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Abstract. The purpose of this paper is to establish an analogue of Cowling–Price

theorem for the Bessel–Struve transform. Also, we provide Hardy’s type theorem asso-

ciated with this transform.
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1. INTRODUCTION

The uncertainty principle states that a nonzero function and its Fourier transform can-
not both be sharply localized. In the language of quantum mechanics, this principle
says that an observer cannot simultaneously and precisely determine the values of po-
sition and momentum of a quantum particle. A mathematical formulation of these
physical ideas was first developed by Heisenberg [8] in 1927. Later, precisely in 1933,
Hardy [7] has obtained a theorem concerning the decay of a measurable function f
on R and its Fourier transform F f at infinity. This theorem can be stated as follows

Theorem 1.1. Let a > 0, b > 0, C > 0 and let f be a measurable function on R such that
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jfðxÞj 6 Ce�ax
2

and jFðfÞðyÞj 6 Ce�by
2

; a:e x; y 2 R: ð1Þ

We have,

(1) If ab > 1
4
then f = 0 almost everywhere.

(2) If ab < 1
4
then infinitely nonzero functions satisfy conditions (1).

(3) If ab ¼ 1
4
then f ðxÞ ¼ const:e�ax2 .

An Lp version of Hardy’s theorem has been obtained in 1983 by Cowling and Price
[3]. Precisely, they have obtained the following theorem

Theorem 1.2. Let f be a measurable function on R such that
keafkp < þ1 and kebFðfÞkq < þ1; ð2Þ
where a > 0; b > 0; eaðxÞ ¼ eax
2
; 1 6 p; q 6 þ1 and min(p,q) < +1. We have,

(1) If ab P 1
4
then f = 0 almost everywhere.

(2) If ab < 1
4
then there exist infinitely many linearly independent functions satisfying

conditions (2).

In this paper, we consider the Bessel–Struve transform, for a > � 1
2
,

F a
B;SðfÞðkÞ ¼

Z
R

fðxÞUað�ikxÞdlaðxÞ;
where Ua is the Bessel–Struve kernel given by
UaðxÞ ¼ jaðixÞ � ihaðixÞ:

ja and ha are respectively the normalized Bessel and Struve functions of index a. These
kernels are given as follows
jaðzÞ ¼ 2aCðaþ 1Þz�aJaðzÞ ¼ Cðaþ 1Þ
Xþ1
n¼0

ð�1Þnðz=2Þ2n

n!Cðnþ aþ 1Þ
and
haðzÞ ¼ 2aCðaþ 1Þz�aHaðzÞ ¼ Cðaþ 1Þ
Xþ1
n¼0

ð�1Þnðz=2Þ2nþ1

C nþ 3
2

� �
C nþ aþ 3

2

� � :

By proceeding as the same way of the paper of Gallardo and Trimche [6], we establish for
Bessel–Struve transform the analogue of Cowling–Price’s and Hardy’s theorems. The
paper [6] deals with Dunkl operators. The method of this paper has been used in the case
of theDunkl–Bessel differential difference operator byMejjaoli and Trimèche [10] and in
the case of Chébli–Trimèche operators by Trimèche [15] to obtain similar results. Also, in
the case of Chébli–Trimèche operators, Bouattour and Trimèche in [2] have obtained the
analogue of Cowling–Price’s and Hardy’s theorems via Beurling–Hörmander’s
theorem. Many authors have established the analogous of Cowling–Price’s and Hardy’s
theorems in other various settings of harmonic analysis (see for instance [1,4,5,11–13]).
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The outline of the content of the paper is as follows.
In the second section, we deal with harmonic analysis associated with the Bessel–

Struve operator. We consider the Bessel–Struve transform FBS which is related to Weyl
integral transform Wa by the relation
8f 2 L1
aðRÞ; F a

B;SðfÞ ¼ F �WaðfÞ:
This relationship allows us to deduce the main results knowing their analogue for clas-
sical Fourier transform F . These transforms have been introduced firstly by Trimèche
[14] in connection with the Dunkl theory.

The third section, is devoted to Cowling–Price’s theorem for the Bessel–Struve
transform. We establish that for all p, q 2 [1,+1] and at least one of them is finite,
if f is a measurable function on R such that
eax
2

f 2 Lp
aðRÞ and eby

2F a
B;Sf 2 Lq

aðRÞ;
where a > 0, b > 0, then if ab P 1/4, f= 0 almost everywhere and there are infinitely
many nonzero functions f satisfying these conditions if ab < 1/4.

In the fourth section, we study an analogue of Theorem 1.1 associated with the Bes-
sel–Struve transform. In particular, if ab ¼ 1

4
and a a half integer, the functions satisfy-

ing the hypotheses of Hardy’s theorem for Bessel–Struve transform are precisely
determined by fðxÞ ¼ const:e�ax

2
.

Throughout the paper, C designates a real number which can differ from line to
other.

2. BESSEL–STRUVE TRANSFORM

We consider the Bessel–Struve operator ‘a; a > � 1
2
, defined on C1ðRÞ by
‘auðxÞ ¼
d2u

dx2
ðxÞ þ 2aþ 1

x

du

dx
ðxÞ � du

dx
ð0Þ

� �
: ð3Þ
For k 2 C, the differential equation:
‘auðxÞ ¼ k2uðxÞ
uð0Þ ¼ 1; u0ð0Þ ¼ kCðaþ1Þffiffi

p
p

Cðaþ3=2Þ :

(

possesses a unique solution denoted Ua(k). This eigenfunction, called the Bessel–Struve
kernel, is given by :
UaðkxÞ ¼ jaðikxÞ � ihaðikxÞ; x 2 R: ð4Þ

The kernel Ua possesses the following integral representation:
8x 2 R; 8k 2 C; UaðkxÞ ¼
2Cðaþ 1Þffiffiffi
p
p

C aþ 1
2

� � Z 1

0

ð1� t2Þa�
1
2ekxtdt: ð5Þ
Let p 2 [1,+1], we denote by Lp
aðRÞ, the space of real-valued functions f, measurable

on R such that
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kfkp;a ¼
Z

R

jfðxÞjpdlaðxÞ
� �1

p

< þ1; if p < þ1;
where
dlaðxÞ ¼ AðxÞdx and AðxÞ ¼ jxj2aþ1;
kfk1;a ¼ ess supx2RjfðxÞj < þ1:
The Bessel–Struve kernel Ua is related to the exponential function by
8x 2 R; 8k 2 C; UaðkxÞ ¼ vaðek�ÞðxÞ;

where va is the Bessel–Struve intertwining operator (see [9]).

The function Ua(ikÆ) plays the role of the exponential function eik. in the classical
Fourier analysis. In fact, one can introduce the Bessel–Struve transform, in terms of
Bessel–Struve kernel as follows

Definition 2.1. The Bessel–Struve transform is defined on L1
aðRÞ by
8k 2 R; F a
B;SðfÞðkÞ ¼

Z
R

fðxÞ Uað�ikxÞdlaðxÞ: ð6Þ
Remark 2.1. We notice that if f is an even function then the Bessel–Struve transform
F a

B;S coincides with Hankel transform denoted Ha given by
HaðfÞðkÞ ¼
Z þ1

0

fðtÞjaðktÞt2aþ1dt:
Definition 2.2. For f 2 L1
aðRÞ with bounded support, the integral transform Wa, given

by Z

WafðxÞ ¼

2Cðaþ 1Þffiffiffi
p
p

Cðaþ 1
2
Þ

þ1

jxj
ðy2 � x2Þa�

1
2y fðsgnðxÞyÞdy; x 2 R n f0g; ð7Þ
is called Weyl integral transform associated with Bessel–Struve operator.

Remark 2.2. By a change of variable, Waf can be written
WafðxÞ ¼
2Cðaþ 1Þffiffiffi
p
p

C aþ 1
2

� � jxj2aþ1 Z þ1

1

ðt2 � 1Þa�
1
2tfðtxÞdt; x 2 R n f0g: ð8Þ
If we denote aa ¼ 2Cðaþ1Þffiffi
p
p

C aþ1
2ð Þ and dtxðyÞ ¼ aav�jxj;þ1½ðyÞðy2 � x2Þa�

1
2ydy we can write
WafðxÞ ¼
Z

R

fðsgnðxÞyÞdtxðyÞ: ð9Þ
Proposition 2.1. Wa is a bounded operator from L1
aðRÞ to L1ðRÞ, where L1ðRÞ is the

space of Lebesgue-integrable functions.
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Proof. Let f 2 L1
aðRÞ. Using Fubini–Tonelli’s theorem and a change of variable, we

get:
 Z
R

Z þ1

1

ðt2 � 1Þa�
1
2tjfðtxÞjdt

� �
jxj2aþ1dx

¼
Z

R

jfðxÞjjxj2aþ1 dx

� � Z þ1

1

ðt2 � 1Þa�
1
2t�2a�1dt

� �
< þ1:
Invoking relation (8), we deduce that
R

R
jWafðyÞjdy < þ1 and
kWaðfÞk1 6 Ckfk1;a: � ð10Þ
Proposition 2.2. We have
8f 2 L1
aðRÞ; F a

B;SðfÞ ¼ F �WaðfÞ; ð11Þ
where F is the classical Fourier transform defined on L1ðRÞ by
FðgÞðkÞ ¼
Z

R

gðxÞe�ikxdx:
Proof. Let f 2 L1
aðRÞ then WaðfÞ 2 L1ðRÞ and F �WaðfÞ are well defined.

Using Chasles relation and a change of variable, we get
F �WaðfÞðkÞ ¼
2Cðaþ 1Þffiffiffi
p
p

C aþ 1
2

� � Z þ1

0

Z þ1

y

ðx2 � y2Þa�
1
2xfðxÞdxe�ikydyþ 2Cðaþ 1Þffiffiffi

p
p

C aþ 1
2

� �
�
Z þ1

0

Z þ1

y

ðx2 � y2Þa�
1
2xfð�xÞdxeikydy:
From Fubini’s theorem, we obtain
F �WaðfÞðkÞ ¼
2Cðaþ 1Þffiffiffi
p
p

C aþ 1
2

� � Z þ1

0

Z x

0

ðx2 � y2Þa�
1
2e�ikydyxfðxÞdxþ 2Cðaþ 1Þffiffiffi

p
p

C aþ 1
2

� �
�
Z þ1

0

Z x

0

ðx2 � y2Þa�
1
2eikydyxfð�xÞdx:
By a change of variable and using relation (5), we find that
F �WaðfÞðkÞ ¼
Z þ1

0

fðxÞUað�ikxÞjxj2aþ1dxþ
Z þ1

0

fð�xÞUaðikxÞjxj2aþ1dx:
A change of variable and Chasles relation imply
F �WaðfÞðkÞ ¼
Z þ1

�1
fðxÞUað�ikxÞjxj2aþ1dx ¼ FBSðfÞðkÞ: �
In the next section, we need the following lemmas of Phragmen–Lindlöf type that we
get using the same technique as in [3].
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Lemma 2.1. Let p 2 [1,+1) and let h be an entire function on C. Assume that

(1) 8z 2 C; jhðzÞj 6 MeaðRðzÞÞ2

(2) khjRka;p < þ1, for some positive constants a and M. Then h = 0.

Lemma 2.2. Let h be an entire function on C such that

(1) 8z 2 C; jhðzÞj 6 MeaðRðzÞÞ2

(2) khjRka;1 < þ1, for some positive constants a and M. Then h is a constant on C.
3. COWLING–PRICE THEOREM ASSOCIATED WITH THE BESSEL–STRUVE TRANSFORM

We denote ea the function given by eaðxÞ ¼ eax
2
; x 2 R.

Proposition 3.1. Let a > 0. The Weyl integral transform verifies
Waðe�aÞ ¼ Ce�a; ð12Þ

where C ¼ Cðaþ1Þ

2
ffiffi
p
p

a
aþ1

2

.

Proof. From the relation (11) and remark 2.1, we obtain
Waðe�aÞ ¼ F�1 � Haðe�aÞ: ð13Þ

But we have
Haðe�aÞðyÞ ¼
Cðaþ 1Þ
2aaþ1 e

�y2
4a : ð14Þ
By applying the classical inverse Fourier transform to the relation (14), we obtain
(12). h

Proposition 3.2. Let p 2 [1,+1],a > 0 and let f be a measurable function on R such
that ieafip,a < +1. Then
keaWaðfÞkp < þ1:
Proof. First case : p 2 (1,+1). Let q > 1 such that 1
p
þ 1

q
¼ 1.

From Hölder inequality, we get
Z
R

jfðxÞjjxj2aþ1dx 6
Z

R

eapx
2 jfðxÞjpjxj2aþ1dx

� �1
p
Z

R

e�aqx
2 jxj2aþ1dx

� �1
q

6 keafkp;a
Z

R

e�aqx
2 jxj2aþ1dx

� �1
q

< þ1:
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So, it follows that f 2 L1
aðRÞ. Then from Proposition 2.1, the function Wa(f) is defined

almost everywhere on R. We have
keaWaðfÞkpp ¼
Z

R

eax
2

aa

Z þ1

jxj
ðy2 � x2Þa�

1
2yfðsgnðxÞyÞdy

 !					
					
p

dx

6

Z
R

eapx
2

Z
R

eay
2 jfðsgnðxÞyÞje�ay2 dtxðyÞ

� �p

dx:
Let GðxÞ ¼
R

R
eay

2 jfðsgnðxÞyÞje�ay2dtxðyÞ

 �p

.

Using Hölder inequality, we get
GðxÞ 6
Z

R

eapy
2 jfðsgnðxÞyÞjpdtxðyÞ

� � Z
R

e�aqy
2

dtxðyÞ
� �p

q

:

From the relation (9), we have
GðxÞ 6WaðeapjfjpÞðxÞðWaðe�aqÞðxÞÞ
p
q:
Since Waðe�aqÞðxÞ ¼ Ce�aqx
2

. Then by using (10), one gets
keaWaðfÞkpp 6 C

Z
R

WaðeapjfjpÞðxÞdx 6 Ckeafkpp;a < þ1:
Second case: p = +1. We have
Z
R

jfðxÞjjxj2aþ1dx 6 keafk1;a
Z

R

e�ax
2 jxj2aþ1dx < þ1:
Consequently Wa(f) is defined almost everywhere on R and we have
jWaðfÞðxÞj 6
Z

R

eay
2 jfðsgnðxÞyÞje�ay2dtxðyÞ 6Waðe�aÞðxÞkeafk1;a:
From Proposition 3.1, we obtain for almost everywhere x 2 R that
eax
2 jWaðfÞðxÞj 6 Ckeafk1;a
which gives the result.
Third case: p = 1. We have
Z
R

jfðxÞjjxj2aþ1dx 6 keafk1;a < þ1
which implies that Wa(f) is defined almost everywhere on R and we have
keaWafk1 6 aa

Z
R

eax
2

Z þ1

jxj
ðy2 � x2Þa�

1
2eay

2 jfðsgnðxÞyÞj
 !

ye�ay
2

dydx

6 aa

Z
R

Z þ1

jxj
ðy2 � x2Þa�

1
2eay

2 jfðsgnðxÞyÞj
 !

ydydx ¼ kWafk1:
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Then, using relation (10), we get
keaWafk1 6 C

Z
R

eax
2 jfjðxÞdlaðxÞ: �
Lemma 3.1. Let p 2 [1,+1] and let f be a measurable function on R such that
ieafip,a < +1 for some a > 0. Then the function defined on C by
F a
B;SðfÞðzÞ ¼

Z
R

fðxÞUað�izxÞdlaðxÞ ð15Þ
is well defined and entire on C. Moreover, for all n; g 2 R, we have
jF a
B;SðfÞðnþ igÞj 6 Ce

g2

4a: ð16Þ
Proof. From analyticity theorem under the integral sign, we deduce that the function
defined on C by (15) is well defined and entire on C.

On the other hand, since f 2 L1
aðRÞ then

WaðfÞ 2 L1ðRÞ and the function z#
R

R
WaðfÞðxÞe�ixzdx is well defined and entire

on C.

Consequently, from (11) we deduce that for all n; g 2 R, we have
F a
B;SðfÞðnþ igÞ ¼ F �WaðfÞðnþ igÞ;¼

Z
R

WaðfÞðxÞe�ixðnþigÞdx:
Thus
jF a
B;SðfÞðnþ igÞj 6 e

g2

4a

Z
R

eax
2

WaðfÞðxÞe�aðx�
g
2a
Þ2dx:
Using Proposition 3.2, we obtain the relation (16). h

Theorem 3.1. Let f be a measurable function on R such that
keafkp;a < þ1 and kebF a
B;SðfÞkq;a < þ1 ð17Þ
for some constants a > 0, b > 0, 1 6 p, q 6+1 and at least one of p and q is finite. We
have

(1) If ab P 1
4
then f = 0 almost everywhere.

(2) If ab < 1
4
then for all d 2�a; 1

4b ½, the functions having the formf ðxÞ ¼ P ðxÞe�dx2 ,
where P is an even polynomial on R, satisfy relation (17).

Proof. Assume that p is finite. Firstly, suppose that ab P 1
4
.

Consider the function h defined on C by
hðzÞ ¼ e
z2

4aF a
B;SðfÞðzÞ: ð18Þ
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This function is entire on C and using (16), we obtain
8z 2 C; jhðzÞj 6 Ce
ðRðzÞÞ2

4a : ð19Þ

In the following, we distinguish two cases for the number q.

First case: q < +1. We have
khjRkqq;a ¼
Z

R

e
y2

4aF a
B;SðfÞðyÞ

			 			qjyj2aþ1dy ¼ Z
R

eby
2F a

B;SðfÞðyÞ
			 			qeð 14a�bÞy2qjyj2aþ1dy:
Using the fact that ab P 1
4
and the hypothesis (17), we obtain
khjRkq;a 6 kebF a
B;SðfÞkq;a < þ1: ð20Þ
From the relations (19) and (20) and lemma 2.1, it follows that h(z) = 0 for all z 2 C.
Thus F a

B;SðfÞðyÞ ¼ 0 for all y 2 R. The injectivity of F a
B;S implies that f = 0 almost

everywhere on R.
Second case: q = +1. We have
khjRk1;a ¼ ess supy2R e
y2

4aF a
B;SðfÞðyÞ

			 			 ¼ ess supy2R eby
2F a

B;SðfÞðyÞ
			 			eð 14a�bÞy2qn o

:

For ab > 1
4
, we get from (17)
khjRk1;a 6 ebF a
B;SðfÞðyÞ

��� ���
a;1

< þ1: ð21Þ
Using relations (19),(21) and lemma 2.2, there exists a positive constant C such that for
all y 2 R; hðyÞ ¼ C. On the other hand, from (18), we have
8y 2 R; F a
B;SðfÞðyÞ ¼ Ce

y2

4a: ð22Þ
But the assumption on F a
B;SðfÞ is expressed as
jF a
B;SðfÞðyÞj 6M e�by

2

a:e y 2 R; ð23Þ
for some constantM > 0. The continuity of F a
B;SðfÞ on R shows that the inequality (23)

holds everywhere. By (22) and (23) this is impossible since ab > 1
4
unless if C= 0. Thus

F a
B;SðfÞðyÞ ¼ 0 everywhere and then f= 0 almost everywhere on R.
For ab ¼ 1

4, using Lemma 2.2, relations (11) and (17), we deduce that the function
Wa(f) verifies
keaWaðfÞkp < þ1 and kebFðWaðfÞÞk1 < þ1:
Therefore, from Theorem 1.2, we get that Waf= 0 almost everywhere and then f = 0
almost everywhere.

We suppose now that ab < 1
4. Let fðxÞ ¼ PðxÞ e�dx2 , where P is an even polynomial

and d 2�a; 1
4b ½.

We have x#eax
2

fðxÞ ¼ PðxÞeða�dÞx2 belongs to Lp
aðRÞ.

Since f is an even function, F a
B;SðfÞðxÞ ¼ HaðfÞðxÞ ¼ QðxÞe� 1

4dx
2

. h
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4. AN ANALOGUE OF HARDY’S THEOREM

Lemma 4.1. Let a > 0 and let f be a continuous function on R such that
8x 2 R; jfðxÞj 6 Ce�ax
2

: ð24Þ

Then Wa(f) is of class C1 on R n f0g and verifies
8x 2 R n f0g; ½W1
2
f�0ðxÞ ¼ �xfðxÞ
and
8a > 1

2
; 8x 2 R n f0g; ½Waf�0ðxÞ ¼ �2axWa�1fðxÞ:
Proof. Let f be a continuous function on R verifying (24), we have
W1
2
fðxÞ ¼

Rþ1
x

yfðyÞdy if x > 0Rþ1
�x yfð�yÞdy if x < 0

(

We deduce that
8x 2 R n f0g; ½W1
2
f�0ðxÞ ¼ �xfðxÞ:
Now, we take a > 1
2
. Using theorem of derivation and relation (7) we get
½Waf�0ðxÞ ¼
�4Cðaþ1Þffiffi
p
p

C a�1
2ð Þ x
Rþ1
y
ðy2 � x2Þa�

3
2yfðyÞdy if x > 0

�4Cðaþ1Þffiffi
p
p

C a�1
2ð Þ x
Rþ1
�x ðy2 � x2Þa�

3
2yfð�yÞdy if x < 0

8><
>:
which gives the wanted result. h

Proposition 4.1. For a ¼ kþ 1
2
; k 2 N, let f be a continuous function on R verifying

(24). Then Wa is of class Ck+1 on R n f0g and we have
Va �WaðfÞ ¼ f;
where
VafðxÞ ¼ ð�1Þkþ1
22kþ1k!

ð2kþ 1Þ!
d

dx2

� �kþ1

ðfðxÞÞ; x 2 R n f0g
and d
dx2
¼ 1

2x
d
dx
.

Proof. From Lemma 4.1, W1
2
f is of class C1 on R n f0g and we have

V1
2
�W1

2
ðfÞ ¼ f. Assume Wk�1

2
is Ck�1 on R n f0g and Vk�1

2
�Wk�1

2
ðfÞ ¼ f. From

Lemma 4.1, d
dx2

Wkþ1
2
¼ � 2kþ1

2 Wk�1
2
f.

Vkþ1
2
�Wkþ1

2
fðxÞ ¼ ð�1Þk 22kk!

ð2kÞ!
d
dx2


 �k
Wk�1

2
f ¼ Vk�1

2
�Wk�1

2
ðfÞ ¼ f which completes the

proof. h
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Theorem 4.1. Let a > 0, b > 0. We consider f a measurable function on R such that
jfðxÞj 6 Ce�ax
2

and jF a
B;SðfÞðyÞj 6 Ce�by

2

; a:e x; y 2 R: ð25Þ
We have,

(1) If ab > 1
4
then f = 0 almost everywhere.

(2) If ab < 1
4
then infinitely nonzero functions satisfy the conditions (25).

(3) If ab ¼ 1
4
and a ¼ kþ 1

2
; k 2 N, then the continuous functions f satisfying condition

(25) are exactly the functions having the form f ðxÞ ¼ const:e�ax2 .

Proof.

(1) If ab > 1
4
then the second case of the proof of Theorem 3.1 gives the result.

(2) If ab < 1
4
then the function defined in 2) of Theorem 3.1 clearly satisfies also the

condition (25).
(3) Assume that ab ¼ 1

4
and consider f a continuous function on R verifying the rela-

tion (25). Using the expression of Wa given by relation (7), we get
jWafðxÞj 6 CWaðe�ax
2Þ:
From Proposition 3.1, we get jWafðxÞj 6 Ce�ax
2

.

Furthermore, relation (11) implies that
jFðWafÞðyÞj 6 Ce�by
2

:

Using Theorem 1.1, we obtain that WaðfÞðxÞ ¼ const:e�ax
2
.

From Proposition 4.1, for a ¼ kþ 1
2, we get f ¼ Vkþ1

2
ðconst: e�aÞ.

Since d
dx2
ðe�ax2Þ ¼ �ae�ax2 , we obtain fðxÞ ¼ const: e�ax

2

. h

Remark 4.1. Without restriction of the parameter a, we are not able to characterize all
functions satisfying condition (25). Nonetheless the function fðxÞ ¼ const: e�ax

2
satis-

fies this condition.
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