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Abstract. Our goal in this paper is to propose an alternative risk measure which takes into
account the fluctuations of losses and possible correlations between random variables. This
new notion of risk measures, that we call Copula Conditional Tail Expectation describes
the expected amount of risk that can be experienced given that a potential bivariate risk
exceeds a bivariate threshold value, and provides an important measure for right-tail risk.
An application to real financial data is given.
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1. INTRODUCTION

In actuarial science, several risk measures have been proposed, namely: the Value-at-Risk
(VaR), the expected shortfall or the conditional tail expectation (CTE), the distorted risk
measures (DRM) and recently the copula distorted risk measure (CDRM) as a risk measure
which takes into account the fluctuations dependence between random variables (rv), see [3].
The CTE in risk analysis represents the conditional expected loss given that the loss exceeds
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its VaR and provides an important measure for right-tail risk. In this paper we will only
consider a rv with finite mean. For a real number α in (0, 1) , the CTE of a risk X is given by

CTE (α) := E [ X | X > V a RX (α)] , (1.1)

where V a RX (α) := inf {x : F (x) ≥ α} is the quantile of order α pertaining to distribution
function (df) F. In practice the expectation of X is computed when the conditional event α is
fixed (to be equal to 95% or 99% for example).

Suppose now that we deal with a couple of random losses (X1, X2). It is clear that the
CTE of X1 is unrelated to X2. If we had to control the overflow of the two risks X1 and X2
at the same time, CTE does not answer the problem, then we need another formulation of
CTE which takes into account the excess of the two risks X1 and X2. Then we deal with the
amount

E
[

X1| X1 > V a RX1 (α) , X2 > V a RX2 (t)
]
. (1.2)

If the couple of random losses (X1, X2) are independent rv’s then the amount (1.2) defined
only the CTE of a univariate risk, X1 for a fixed conditional event α. Therefore the case of
independence is not important.

In recent years dependence is beginning to play an important role in the world of risk.
The increasing complexity of insurance and financial activity products has led to increased
actuarial and financial interest in the modeling of dependent risks. While independence
can be defined in only one way, dependence can be formulated in infinite ways. Therefore
the assumption of independence makes the treatment easier. Nevertheless, in applications
dependence is the rule and independence is the exception. For more details see [12].

The copulas is a function that completely describes the dependence structure. It contains
all the information to link the marginal distributions to their joint distribution. To obtain
a valid multivariate df, we combine several marginal df’s, or a different distributional
family, with any copula function. Using Sklar’s theorem [37], we can construct a bivariate
distribution with arbitrary marginal distributions. Thus, for the purposes of statistical
modeling, it is desirable to have a large collection of copulas at one’s disposal. A great
many examples of copulas can be found in the literature, most are members of families with
one or more real parameter. For a formal treatment of copulas and their properties, see the
monographs by Hutchinson and Lai [26], Dall’Aglio et al. [10], Joe [27], the conference
proceedings edited by Benes̆ and S̆tĕpán [2], Cuadras et al. [9], Dhaene et al. [15] and the
textbook of Nelsen [31].

Recently in finance, insurance and risk management have emphasized the impor-
tance of positive or negative quadrant dependence notions (PQD or NQD) introduced
by Lehmann [28], in different areas of applied probability and statistics, as an example,
see [13,14]. Two rv’s are said to be PQD when the probability that they are simultaneously
large (or small) is at least as great as it would be where they are independent. In terms
of copula, if their copula is greater than their product, i.e., C(u1, u2) > u1u2 or, simply
C > C⊥, where C⊥ denotes the product copula. For the sake of brevity, we will restrict
ourselves to concepts of positive dependence.

The main idea of this paper is to use the information of dependence between PQD or NQD
risks to quantifying insurance losses and measuring financial risk assessments, we propose a
risk measure defined by:

CCTEX1 (t) := E
[

X1| X1 > V a RX1 (α) , X2 > V a RX2 (t)
]
.
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We will call this new risk measure by the Copula Conditional Tail Expectation (CCTE),
like a risk measure which measures the conditional expectation given two dependent losses
exceeds V a RX1 (α) and V a RX2 (t) for a fixed α ≥ 0.9 and t ∈ (0, 1) usually with t > 0.9.
Again, CCTE satisfies all the desirable properties of a coherent risk measure [1]. The notion
of the copula in risk measure field has recently been considered by several authors, see for
instance [3,11,16,17] and recently in [7,29].

This risk measure can give a good quantification of losses when we have combined
dependents risk, this dependence can influence the losses of interested risks. Therefore,
quantifying the risk of our position is useful to decide if it is acceptable or not. For this
reason, we use the all information about this interest risk. The dependence of our risk on
other risks is one of important information that we must take into consideration.

The rest of the paper is organized as follows. In Section 2, we give an explicit formulation
of the new notion copula conditional tail expectation risk measure in bivariate case. In
Section 3 we present some illustrative examples to explain how to use the new CCTE
measure. Application to real financial data is given in Section 4. Concluding notes are given
in Section 5. Proofs are relegated to Appendix.

2. COPULA CONDITIONAL TAIL EXPECTATION

A risk measure quantifies the risk exposure in a way that is meaningful for the problem
at hand. The most commonly used risk measure in finance and insurance are VaR and CTE
(also known as the Tail-VaR or expected shortfall). The risk measure is simply the loss size
for which there is a small (e.g. 1%) probability of exceeding. For some time, it has been
recognized that this measure suffers from serious deficiencies if the losses are not normally
distributed.

According to Artzner et al. [1] and Wirch and Hardy [38], the conditional tail expectation
of a rv X at its V a RX (α) is defined by:

CTEX (α) =
1

1 − FX (V a RX (α))

∫
∞

V a RX (α)

xd FX (x),

where FX is the df of X .
Since X is continuous, then FX (V a RX (α)) = α, it follows that for all 0 < α < 1

CTEX (α) =
1

1 − α

∫ 1

α

V a RX (u) du. (2.3)

The CTE can be larger than the VaR measure for the same value of level α described above
since it can be thought of as the sum of the quantile V a RX (α) and the expected excess loss.
Tail-VaR is a coherent risk measure in the sense of Artzner et al. [1]. For application of this
kind of coherent risk measure we refer to Artzner et al. [1] and Wirch and Hardy [38].

Thus the CTE is nothing, see [34], but the mathematical transcription of the concept of
“average loss in the worst 100(1 − α)% cases”, defining by ν = V a RX (α) a critical loss
threshold corresponding to some confidence level α, CTEX (α) provides a cushion against
the mean value of losses exceeding the critical threshold ν.

Now, assume that X1 and X2 are dependent with joint df H and continuous margins FXi ,

i = 1, 2, respectively. Through this paper, we call X1 the target risk and X2 the associated
risk. In this case, the problem becomes different and its resolution requires more than the
usual background.
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Our contribution is to introduce the copula notion to provide more flexibility to the CTE
of rv’s in terms of loss and dependence structure. For comprehensive details on copulas one
may consult the textbook of Nelsen [31].

According to Sklar’s Theorem [37], there exists a unique copula C : [0, 1]d
→ [0, 1] such

that

H (x1, x2) = C
(
FX1 (x1) , FX2 (x2)

)
. (2.4)

The formula of CTE focuses only on the average of loss. For this we should think of another
formula to be more inclusive, this formula must take into consideration the dependence
structure and the behavior of margin tails. These two aspects have an important influence
when quantifying risks. On the other hand, if the correlation factor is neglected, the
calculation of the CTE follows from formula (2.3), which only focuses on the target risk.

Now, by considering the correlation between the target and the associated risks, we define
a new notion of CTE called Copula Conditional Tail Expectation (CCTE) given in (1.2), this
notion led to give a risk measurement focused on the target risk and the link between target
and associated risk.

Let us denote the survival functions by F Xi (xi ) = P(X i > xi ), i = 1, 2, and the joint
survival function by H (x1, x2) = P(X1 > x1, X2 > x2). The copula function C which
couples H to F Xi , i = 1, 2 via H (x1, x2) = C(F X1 (x1), F X2 (x2)) is called the survival
copula of (X1, X2) . Furthermore, C is a copula, and

C(u, v) := u + v − 1 + C(1 − u, 1 − v), (2.5)

where C is the (ordinary) copula of X1 and X2. For more details on the survival copula
function see, Section 2.6 in [31].

If we suppose that C is absolutely continuous with density c, we can rewrite for all s and
t in (0, 1)

C(1 − s, 1 − t) =

∫ 1

s
Jt (u) du

where

Jt (u) :=

∫ 1

t
c (u, v) dv. (2.6)

So for the fixed level s = α, we have

C(1 − α, 1 − t) = 1 − α − t + C(α, t). (2.7)

The CCTE of the target risk X1 computed under a fixed conditional risk probability
C(1 − α, 1 − t) with respect to the associated risk X2 is given in the following proposition.

Proposition 2.1. Let (X1, X2) a bivariate rv with joint df represented by the copula C.
Assume that X2 has a finite mean and df FX1 . Then for a fixed α and for all t in (0, 1), the
copula conditional tail expected of X1 is given by

CCTEX1 (t) =

∫ 1
α

Jt (u) F−1
X1
(u) du∫ 1

α
Jt (u) du

, (2.8)

where Jt (·) is given in (2.6) and F−1
X1

is the quantile function of FX1 .
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This notion does not depend on the df of the associated risks, but it depends only on the
copula function and the df of target risk.

Next, in Section 3, we will prove that the risk when we consider the correlation between
PQD risks is greater than in the case of a single one. That means, for all α, t in (0, 1) then

CCTEX1 (t) ≥ CTEX1 (α) . (2.9)

Notice that in the NQD rv’s we have the reverse inequality of (2.9) and the CCTE coincides
with CTE measures in the non-dependence case, i.e. the copula C = C⊥.

3. ILLUSTRATION EXAMPLES

3.1. CCTE via Farlie–Gumbel–Morgenstern copulas

One of the most important parametric families of copulas is the Farlie–Gumbel–
Morgenstern (FGM) family defined as

C FG M
θ (u, v) = uv + θuv(1 − u)(1 − v), u, v ∈ [0, 1], (3.10)

where θ ∈ [−1, 1]. The family was discussed by Morgenstern [30], Gumbel [23] and
Farlie [19].

The copula given in (3.10) is PQD for θ ∈ (0, 1] and NQD for θ ∈ [−1, 0). In practical
applications this copula has been shown to be somewhat limited, for copula dependence
parameter θ ∈ [−1, 1] , Spearman’s correlation ρ ∈ [−1/3, 1/3] and Kendall’s τ ∈

[−2/9, 2/9] , for more details on copulas see, for example, [31].
Members of the FGM family are symmetric, i.e., C FG M

θ (u, v) = C FG M
θ (v, u) for all (u, v)

in [0, 1]2 and have the lower and upper tail dependence coefficients equal to 0.
A pair (X, Y ) of rv’s is said to be exchangeable if the vectors (X, Y ) and (Y, X) are

identically distributed. Note that, in applications, exchangeability may not always be a
realistic assumption. For identically distributed continuous rv’s, exchangeability is equivalent
to the symmetry of the FGM copula.

For practical purposes, we consider copula families with only positive dependence.
Furthermore, risk models are often designed to model positive dependence, since in some
sense it is the “dangerous” dependence: assets (or risks) move in the same direction during
periods of extreme events, see [18].

Consider the bivariate loss PQD rv’s (X i , Y ), i = 1, 2, 3, having continuous marginal df’s
FXi (x) and GY (y) and joint df HXi ,Y (x, y) represented by the FGM copula of parameters θi ,
respectively for i = 1, 2, 3

HXi ,Y (x, y) = C FG M
θi

(FXi (x) ,GY (y)).

The marginal survival functions F Xi (x), i = 1, 2, 3 and GY (y) are given by

F Xi (x) =

{
(1 + x)−γ , x ≥ 0,
1, x < 0, and GY (y) =

{
(1 + y)−γ , y ≥ 0,
1, y < 0 (3.11)

where γ > 0 is called the Pareto index, the case γ ∈ (1, 2) means that X i have heavy-tailed
distributions, so that X i and Y have identical Pareto dfs.

For each couple (X i , Y ) , i = 1, 2, 3, we propose θ1 = 0.01, θ2 = 0.5 and θ3 = 1,
respectively. The choice of parameters θi , i = 1, 2, 3 corresponds respectively to the weak,
medium and the high dependence.
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In this example, among the target risks X i we will choose the less risky with the associated
risk Y. The CTEs and the VaRs of X i for a fixed level s = α are the same and are given
respectively by

CTEXi (α) =
γ (1 − α)−1/γ

γ − 1
(3.12)

and

V a RXi (α) = (1 − α)−1/γ , (3.13)

for i = 1, 2, 3.
For a fixed s = α, we have that

C (1 − α, 1 − t) = 1 − α − t + αt + θiαt(1 − α)(1 − t). (3.14)

Now, we calculate∫ 1

α

Jt (u) F−1
Xi
(u) du =

∫ 1

α

(1 − u)−1/γ (θi − 2uθi − 2vθi + 4uvθi + 1) dudv

=

∫ 1

t
(θi − 2θiv + 1) dv

∫ 1

α

(1 − u)−1/γ du

+ 2θi

∫ 1

t
(2v − 1) dv

∫ 1

α

u(1 − u)−1/γ du,

then ∫ 1

α

Jt (u) F−1
Xi
(u) du = γ

(1 − t) (2γ + tθi − 2tθiα + 2tθiαγ − 1)
2γ 2 − 3γ + 1

× (1 − α)1−1/γ . (3.15)

Finally, by substitution of (3.14) and (3.15) in (2.8) we get

CCTEXi (t) = γ
2γ + tθi − 2tαθi + 2tαγ θi − 1
(tαθi + 1)

(
2γ 2 − 3γ + 1

) (1 − α)−1/γ . (3.16)

We have in Table 3.1 and Fig. 3.1 the comparison of the riskiness of X1, X2 and X3.

Recall that, the CTE’s risk measure of X i at level α is the same in all cases. Note that CCTE
coincides with CTE in the independence cases (θ1 = 0). The CCTE of the loss X3 is riskier
than X2 and X1 but not very significant, in the 6th column of Table 3.1, the relative difference
between 64.7946 and 64.633 is only about 0.025%. This is because FGM copula does not take
into account the dependence in the upper and the lower tail (λL = λU = 0). In this case, we
cannot clearly confirm which is the most dangerous risk.

3.2. CCTE via Archimedean copulas

A bivariate copula is said to be Archimedean (see, [22]) if it can be expressed by

C(u, v) = ψ [−1] (ψ(u) + ψ(v)) ,

where ψ, called the generator of C, is a continuous strictly decreasing convex function from
[0, 1] to [0,∞] such that ψ(1) = 0 with ψ [−1] denotes the pseudo-inverse of ψ, that is

ψ [−1] (t) =

{
ψ−1 (t) , for t ∈ [0, ψ (0)] ,
0, for t ≥ ψ (0) .
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Table 3.1
Risk measures of dependent Pareto (1.5) rv’s with FGM copula.

α 0.9000 0.9225 0.9450 0.9675 0.9900

V a RXi (α) 4.6415 5.5013 6.9144 9.8192 21.5443
CTEXi (α) 13.9247 16.5039 20.7433 29.4577 64.6330

t CCTEX1 (t) , θ = 0.01

0.9000 13.9309 16.5096 20.7484 29.4619 64.6359
0.9225 13.9311 16.5097 20.7485 29.4620 64.6359
0.9450 13.9312 16.5099 20.7487 29.4621 64.6360
0.9675 13.9314 16.5100 20.7488 29.4623 64.6361
0.9900 13.9316 16.5101 20.7489 29.4624 64.6362

t CCTEX2 (t) , θ = 0.5

0.9000 14.1477 16.7072 20.9234 29.60778 64.7336
0.9225 14.1517 16.7108 20.9266 29.61038 64.7353
0.9450 14.1555 16.7143 20.9297 29.61293 64.7370
0.9675 14.1594 16.7178 20.9327 29.61545 64.7387
0.9900 14.1631 16.7212 20.9357 29.61793 64.7404

t CCTEX3 (t) , θ = 1

0.9000 14.2709 16.8183 21.0208 29.6880 64.7868
0.9225 14.2756 16.8226 21.0245 29.6910 64.7888
0.9450 14.2803 16.8267 21.0281 29.6940 64.7908
0.9675 14.2848 16.8308 21.0316 29.6969 64.7927
0.9900 14.2892 16.8348 21.0351 29.6997 64.7946

Fig. 3.1. CCTE, CTE and V a R risks measures of PQD Pareto (1.5) rv’s with FGM copula and 0.9 ≤ α = t ≤ 0.99.

When ψ(0) = ∞, the generator ψ and C are said to be strict and therefore ψ [−1]
= ψ−1.

All notions of positive dependence that appeared in the literature, including the weakest one
of PQD as defined by Lehmann [28], require the generator to be strict.

Archimedean copulas are widely used in applications due to their simple form, a variety
of dependence structures and other “nice” properties. For example, in the Actuarial field: the
idea arose indirectly in [4] and was developed in [5,32]. A survey of Actuarial applications is
in [20].
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For an Archimedean copula, Kendall’s tau can be evaluated directly from the generator of
the copula, as shown in [22]

τ = 4
∫ 1

0

ψ (u)
ψ ′ (u)

du + 1 (3.17)

where ψ ′ (u) exists since the generator is convex. This is another “nice” feature of
Archimedean copulas. As for tail dependency, as shown in [27] the coefficient of upper tail
dependency is

λU = 2 − 2 lim
s→0+

ψ (u)
ψ ′ (2u)

and the coefficient of lower tail dependency is

λL = 2 lim
s→+∞

ψ (u)
ψ ′ (2u)

.

A collection of twenty-two one-parameter families of Archimedean copulas can be found in
Table 4.1 of Nelsen [31].

Notice that in the case of Archimedean copula the copula conditional tail expectation has
not an explicit formula, so we give by the following Corollary the expression of CCTE in
terms of the generator.

Corollary 3.1. Let C be an Archimedean copula absolutely continuous with generator ψ,
then for a fixed α and t in (0, 1)

Jt (u) = 1 −
ψ ′(u)

ψ ′ (C (u, t))
. (3.18)

Thus the CCTE of target risk X2 in terms of Archimedean copula generator with respect
to threshold 0 < t < 1, is given by

CCTEX1 (t) =
1

C (1 − α, 1 − t)

(
(1 − α)CTEX1 (α)−

∫ 1

α

ψ ′(u)F−1
X1
(u)

ψ ′ (C (u, t))
du

)
.

Note that in practice we can easily fit copula-based models with the maximum likelihood
method or to estimate the dependence parameter by the relationship between Kendall’s tau
of the data and the generator of the Archimedean copula given in (3.17) under the specified
copula model.

In the following section, we give some examples to explain how to calculate and compare
the CCTE with other risk measures such as VaR and CTE.

3.2.1. CCTE via Clayton copula
In the following example, we consider the bivariate Clayton copula, which is a member of

the class of Archimedean copula, with the dependence parameter θ in [−1,∞) \ {0}.
The Clayton family was first proposed by Clayton [4] and studied by Oakes [32,33], Cox

and Oakes [8] and Cook and Johnson [5,6]. The Clayton copula has been used to study
correlated risks, it has the form

CC
θ (u, v) :=

[
max

(
u−θ

+ v−θ
− 1, 0

)]−1/θ
. (3.19)

For θ > 0 the copulas are strict and the copula expression simplifies to

CC
θ (u, v) =

(
u−θ

+ v−θ
− 1

)−1/θ
. (3.20)
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Table 3.2
Upper tail, Kendall’s tau and Clayton copula parameters used in calcula-
tion of risk measures.

λL θi τ

0.250 0.5 0.200
0.707 2 0.500
0.943 12 0.857

Asymmetric tail dependence is prevalent if the probability of joint extreme (left) negative
realizations differs from that of joint extreme (right) positive realizations. It can be seen
that the Clayton copula assigns a higher probability to joint extreme negative events than to
joint extreme positive events. The Clayton copula is said to display lower tail dependence
λL = 2−1/θ , while it displays zero upper tail dependence λU = 0, for θ ≥ 0. The converse
can be said about the Gumbel copula (displaying upper but zero lower tail dependence). The
margins become independent as θ approaches zero, while for θ → 1, the Clayton copula
arrives at the comonotonicity copula. For θ = −1 we obtain the Fréchet–Hoeffding lower
bound and the copula attains the Fréchet upper bound as θ approaches infinity.

We take the same example as in Section 3.1, we may now represent the joint df’s Hi ,

i = 1, 2, 3, respectively, by the Clayton copulas CC
θi

given in (3.20).
The relationship between Kendall’s tau τ and the Clayton copula is given by

τ = θ/ (θ + 2) , (3.21)

we select a different dependent parameter corresponding to several levels of positive
dependency summarized in Table 3.2 for a weakness, a moderate and a strong positive
association, to calculate and compare the CCTEs of X i , i = 1, 2, 3.

The CTEs and VaRs of X i are the same and are given respectively by (3.12) and (3.13),
for i = 1, 2, 3. The CCTE of the rv’s X i with respect to the threshold t is given by

CCTEXi (t) =
1

C
C
θi
(1 − α, 1 − t)

(
γ (1 − α)−1/γ+1

(γ − 1)

−

∫ 1

α

(
t−θi + u−θi − 1

)−1−1/θi

(1 − u)1/γ uθi +1
du

)
. (3.22)

Table 3.3 and Fig. 3.2 show that the loss X3 is clearly considerably riskier than X2 and X1,

in the 6th column of Table 3.3, the relative difference between 66.3802 and 64.6330 is about
2.63%.

Clayton copula is best suited for applications in which two outcomes are likely to
experience low values together, since the dependence is strong in the lower tail and weak
in the upper tail.

3.2.2. CCTE via Gumbel copula
The Gumbel family has been introduced by Gumbel [24]. Since it has been discussed

in [25], it is also known as the Gumbel–Hougaard family. The Gumbel copula is an
asymmetric Archimedean copula given by

CG
θ (u, v) = exp

{
−
[
(− ln u)θ + (− ln v)θ

]1/θ
}
,
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Table 3.3
Risk measures of dependent Pareto (1.5) rv’s with Clayton copula.

α 0.9000 0.9225 0.9450 0.9675 0.9900

V a RXi (α) 4.6415 5.5013 6.9144 9.8192 21.5443
CTEXi (α) 13.9247 16.5039 20.7433 29.4577 64.6330

t CCTEX1 (t) , θ = 0.5

0.9000 14.0887 16.6529 20.8749 29.5669 64.7060
0.9225 14.0928 16.6566 20.8782 29.5697 64.7078
0.9450 14.0969 16.6604 20.8815 29.5724 64.7097
0.9675 14.1010 16.6641 20.8848 29.5751 64.7115
0.9900 14.1051 16.6678 20.8880 29.5779 64.7133

t CCTEX2 (t) , θ = 2

0.9000 14.5006 17.0238 21.1992 29.8337 64.8826
0.9225 14.5361 17.0562 21.2279 29.8577 64.8987
0.9450 14.5726 17.0895 21.2575 29.8824 64.9153
0.9675 14.6101 17.1239 21.2880 29.9079 64.9324
0.9900 14.6486 17.1592 21.3195 29.9342 64.9501

t CCTEX3 (t) , θ = 12

0.9000 15.6051 17.9134 21.8883 30.3313 65.1690
0.9225 16.1180 18.3667 22.2741 30.6377 65.3635
0.9450 16.7436 18.9301 22.7627 31.0332 65.6192
0.9675 17.4948 19.6187 23.3719 31.5369 65.9518
0.9900 18.3837 20.4476 24.1199 32.1694 66.3802

Fig. 3.2. CCTE, CTE and V a R risks measures of PQD Pareto (1.5) rv’s with Clayton copula and 0.9 ≤ α = t ≤

0.99.

its generator is

ψθ (t) = (− ln t)θ .

The dependence parameter is restricted to the interval [1,∞). It follows that the Gumbel
family can represent independence and “positive” dependence only since the lower and upper
bounds for its parameter correspond to the product copula and the upper Fréchet bound.
The Gumbel copula families are often used for modeling heavy dependencies in right tail.
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Fig. 3.3. CCTE, CTE and V a R risks measures of PQD Pareto (1.5) rv’s with Gumbel copula and 0.9 ≤ α = t ≤

0.99.
Table 3.4
Upper tail, Kendall’s tau and Gumbel copula parameters used in calculate
of risk measures.

λU θi τ

0.013 1.01 0.009
0.585 2 0.500
0.928 10 0.900

It exhibits strong right (upper) tail dependence λU = 2 − 21/θ and relatively weak left
(lower) tail dependence λL = 0. If outcomes are known to be strongly correlated with high
values, but less correlated at low values, then the Gumbel copula will be an appropriate
choice.

We give the CCTE of rv’s X i , i = 1, 2, 3 in terms of Gumbel copula by

CCTEXi (t) =
1

C
G
θi
(1 − α, 1 − t)

(
γ (1 − α)1−1/γ

γ − 1

−

∫ 1

α

u−1(1 − u)−1/α(− ln u)θi −1CG
θi
(u, t)(

− ln
(

CG
θi
(u, t)

))1−θi
du

)
, (3.23)

where C
G
θi
(α, t) = α + t − 1 + CG

θi
(1 − α, 1 − t).

By the relationship between Kendall’s tau τ and the Gumbel copula parameter θ given by:

τ = (θ − 1) /θ,

we select the values of θi corresponding respectively to a weak, a moderate and a strong
positive association which is summarized in Table 3.4.

Table 3.5 and Fig. 3.3 show that the loss X3 is considerably riskier than X2 and X1, in
the 6th column of Table 3.5, the relative difference between 112.1868 and 69.6017 is about
61.184%.
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Table 3.5
Risk measures of PQD Pareto (1.5) rv’s with Gumbel copula.

α 0.9000 0.9225 0.9450 0.9675 0.9900

V a RXi (α) 4.6415 5.5013 6.9144 9.8192 21.5443
CTEXi (α) 13.9247 16.5039 20.7433 29.4577 64.6330

t CCTEX1 (t) , θ = 1.01

0.9000 15.9370 18.8793 23.6990 33.5569 72.9927
0.9225 16.4850 19.5288 24.5076 34.6672 75.1339
0.9450 17.4102 20.6250 25.8737 36.5349 78.6453
0.9675 19.3659 22.9487 28.7606 40.4546 85.7265
0.9900 25.0078 33.6905 40.5881 56.2757 112.1868

t CCTEX2 (t) , θ = 2

0.9000 18.1581 20.2092 23.8421 31.8490 66.0876
0.9225 19.7693 21.6536 25.0597 32.7667 66.6063
0.9450 22.6911 24.3385 27.3837 34.5437 67.5834
0.9675 28.9506 30.6075 33.0707 39.1284 70.0747
0.9900 52.9293 53.7426 55.2768 59.2078 86.3853

t CCTEX3 (t) , θ = 10

0.9000 13.7652 15.6122 19.3784 29.4577 64.6330
0.9225 16.6944 16.6265 19.4465 29.4585 64.6330
0.9450 23.3388 21.9025 20.8214 29.4800 64.6330
0.9675 39.4830 36.9244 32.8079 31.6923 64.6331
0.9900 128.3195 120.0009 106.5448 95.7376 69.6017

Returning to our example given in Section 3.1, by modeling the dependence structure of
two rv’s with a survival Gumbel copula, there is a high probability that the two variables are
increasing at the same time.

Remark 3.1. The survival Gumbel copula can measure the lower tail dependence instead of
the upper tail dependence as compared to Gumbel copula. This is appropriate for analyzing
tail dependence structure since it explores all possibilities of copula functions in measuring
dependencies. In this case λU = λL , where λL is the upper tail dependence of the survival
Gumbel copula. The survival copula also has the same property and dependence range as
their original copula functions.

The CCTE of rv’s X i , i = 1, 2, 3 in terms of survival Gumbel copula is given by

CCTEXi (t) =
1

CG
θi
(α, t)

(
γ (1 − α)1−1/γ

γ − 1

−

∫ 1

α

u−1(1 − u)−1/γ (− ln u)θi −1C
G
θi
(u, t)

(
− ln

(
C

G
θi
(u, t)

))1−θi
du

)
.

Note that we have modeled the joint df with the survival Gumbel copula instead of the
Gumbel copula and we compare with the Gumbel copula (the previous example). So the
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Table 3.6
Risk measures of dependent Pareto (1.5) rv’s with FGM copula.

α 0.9000 0.9225 0.9450 0.9675 0.9900

V a RXi (α) 4.6415 5.5013 6.9144 9.8192 21.5443
CTEXi (α) 13.9247 16.5039 20.7433 29.4577 64.6330

t CCTEX1 (t) , θ = 1.01

0.9000 0.1786 0.1603 0.1398 0.1149 0.0761
0.9225 0.1354 0.1215 0.1060 0.0871 0.0577
0.9450 0.0941 0.0844 0.0737 0.0605 0.0401
0.9675 0.0545 0.0489 0.0427 0.0351 0.0233
0.9900 0.0165 0.0148 0.0129 0.0106 0.0070

t CCTEX2 (t) , θ = 2

0.9000 0.8301 0.7791 0.7177 0.6331 0.4695
0.9225 0.7173 0.6749 0.6241 0.5543 0.4175
0.9450 0.5891 0.5561 0.5167 0.4627 0.3558
0.9675 0.4330 0.4109 0.3845 0.3483 0.2758
0.9900 0.2099 0.2013 0.1911 0.1773 0.1486

t CCTEX3 (t) , θ = 10

0.9000 1.3070 1.2244 1.0989 0.9062 0.5632
0.9225 1.2099 1.1465 1.0501 0.8791 0.5492
0.9450 1.0710 1.0318 0.9683 0.8410 0.5352
0.9675 0.8683 0.8451 0.8162 0.7535 0.5173
0.9900 0.5186 0.5059 0.4936 0.4805 0.4269

comparison will be the contrast (recall Remark 3.1), that means, the small value gives more
riskiness.

Table 3.6 shows that all CCTEXi (t) < CTEXi (α) for i = 1, 2, 3 and 0.9 ≤ t ≤ 0.99,
in this case we cannot take a decision about the riskiness of the target risk. Nevertheless, we
can get an idea of the comparison in this case. So in the survival Gumbel copula model, we
have only the lower tail dependence. Now it is natural to consider that the risk thresholds be
in 0 < t ≤ 0.1 places of 0.9 ≤ t ≤ 0.99, in this case, we obtain the same reasoning given in
the case of the Gumbel copula see Table 3.7.

4. APPLICATION

The relationships between the copula parameter and Kendall’s tau permitted us to compute
the θ value assuming a Gumbel, Clayton copula. Once endowed with the parameter value, we
are able to compute any joint probability between the stock indices. For instance, we analyzed
500 observations from four European stock indices return series calculated by log (X t+1/X t )

for the period 1991 to November 1992 (see, Fig. 4.4), available in “QRM and data sets
packages” of the R software, it contains the daily closing prices of major European stock
indices: Germany DAX (Ibis), Switzerland SMI, France CAC and UK FTSE. The data are
sampled in business time, i.e., weekends and holidays are omitted. Table 4.8 summaries the
Kendall’s tau between the four Market Index returns.

The Lévy-stable distribution offers a reasonable improvement to the alternative distribu-
tions, each stable distribution Sγ (σ ;β;µ) has the stability index γ that can be treated as
the main parameter, when we make an investment decision, skewness parameter β, in the
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Table 3.7
Risk measures of PQD Pareto (1.5) rv’s with Gumbel copula.

α 0.9000 0.9225 0.9450 0.9675 0.9900

V a RXi (α) 4.6415 5.5013 6.9144 9.8192 21.5443
CTEXi (α) 13.9247 16.5039 20.7433 29.4577 64.6330

t CCTEX1 (t) , θ = 0.01

0.9000 15.9370 18.8793 23.6990 33.5569 72.9927
0.9225 16.4850 19.5288 24.5076 34.6672 75.1339
0.9450 17.4102 20.6250 25.8737 36.5349 78.6453
0.9675 19.3659 22.9487 28.7606 40.4546 85.7265
0.9900 25.0078 33.6905 40.5881 56.2757 112.1868

t CCTEX2 (t) , θ = 2

0.9000 18.1581 20.2092 23.8421 31.8490 66.0876
0.9225 19.7693 21.6536 25.0597 32.7667 66.6063
0.9450 22.6911 24.3385 27.3837 34.5437 67.5834
0.9675 28.9506 30.6075 33.0707 39.1284 70.0747
0.9900 52.9293 53.7426 55.2768 59.2078 86.3853

t CCTEX3 (t) , θ = 10

0.9000 13.7652 15.6122 19.3784 29.4577 64.6330
0.9225 16.6944 16.6265 19.4465 29.4585 64.6330
0.9450 23.3388 21.9025 20.8214 29.4800 64.6330
0.9675 39.4830 36.9244 32.8079 31.6923 64.6331
0.9900 128.3195 120.0009 106.5448 95.7376 69.6017

Table 4.8
Kendall’s tau matrix estimates from four European stock indices returns.

Variable DAX SMI CAC FTSE

DAX 1.0000 0.4087 0.3695 0.2913
SMI 0.4087 1.0000 0.3547 0.4075
CAC 0.3695 0.3547 1.0000 0.3670
FTSE 0.2913 0.4075 0.3670 1.0000

Table 4.9
Maximum likelihood fit of four-parameters stable distribution to four Eu-
ropean stock indices returns data.

DAX SMI CAC FTSE

γ 1.6420 1.8480 1.6930 1.8740
β 0.1470 0.1100 −0.0380 0.9500
σ 0.0046 0.0046 0.0062 0.0054
µ −0.0002 0.0006 0.0004 −0.0005

range [−1, 1], scale parameter σ and shift parameter µ. In models that use financial data, it
is generally assumed that γ ∈ (1, 2]. By using the “fBasics” package in R software, based
on the maximum likelihood estimators to fit the parameters of a df of the four Market Index
returns, the results are summarized in Table 4.9.

The Lévy-stable distribution has Pareto-type tails, it is like a power function, i.e., F
is regularly varying (at infinity) with index (−γ ) , meaning that F (x) = x−γ L (x) as x
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Fig. 4.4. Scatterplots of 500 pseudo-observations drawn from four European stock indices returns.

becomes large, where L > 0 is a slowly varying function, which can be interpreted as slower
than any power function (see, [35] and [36] for a technical treatment of regular variation).

In Table 4.10 we show the results of bivariate goodness of fit tests (see, [21]) for four
different copula families, two elliptic: the Gaussian and the Student t with 1 degree of
freedom, and two Archimedean: Clayton and Gumbel copulas. For each of the previous cases,
the copulas are reflection symmetric only in two dimensions. All the copula simulations are
obtained by the use of the copula R package.

For the majority of the pairs compared with the goodness of fit test are rejected in Gumbel
and Clayton copulas cases and accepted by Gaussian copula and t-copula, if one compares
with the greatest p-value which close to 1 we choose the t-copula.

Next, we consider the four Market Index returns fitted by t-copula given by

Cρ,υ(u, v) = tρ,υ
(
t−1
υ (u), t−1

υ (v)
)

where υ is the degree-of-freedom parameter, t−1
υ is the inverse of the univariate standard

Student-t df, and tρ,υ is the bivariate standard Student-t distribution parametrized by the
correlation parameterρ and υ. The density of the bivariate t-copula is given by

cρ,υ (u, v) =
υ

2
√

1 − ρ2

Γ (υ/2)2

Γ ((υ + 1) /2)2

(
1 +

x2
+y2

−2ρxy
υ(1−ρ2)

)−(υ+2)/2

((
1 +

x2

υ

) (
1 +

y2

υ

))−(υ+1)/2 ,

where x = t−1
υ (u), y = t−1

υ (v) and Γ is the Gamma function.
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Table 4.10
p-value of bootstrap-based goodness-of-fit test of Gumbel, Clayton,
Gaussian and t copula of dimension 2, with ‘method’ = “Sn”,
‘estim.method’ = “itau”.

Variable SMI FTSE CAC Copula

DAX 0.0019 0.0015 0.0005 Gumbel
0.0004 0.0005 0.0004 Clayton
0.1543 0.2572 0.2662 Gaussian
0.4381 0.2942 0.3302 t

SMI – 0.0004 0.0004 Gumbel
– 0.0004 0.0004 Clayton
– 0.4071 0.2283 Gaussian
– 0.3390 0.5220 t

FTSE – – 0.0394 Gumbel
– – 0.0004 Clayton
– – 0.3941 Gaussian
– – 0.5230 t

Table 4.11
Fitted t-copula parameter ρ corresponding to Kendall’s tau and υ = 1.

Variable DAX SMI CAC FTSE

DAX ∞ 0.5945 0.6344 0.5498
SMI 0.5945 ∞ 0.5610 0.5781
CAC 0.6344 0.5610 ∞ 0.5974
FTSE 0.5498 0.5781 0.5974 ∞

Table 4.12
CCTE’s Risk measures for α = 0.9 and t = 0.9 with t-copula.

Variable DAX SMI CAC FTSE

DAX – 0.617 0.677 0.666
SMI 0.617 – 0.842 0.624
CAC 0.677 0.842 – 0.590
FTSE 0.666 0.624 0.590 –

By assuming that t-copula represents our four dependences structure, we obtain the fitted
dependence parameters of the six bivariate joint dfs, presented in Table 4.11.

By using Eqs. (2.8) with t-copula, we calculate for a fixed level α = t = 0.9 the CCTE’s
risk measures for all cases, the results are summarized in Table 4.12.

In Table 4.12, the smallest value gives the lowest risk. So, the less risky couple (X, Y ) is:
(CAC, FTST), where X is the target risk and Y is the associated risk.

5. CONCLUSION NOTES

For a good investment it is better to divide the capital of investment in more than one
market, but the most important question is that if these markets are linked and if one of them
collapses, does the rest of the interrelated market collapse as well?

Tables 3.1, 3.3 and 3.5 show that the CCTEs become larger if dependency increases.
However, CTE and VaR are neither increasing nor decreasing as the correlation increases.
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Therefore, to reduce the risk, in preference for this market to be independent, or preferably
for the investors to choose the independent markets or the less dependent one to invest their
money.

In this paper, we give a new risk measure called copula conditional tail expectation which
preserves the property of coherence. This measure is apt to understand the relationships
among multivariate assets and to help us greatly about how best to position our investments
and enhance our financial risk protection.
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APPENDIX

Proof of Proposition 2.1. By calculating we have

P
(

X1 ≤ x | X1 ≥ V a RX1 (s) , X2 ≥ V a RX2 (t)
)

=
P
(
X1 ≤ x, X1 > V a RX1 (s) , X2 > V a RX2 (t)

)
P
(
X1 > V a RX1 (s) , X2 > V a RX2 (t)

)
=
P
(
V a RX1 (s) < X1 ≤ x, X2 ≥ V a RX2 (t)

)
P
(
X1 > V a RX1 (s) , X2 > V a RX2 (t)

)
=

P
(
V a RX1 (s) < X1 ≤ x, X2 ≥ V a RX2 (t)

)
1 − P{X1 ≤ F−1

X1
(s)} − P{X2 ≤ F−1

X2
(t)} + P{X1 ≤ F−1

X1
(s), X2 ≤ F−1

X2
(t)}

=
P (V a RX (s) < X ≤ x, Y ≥ V a RY (t))

1 − P{FX1 (X) ≤ s} − P{FX2 (X2) ≤ t} + P{FX1 (X1) ≤ s, FX2 (X2) ≤ t}
.

On the other hand, we have

1 − P{FX1 (X) ≤ s} − P{FX2 (X2) ≤ t} + P{FX1 (X1) ≤ s, FX2 (X2) ≤ t}
= 1 − s − t + C (s, t)

= C (1 − s, 1 − t) ,

and

P
(

X1 ≤ x | X1 ≥ V a RX1 (s) , X2 ≥ V a RX2 (t)
)

=
1

C (1 − s, 1 − t)

∫
∞

V a RX2 (t)

∫ x

V a RX1 (s)

∂2C
(
FX1 (x1) , FX2 (x2)

)
∂x1∂x2

dx1dx2.

Then for a fixed level s = α, the CCTE is given by

CCTEX1 (t) =
1

C (1 − α, 1 − t)

∫
∞

V a RX1 (α)

∫
∞

V a RX2 (t)
x1
∂2C

(
FX1 (x1) , FX2 (x2)

)
∂x1∂x2

× dx1dx2.

We suppose that the densities of FXi , i = 1, 2 are fXi , respectively, then

CCTEX1 (t) =
1

C (1 − α, 1 − t)

∫
∞

V a RX1 (α)

∫
∞

V a RX2 (t)
x1c

(
FX1 (x1) , FX2 (x2)

)
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× fX1 (x1) fX2 (x2) dx1dx2.

Transforming by FX1 (x1) = u and FX2 (x2) = v, we get

CCTEX1 (t) =
1

C(1 − α, 1 − t)

∫ 1

t

∫ 1

α

F−1
X1
(u) c (u, v) dudv.

=
1

C(1 − α, 1 − t)

∫ 1

α

F−1
X1
(u)

(∫ 1

t
c (u, v) dv

)
du.

By (2.6) it follow that

CCTEX1 (t) =

∫ 1
α

Jt (u) F−1
X1
(u) du∫ 1

α
Jt (u) du

.

This close the proof of Proposition 2.1. □

Proof of Corollary 3.1. Let us denote by

Cu (u, v) :=
∂C (u, v)
∂u

then by (2.6), we have

Jt (u) =

∫ 1

t
c (u, v) dv = Cu (u, v)]1

t

= Cu (u, 1)− Cu (u, t) .

So, C is Archimedean copula, then

Cu (u, v) =
ψ ′(u)

ψ ′ (C (u, v))
.

Finally, we get (3.18) by the property of copula that is C (u, 1) = u. □
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