= Z2 × Z2 × Z2 or R

I is local or R
I

is a product of two local rings.
Assume that R

I
∼= Z2 × Z2 × Z2, then K1,3 is a subgraph of Γ (R

I ). If |I| ≥ 3, Lemma 1.1
implies γ̄(ΓI(R)) > 1. Therefore, let |I| = 2 and also ω(Γ (R

I )) = 3. By Theorem 2.1,
corresponding ideal based zero-divisor graph ΓI(R) is not planar. Remark 2.5 gives that
graphs ΓI(R) and Γ(0)×(0)×(0)×Z2(Z2 × Z2 × Z2 × Z2) are isomorphic. Note that the
vertex set of ΓI(R) consists of the following vertices: u1 = (1, 0, 0, 0), u2 = (0, 1, 0, 0),
v1 = (1, 0, 0, 1), v2 = (0, 1, 0, 1), v3 = (0, 0, 1, 1), v4 = (0, 1, 1, 0), v5 = (0, 1, 1, 1),
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Fig. 1. An embedding of ΓI(R) in S1.

Fig. 2. Graph isomorphic to Γ (R
I

).

v6 = (1, 0, 1, 0), v7 = (1, 0, 1, 1), v8 = (1, 1, 0, 0) and v9 = (1, 1, 0, 1). Note that Fig. 1
shows explicitly an embedding of ΓI(R) to S1.

If R
I is not local and that R

I
∼= R1 × R2. From the proof of Theorem 2.10, R1

∼= Z2.
Moreover, if R2 is either a field or satisfies |V (Γ (R2))| = 1 which is a contradiction to the
assumption ω(Γ (R

I )) = 3. If |V (Γ (R2))| ≥ 2, then by Lemma 2.7, K2,2 is a subgraph of
Γ (R

I ), it follows that γ̄(ΓI(R)) > 1, a contradiction.
Finally assume that R

I is local with maximal ideal M
I . As earlier Theorem 2.10, Γ (R

I ) is
planar, so only consider the rings in Theorem 2.2.

Case 1: (M
I )2 = (0). Then Γ (R

I ) ∼= Kt if | M
I | = t+1, so that Γ (R

I ) is K3 as ω(Γ (R
I )) = 3.

By Theorem 2.2, R
I is isomorphic to Z2[x,y]

(x2,xy,y2) or Z4[x]
(2x,x2) or F4[x]

(x2) or Z4[x]
(x2+x+1) . Moreover,

every element a ∈ Z(R
I ) is nilpotent. Now Remark 2.5 implies that ΓI(R) ∼= K3t if |I| = t

and it follows that γ̄(ΓI(R)) = 1 if and only if |I| = 2.

Case 2: (M
I )2 ≠ (0). By Lemma 2.6, | R

M | = 2. That is, |V (Γ (R
I ))| = 2n − 1 for

some positive integer n and so by Theorem 2.2, |V (Γ (R
I ))| = 1, 3, 7. From the above,

|V (Γ (R
I ))| = 7. Then by Theorem 2.2, R

I is isomorphic to one of the following local rings:
Z2[x,y]
(x2,y2) , Z4[x,y]

(x2,y2,xy−2) , Z4[x]
(x2) and Z16.

If R
I is isomorphic to one of the following: Z2[x,y]

(x2,y2) , Z4[x,y]
(x2,y2,xy−2) and Z4[x]

(x2) , then there exist

three distinct elements u1, u2, u3 ∈ V (Γ (R
I )) such that u2

1 = u2
2 = u2

3 = 0 and the graph
Γ (R

I ) is isomorphic to Fig. 2.
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Fig. 3. An embedding of ΓI(R) in S1.

If |I| = 2, then the corresponding ideal based graph can be viewed as
Γ(0)×Z2(

R
I × Z2). Note that H1

∼= K5 and H2
∼= K3,3 are subgraphs of

Γ(0)×Z2(
R
I × Z2) with the vertex sets {(u1, 0), (u2, 0), (u2, 1), (u3, 0), (u3, 1)} and

{(u1, 0), (u1, 1), (u4, 0), (u4, 1), (u5, 0), (u5, 1)} respectively. Clearly V (H1) ∩ V (H2) =
{(u1, 0)} and so Lemma 1.2 gives γ̄(ΓI(R)) > 1. If R

I is isomorphic to Z16, then ΓI(R) is
not planar, as ω(Γ (R

I )) = 3 and by Theorem 2.1. Since ΓI(R) and Γ(0)×Z2(Z16 ×Z2) are the
same, then the vertex set of Γ(0)×Z2(Z16 ×Z2) consists of the following vertices: u1 = (4, 0),
u2 = (8, 0), u3 = (12, 0), v1 = (4, 1), v2 = (8, 1), v3 = (12, 1), v4 = (2, 0), v5 = (6, 0),
v6 = (10, 0), v7 = (14, 0), v8 = (2, 1), v9 = (6, 1), v10 = (10, 1) and v11 = (14, 1). Fig. 3
shows explicitly an embedding of ΓI(R) to S̄1. �

3. CROSSCAP ONE IN THE GENERAL CASE

Our main investigation of this section is to give a sufficient condition for a ring R and a
non-zero ideal I of R with the property that γ̄(ΓI(R)) ≤ 1.

Proposition 3.1. Let P1 and P2 be prime ideals of R and I = P1 ∩ P2. If γ̄(ΓI(R)) ≤ 1,
then |P1 − I| ≤ 3 or |P2 − I| ≤ 3.

Proof. Since ΓI(R) is not empty, I is not equal to P1 and P2. Suppose that |P1 − I| ≥ 4
and |P2 − I| ≥ 4. Let P1 − I = {u1, u2, . . . , um} and P1 − I = {v1, v2, . . . , vn} such
that m, n ≥ 4. Then uivj ∈ I for all i, j and so K4,4 is a subgraph of ΓI(R). Hence by
Lemma 1.1, γ̄(ΓI(R)) > 1. �

Proposition 3.2. Let I be a non-zero ideal of R. If |Ass(R
I )| ≤ 3, then γ̄(ΓI(R)) ≤ 1.

Proof. On the contrary assume that |Ass(R
I )| ≥ 4. By Lemma 2.1 in [1], K4 is a subgraph of

Γ (R
I ). It follows that K4,4 is a subgraph of ΓI(R) as |I| ≥ 2. Therefore γ̄(ΓI(R)) > 1. �

We conclude this paper with the following Theorem.
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Theorem 3.3. Let I be a non-zero ideal of R. If γ̄(ΓI(R)) ≤ 1, then ω(Γ (R
I )) ≤ 3 and

either |I| ≤ 3 or |V (Γ (R
I ))| = 1 with |I| ≤ 6.

Proof. Suppose that γ̄(ΓI(R)) ≤ 1. First we show that ω(Γ (R
I )) ≤ 3. If ω(Γ (R

I )) ≥ 4, then
K4 is a subgraph of Γ (R

I ). Since |I| ≥ 2 and Remark 2.5, K2,2,2,2 is a subgraph of ΓI(R)
which implies K4,4 is a subgraph of ΓI(R) and so γ̄(ΓI(R)) > 1, a contradiction. Now if
Γ (R

I ) consists of exactly one vertex, then ΓI(R) ∼= Kt if |I| = t+1, so that Lemma 1.1 yields
that |I| ≤ 6. If Γ (R

I ) consists of at least two adjacent vertices a + I, b + I with |I| ≥ 4, then
it is easy to verify that V1 = {a, a + i1, a + i2, a + i3} and V1 = {b, b + i1, b + i2, b + i3}
define two subsets of the vertex set |V (Γ (R

I ))| yielding a subgraph isomorphic to K4,4 for
all distinct non-zero elements i1, i2 and i3 in I . However this would contradict the crosscap
of ΓI(R). Thus, if Γ (R

I ) has more than one vertex, we must have |I| ≤ 3. �
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