CORRIGENDUM

Corrigendum to: Existence of solutions for multi point boundary value problems for fractional differential equations

N. Nyamoradi ${ }^{1}$
Department of Mathematics, Faculty of Sciences, Razi University, 67149
Kermanshah, Iran

Available online 13 December 2012
Published online: Arab Journal of Mathematical Sciences 18 (2012) 165-175
We have made some mistakes in this paper. Here, we must substitute the main problem with

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)=f(t, u(t)), \quad t \in[0,1], \tag{1}\\
u(0)=u^{\prime}(0)=0, \quad u(1)-\sum_{i=1}^{m} a_{i} u\left(\xi_{i}\right)=\lambda
\end{array}\right.
$$

where D_{0+}^{α} is the Riemann-Liouville fractional derivative of order $2<\alpha \leqslant 3$ and $m \geqslant 1$ is an integer, $\lambda \in(0, \infty)$ is a parameter, and a_{i}, ξ_{i}, f satisfying
(H1) $a_{i}>0$ for $1 \leqslant i \leqslant m, 0<\xi_{1}<\xi_{2}<\cdots<\xi_{n}<1$ and $\sum_{i=1}^{m} a_{i} \xi_{i}^{\alpha-1}<1$; (H2) $f:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous.

Hence, we replace " $f\left(t, u(t), u^{\prime}(t)\right)$ " by " $f(t, u(t))$ " in this paper and correct Theorem 2, Example 3 and end of proof of Lemma 6, as follow:

Lemma 6. $T: K \rightarrow K$ is a completely continuous operator.
Proof. I correct the end of this Lemma as follow:
We have showed that T is a completely continuous operator. The operator T is completely continuous by an application of the Ascoli-Arzela theorem.

We use the following notations:

$$
\begin{aligned}
M & =\frac{\Gamma(\alpha)}{\Gamma(2 \alpha)}\left(1+\frac{\sum_{i=1}^{n} a_{i}}{\Gamma(\alpha)(1-\Delta)}\right) \\
R & =\min _{\gamma \leqslant t \leqslant \delta}\left\{\int_{\gamma}^{\delta} G(t, s) d s+\frac{\sum_{i=1}^{n} a_{i}}{\Gamma(\alpha)(1-\Delta)} \int_{\gamma}^{\delta} G\left(\xi_{i}, s\right) d s\right\}
\end{aligned}
$$

We are now ready to state our main results.
Theorem 2. Suppose that there exist nonnegative numbers a, b, c such that $0<a<b<\sigma c$, and $f(t, u)$, satisfy the following conditions:
(H3) $f(t, u) \leqslant \frac{c}{M}$, for all $(t, u) \in[0,1] \times[0, c]$;
(H4) $f(t, u) \leqslant \frac{a}{M}$, for all $(t, u) \in[0,1] \times[0, a]$;
(H5) $f(t, u)>\frac{b}{R}$, for all $(t, u) \in[\gamma, \delta] \times\left[b, \frac{b}{\sigma}\right]$. In addition, suppose that λ satisfies

$$
\begin{equation*}
0<\lambda<\frac{c(1-\Delta)}{2} \tag{2}
\end{equation*}
$$

Then the problem (1) has at least three positive solutions u_{1}, u_{2}, u_{3} such that $\left\|u_{1}\right\|<a, b<\alpha(u 2(t))$ and $\left\|u_{3}\right\|>a$, with $\alpha\left(u_{3}(t)\right)<b$.

1. Application

Example 3. Consider the following fractional boundary value problem:

$$
\left\{\begin{array}{l}
D_{0+}^{\frac{5}{2}} u(t)=f(t, u(t)), \quad t \in[0,1] \tag{3}\\
u(0)=u^{\prime}(0)=0, \quad u(1)-\frac{1}{4} u\left(\frac{1}{3}\right)-\frac{3}{4} u\left(\frac{2}{3}\right)=\lambda
\end{array}\right.
$$

where

$$
f(t, u)=\left\{\begin{array}{lll}
\frac{\sqrt{t}}{30}+\sin (\pi t)+u^{6}, & t \in[0,1], & 0 \leqslant u<2 \\
\frac{\sqrt{t}}{30}+\sin (\pi t)+64+\frac{15}{2} \sqrt{u-2}, & t \in[0,1], & 2 \leqslant u<18 \\
\frac{\sqrt{t}}{30}+\sin (\pi t)+94+\frac{15}{2} \sqrt{u-18}, & t \in[0,1], & u \geqslant 18
\end{array}\right.
$$

To show that the problem (3) has at least three positive solutions, we apply Theorem 2 with $\alpha=\frac{5}{2}, m=2, a_{1}=\frac{1}{4}, a_{2}=\frac{3}{4}, \xi_{1}=\frac{1}{3}$ and $\xi_{2}=\frac{2}{3}$.

We choose $\gamma=\frac{1}{3}$ and $\delta=\frac{2}{3}$. Then, by direct calculations, we can obtain that

$$
\Delta=0.4564, \quad M=0.264048, \quad R=0.18297
$$

By calculating, we can let $m_{1}=\frac{\sqrt[3]{3-2 \sqrt{2}}-2}{\sqrt[3]{3-2 \sqrt{2}}-3}$ and $\sigma \simeq 0.01437$. If we take $a=1, b=2$
and $c=100$, we finally obtain and $c=100$, we finally obtain

$$
\begin{aligned}
& f(t, u) \leqslant 104.3833 \leqslant \frac{c}{M}=378.719, \text { for all } 0 \leqslant t \leqslant 1,0 \leqslant u \leqslant 100 \\
& f(t, u) \leqslant 2.0333 \leqslant \frac{a}{M}=3.677, \text { for all } 0 \leqslant t \leqslant 1,0 \leqslant u \leqslant 1 \\
& f(t, u, v) \geqslant 64.5471>\frac{b}{R}=10.9307, \text { for all } \frac{1}{3} \leqslant t \leqslant \frac{2}{3}, 2 \leqslant u \leqslant 4.559 .
\end{aligned}
$$

Therefore, using Theorem 2 for $0<\lambda \leqslant \frac{c(1-\Delta)}{2}=27.18$, the problem (1) has at least three positive solutions $u_{i}, i=1,2,3$, such that $\left\|u_{1}\right\|<1,2<\alpha(u 2)$ and $\left\|u_{3}\right\|>1$, with $\alpha\left(u_{3}\right)<2$.

