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Abstract. In this paper we study compact immersed orientable hypersurfaces in the Eu-
clidean space Rn+1 and show that suitable restrictions on the tangential and normal compo-
nents of the immersion give different characterizations of the spheres.
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1. INTRODUCTION

One of the interesting questions in the geometry of hypersurfaces in a Euclidean space is
to find necessary and sufficient conditions for the hypersurface to be isometric to a sphere. Let
M be an immersed orientable hypersurface of the Euclidean space Rn+1 with the immersion
ψ : M → Rn+1. If N is the unit normal vector field to the hypersurface, then we can express
ψ, (the position vector field of points of M in Rn+1), as ψ = ξ + ρN , where ξ is vector
field tangential to M and ρ = ⟨ψ,N⟩ is the support function of M , ⟨, ⟩ being the Euclidean
metric on Rn+1. The immersion ψ of the hypersurface M naturally gives two vector fields:
ξ and ▽ρ, the gradient of the support function ρ with respect to the induced metric g on the
hypersurface M . One naturally expects that these vector fields play a vital role in shaping
the geometry of a hypersurfaces. Since Killing vector fields and conformal vector fields have

✩ This work is supported by NSTIP strategic technologies program number (13-MAT1813-02) in the Kingdom of
Saudi Arabia.
∗ Corresponding author.
E-mail addresses: shariefd@ksu.edu.sa (S. Deshmukh), ibraheem96@live.com (I. Al-Dayel).
Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.ajmsc.2016.09.002
1319-5166 c⃝ 2016 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajmsc.2016.09.002&domain=pdf
mailto:shariefd@ksu.edu.sa
mailto:ibraheem96@live.com
http://dx.doi.org/10.1016/j.ajmsc.2016.09.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


86 S. Deshmukh, I. Al-Dayel

been used in finding characterizations of spheres (cf. [1,2,5,3]), one would like to impose the
conditions on these vector fields on the hypersurface to be Killing vector fields or conformal
vector fields. However, the vector fields ξ and ▽ρ on the hypersurface M are both gradient
vector fields (ξ = ∇f , where f = 1

2 ∥ψ∥2) and if they are Killing vector fields they will be
parallel and will not yield interesting results (cf. Remark 2.1). Therefore a natural choice is to
consider these vector fields to be conformal vector fields. Conformal vector fields have been
used in the study of hypersurfaces of a Riemannian manifold (cf. [4,1,6,7]). In particular it
has been observed that the conformal vector field on the ambient space are closely related to
the totally umbilical hypersurfaces. In this paper, we wish to put constraints on these vector
fields and analyze the effects of these restrictions on the geometry of the hypersurfaceM . It is
interesting to note that the restrictions on the vector fields ξ, ▽ρ on the compact hypersurface
M , such as (i) ξ is a conformal vector field, (ii) ▽ρ is a conformal vector field, (iii) ▽ρ = λξ,
λ a constant (that is, ▽ρ is parallel to ξ), (iv) ξ ⊥ ∇ρ, together with some suitable curvature
restrictions, give respectively the characterizations of the spheres in Rn+1 (cf. Theorems 3.1,
3.2, 4.1 and 4.2).

Trivial examples of such vector fields are the tangential and normal components of the
natural embedding of the sphere Sn(c) in the Euclidean space. As another example consider
the warped product M = (0, ∞) ×t S

n−1, where t is the coordinate function on (0, ∞).
Then the map ϕ : M → Rn − {0}, ϕ(t, x) = tx is an isometry and satisfies

dϕ


∂

∂t


=


ui ∂

∂ui
,

where u1, . . . , un are the Euclidean coordinates on Rn − {0}. The isometric embedding
i : Rn − {0} → Rn+1, i(x) = (x, 0) gives the isometric embedding ψ : M → Rn+1,
ψ = i ◦ ϕ that satisfies

dψ


t
∂

∂t


=


tui ∂

∂ui
= (ϕ(x), 0)

and consequently the vector field ξ on the hypersurface M given by ξ = t ∂
∂t is easily seen to

be a conformal vector field on M (cf. [8]).

2. PRELIMINARIES

Let M be an orientable compact immersed hypersurface of the Euclidean space Rn+1.
We denote by ⟨, ⟩ the Euclidean metric on Rn+1, and by N,A and g the unit normal vector
field, the shape operator and the induced metric on M respectively. If ψ : M → Rn+1

is the immersion, then we have ψ = ξ + ρN , with ξ ∈ X(M), where X(M) is the Lie
algebra of smooth vector fields on M , and ρ = ⟨ψ,N⟩ is called the support function of
the hypersurface M . We denote by ▽ the covariant derivative operator with respect to the
Riemannian connection on M . Taking the covariant derivative in equation ψ = ξ + ρN and
using the Gauss Weingarten formulas of the hypersurface, we get

∇Xξ = X + ρAX and ∇ρ = −Aξ X ∈ X(M), (2.1)

where ▽ρ is the gradient of ρ on the Riemannian manifold (M, g).
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The curvature tensorR, the Ricci tensorRic and the scalar curvature S of the hypersurface
M are given by

R(X,Y )Z = g(AY,Z)AX − g(AX,Z)AY X, Y, Z ∈ X(M), (2.2)

Ric(X,Y ) = nαg(AX,Y ) − g(AX,AY ) X,Y ∈ X(M) (2.3)

and

S = n2α2 − ∥A∥2 , (2.4)

where α = 1
n trA is the mean curvature of the hypersurface.

The shape operator A of the hypersurface M satisfies the Codazzi equation

(▽A)(X,Y ) = (▽A)(Y,X) X,Y ∈ X(M), (2.5)

where the covariant derivative (▽A)(X,Y ) = ▽X AY −A(▽X Y ). Using the symmetry of
the shape operator A, we see that the gradient ▽α of the mean curvature α given by

n∇α =
n

i=1

(▽A)(ei, ei), (2.6)

where {e1, . . . , en} is a local orthonormal frame on M .
Minkowski’s formula for a compact hypersurface M is given

M

(1 + ρα) = 0. (2.7)

Recall that a vector field u on a Riemannian manifold (M, g) is said to be a conformal vector
field if the flow {Ψt} of u consists of conformal transformations of (M, g). Thus u is a
conformal vector field if and only if £u g = 2σg, where σ is a smooth function on M called
the potential function of the conformal vector field u and £u is the Lie derivative with respect
to u. In addition if u = ∇f for a smooth function f , then the conformal vector field u is said
to be a gradient conformal vector field. If u is a gradient conformal vector field, then we have

∇Xu = σX X ∈ X(M). (2.8)

If u is a gradient conformal vector field on a compact Riemannian manifold (M, g), then by
Eq. (2.8) it follows that the potential function σ satisfies

M

σ = 0. (2.9)

As a trivial consequence of the Minkowski’s formula we get the following result:

Lemma 2.1. Let M be a compact connected orientable hypersurface of the Euclidean space
Rn+1. Then the function ρα is a constant if and only if M is isometric to the sphere Sn(c) of
constant curvature c.

Proof. If ρα is a constant, then Eq. (2.7) gives

1 + ρα = 0. (2.10)
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Let ψ : M → Rn+1 be the immersion of the hypersurface. Define the smooth function
f : M → R by f = 1

2 ∥, ψ∥2, which immediately gives the gradient ∇f = ξ where
ψ = ξ + ρN . Using Eq. (2.1) to compute the divergence of the vector field ξ, we arrive at

∆f = n(1 + ρα),

where ∆ is the Laplace operator onM . Using Eq. (2.10) in the above equation we get ∆f = 0
on compactM . Hence ∥ψ∥2 = a constant, and we conclude thatM is isomeric to the n-sphere
Sn(c). The converse is trivial.

Remark 2.1. Recall that a conformal vector field u on a Riemannian manifold (M, g) is said
to be a Killing vector field if its potential function σ = 0. In particular, if a Killing vector
field u is a gradient of some smooth function, then using Koszul’s formula we get

∇Xu = 0, X ∈ X(M),

that is, a gradient Killing vector field is always parallel.

We have the following trivial characterizations of spheres in the Euclidean space.

Proposition 2.1. Let M be a compact connected orientable immersed hypersurface of the
Euclidean space Rn+1 with the immersion ψ : M → Rn+1. Then the tangential component
ξ of ψ is a Killing vector field if and only if M is isometric to the sphere Sn(c) of constant
curvature c.

Proof. As in the proof of Lemma 2.1, we have ξ = ∇f . Thus ξ is a gradient Killing vector
field and consequently it is a parallel vector field and we get ∆f = 0. This implies f is a
constant and hence M is isometric to a sphere Sn(c). The converse is trivial.

Proposition 2.2. Let M be a compact connected orientable immersed hypersurface of
positive Ricci curvature in the Euclidean space Rn+1 with the immersion ψ : M → Rn+1,
ψ = ξ + ρN . Then the vector field ∇ρ is a Killing vector field if and only if M is isometric
to the sphere Sn(c) of constant curvature c.

Proof. If ∇ρ is a Killing vector field, we have ∆ρ = 0, consequently ρ is a constant. Then
Eq. (2.1) gives Aξ = 0, which together with Eq. (2.3) gives Ric(ξ, ξ) = 0. Consequently
the hypothesis implies that ξ = ∇f = 0, that is f is a constant. Hence M is isometric to the
sphere Sn(c) of constant curvature c. The converse is trivial.

3. HYPERSURFACE WITH ξ AND ▽ρ CONFORMAL VECTOR FIELDS

In this section, we use the tangential and normal components of the immersion ψ : M →
Rn+1 of a compact and connected hypersurface M such that the vector fields ξ and ▽ρ are
conformal vector fields, to find characterizations of the spheres inRn+1. Recall that, as noted
in the proof of Lemma 2.1, ξ = ▽f , where f = 1

2 ∥ψ∥2. Thus, if ξ is a conformal vector
field, it will be a gradient conformal vector field. First, we prove the following.

Theorem 3.1. Let M be an orientable compact connected immersed hypersurface of Rn+1

with the immersion ψ : M → Rn+1. Then the support function ρ is nowhere zero and the
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tangential component ξ of ψ is a conformal vector field with the potential function σ ≠ 1 on
M , if and only if M is isometric to the sphere Sn(c).

Proof. Suppose ρ(p) ≠ 0, p ∈ M and ξ is a conformal vector field with potential function
σ ≠ 1. As ξ = ∇f , using Eqs. (2.1) and (2.8), we get

ρAX = (σ − 1)X , X ∈ X(M). (3.1)

Also, Eq. (2.8) gives

∇X ∇Y ξ = X(σ)Y + σ∇XY

and consequently

R(X,Y )ξ = X(σ)Y − Y (σ)X .

Using Eqs. (2.1) and (2.2), we arrive at

X(ρ)AY − Y (ρ)AX = X(σ)Y − Y (σ)X , X,Y ∈ X(M).

The above equation together with Eq. (3.1) implies

(σ − 1)(X(ρ)Y − Y (ρ)X) = ρ(X(σ)Y − Y (σ)X),

which, by contraction in X gives

(σ − 1)Y (ρ) = ρY (σ), Y ∈ X(M).

Thus

▽ρ

ρ
=

▽σ

σ − 1

since ρ(p) ≠ 0, σ(p) ≠ 1, p ∈ M .
As M is connected, the above equation implies

▽ ln(
σ − 1
ρ

) = 0 or ▽ ln(
1 − σ

ρ
) = 0,

the first choice for ρ(σ − 1) > 0 on M and the second for ρ(σ − 1) < 0. Thus, we conclude
that σ − 1 = kρ for a constant k. Inserting this value of σ − 1 into Eq. (3.1), we arrive at

ρ(AX − kX) = 0, X ∈ X(M). (3.2)

Since M is connected we have either ρ = 0 or A = kI . However, Minkowski’s formula (2.7)
rules out ρ = 0, and hence A = kI , that is, M is a totally umbilical hypersurface of Rn+1.
Hence M is isometric to Sn(c), where c = k2 > 0 (as k = 0 will imply A = 0, that is
M is totally geodesic, which is impossible as Rn+1 does not admit compact totally geodesic
hypersurfaces).

Conversely, if M is isometric to a sphere Sn(c) in Rn+1, then ξ = 0, σ = 0 and the
support function ρ = 1√

c
≠ 0.
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Theorem 3.2. Let M be an orientable compact and connected immersed hypersurface of
positive Ricci curvature in the Euclidean space Rn+1 with support function ρ. If ∇ρ is a
conformal vector field with potential function σ and the Ricci curvature in the direction of
the vector field ∇σ is bounded above by the constant (n − 1)c, where the constant c = λ1

n ,
λ1 being the first nonzero eigenvalue of the Laplace operator, then M is isometric to Sn(c).

Proof. Suppose ∇ρ is a conformal vector field with potential function σ. Then

∇X(∇ρ) = σX , X ∈ X(M), (3.3)

and hence

R(X,Y )∇ρ = X(σ)Y − Y (σ)X .

Using Eq. (2.2) in the above equation, we get

g(AY, ∇ρ)AX − g(AX, ∇ρ)AY = X(σ)Y − Y (σ)X.

Inserting ∇ρ = −Aξ, which is Eq. (2.1), in the above equation and contracting in X ,
yields

−nαg(A2ξ, Y ) + g(A3ξ, Y ) = −(n − 1)Y (σ),

that is,

Ric(Aξ, Y ) = (n − 1)Y (σ).

The above equation gives

Ric(∇ρ, ∇ρ) = −(n − 1)g(∇ρ, ∇σ), (3.4)

and

Ric(∇ρ, ∇σ) = −(n − 1) ∥∇σ∥2 . (3.5)

Note that

div(σ∇ρ) = g(∇ρ, ∇σ) + σ∆ρ,

which, together with Eq. (3.4), gives
M

Ric(∇ρ, ∇ρ) = (n − 1)


M

σ∆ρ = n(n − 1)


M

σ2. (3.6)

Here we have used Eq. (3.3), which implies ∆ρ = nσ.
If λ1 is the first nonzero eigenvalue of the Laplace operator on M , then Eq. (2.9)

gives 
M

∥▽σ∥2 ≥ λ1


M

σ2. (3.7)
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Thus 
M

Ric(∇(σ + cρ), ∇(σ + cρ))

=


M

Ric(∇σ, ∇σ) + 2cRic(∇σ, ∇ρ) + c2Ric(∇ρ, ∇ρ).

Using Eqs. (3.5)–(3.7) in the above equation with c = λ1
n , and the condition in the hypothesis,

we get
M

Ric(∇(σ + cρ), ∇(σ + cρ)) ≤


M


Ric(∇σ, ∇σ) − 2(n − 1)c ∥▽σ∥2

+n(n − 1)
c2

λ1
∥∇σ∥2


=


M

Ric(∇σ, ∇σ) − (n − 1)c ∥∇σ∥2 ≤ 0.

Since M has positive Ricci curvature, we have

∇σ + c∇ρ = 0,

where c = λ1
n is a positive constant.

Using Eq. (3.3), we get

∇X(∇σ) = −cσX. (3.8)

If σ is a constant, then by Eq. (2.9), we get σ = 0, hence ∆ρ = 0, which implies ρ is a
constant. Using Eq. (2.1), we have Aξ = 0, and consequently Eq. (2.3) gives

Ric(ξ, ξ) = 0.

Since the Ricci curvature is positive, the above equation can only be satisfied if ξ = 0. In
view of Eq. (2.1) we conclude thatA = − 1

ρI (as Minkowski’s formula does not allow ρ = 0)
and hence M is isometric to Sn(c).

If σ is not a constant, then Eq. (3.8) is Obata’s equation with positive constant c, and
consequently M is isometric to Sn(c).

4. HYPERSURFACES WITH CERTAIN RELATIONS IN ξ AND ∇ρ

In this section we study the geometry of the compact immersed hypersurfaces in the
Euclidean space Rn+1 for which the vector fields ξ and ∇ρ are parallel or orthogonal. First
we consider the case ▽ρ = λξ for a constant λ. Note that this condition is equivalent to
requiring that ξ is an eigenvector of the shape operator A with constant eigenvalue −λ, that
is, ξ is a principal direction with principal curvature −λ.

Theorem 4.1. Let M be an orientable compact and connected immersed hypersurface in
the Euclidean space Rn+1 (n > 1) with support function ρ, and let ξ be the tangential
component of the immersion. Then ∇ρ = λξ for a constant λ ≠ 0 and the Ricci curvature
Ric(ξ, ξ) ≥ n(n − 1)(ρ2α2 − 1) if and only if M isometric to Sn(c).
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Proof. Suppose ∇ρ = λξ and Ric(ξ, ξ) ≥ n(n − 1)(ρ2α2 − 1) holds. Let AρX = ∇X ∇ρ,
X ∈ X(M), be the Hessian operator of the function ρ. Then using Eqs. (2.1) and ∇ρ = λξ,
we get

Aρ = λI + λρA, (4.1)

that is,

∆ρ = nλ(1 + ρα). (4.2)

Bochner’s formula for the smooth function ρ is
M


Ric(∇ρ, ∇ρ) + ∥Aρ∥2 − (∆ρ)2


= 0,

which gives
M


λ2Ric(ξ, ξ) −


n − 1
n


(∆ρ)2


+


∥Aρ∥2 − 1

n
(∆ρ)2


= 0.

Inserting Eq. (4.2) in the middle term of the above equation, we have
M


λ2Ric(ξ, ξ) − n(n − 1)λ2(1 + 2ρα+ ρ2α2) +


∥Aρ∥2 − 1

n
(∆ρ)2


= 0.

Using Minkowski’s formula (2.7) in the above equation, we get
M


λ2(Ric(ξ, ξ) − n(n − 1)(ρ2α2 − 1)) +


∥Aρ∥2 − 1

n
(∆ρ)2


= 0. (4.3)

Note that the Schwartz inequality gives

∥Aρ∥2 ≥ 1
n

(∆ρ)2

with the equality holding if and only if Aρ = (∆ρ
n )I . Thus, using the condition in the

hypothesis and the above inequality in Eq. (4.3), we conclude that

Aρ =


∆ρ
n


I ,

which together with Eqs. (4.1) and (4.2) gives

λρA =


∆ρ
n

− λ


I = (λ(1 + ρα) − λ)I = λραI .

Hence ρ(A − αI) = 0, as λ ≠ 0. On the connected M , we have either ρ = 0 or A = αI .
However ρ = 0 in Minkowski’s formula (2.7) gives a contradiction. Hence A = αI . In view
of Codazzi equation (2.5) and n > 1, it follows that α is a constant, that is, M is a totally
umbilical hypersurface of Rn+1. Hence M is isometric to Sn(c), with c = α2 > 0, as Rn+1

does not admit a compact hypersurface with α = 0.
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Conversely, if M is isometric to Sn(c), we have ξ = 0, αρ = −1 and ρ = constant. Thus
both conditions are met.

Finally, we have the following trivial characterization of the spheres in Rn+1 for the case
that the vector fields ▽ρ and ξ are orthogonal.

Theorem 4.2. Let M be an orientable compact and connected immersed hypersurface of
positive Ricci curvature and the immersion ψ : M → Rn+1 is expressed as ψ = ξ + ρN .
Then the vector fields ▽ρ and ξ are orthogonal on M if and only if M isometric to Sn(c).

Proof. Suppose g(▽ρ, ξ) = 0. Then we have g(Aξ, ξ) = 0 and consequently, Ric(ξ, ξ) =
− ∥Aξ∥2. As the Ricci curvature is positive we have ξ = 0 and Aξ = 0. As we have
∇ρ = −Aξ = 0, we get ρ = constant. Moreover it follows from Minkowski’s formula
that ρ is a nonzero constant. Thus Eq. (2.1) gives A = − 1

ρI , that is, M is a totally umbilical
hypersurface and hence isometric to Sn(c). The converse is trivial.
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