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Abstract. In this note we give a sufficient condition for blow up of positive mild solutions
to an initial value problem for a non-autonomous equation with fractional diffusion.
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1. INTRODUCTION

In this paper we study blow up of positive mild solutions of

∂

∂t
u (t, x) = k (t)∆αu (t, x) + h (t) R(u (t, x)), t > 0, x ∈ Rd, (1)

u (0, x) = ϕ (x) , x ∈ Rd,

where ∆α = − (−∆/2)α/2, 0 < α ≤ 2, is the α-Laplacian, ϕ : Rd → R is a function non
negative, bounded, continuous and k, h, R : [0, ∞) → [0, ∞) are continuous functions.

If there exists a solution u of (1) defined in [0, ∞) × Rd, we say that u is a (classical)
global solution, on the other hand if there exists a number te < ∞ such that u is unbounded
in [0, t] × Rd, for each t > te, we say that u blows up in finite time.
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It is well known [4] that the associated integral system of (1) is

u(t, x) =


Rd

p (K(t), y − x) ϕ(y)dy

+
 t

0


Rd

p (K(s, t), y − x) h (s) R(u (s, y))dyds. (2)

Here p (t, x) denotes the fundamental solution of ∂
∂t − ∆α, this function is symmetric in the

spatial component (we state more properties of p (t, x) in Lemma 7). We also define

K (s, t) =
 t

s

k (r) dr, 0 ≤ s ≤ t,

where K(t) := K(0, t).
We say that u is a mild solution of (1) if u is a solution of (2). The main result is:

Theorem 1. Assume the previous hypotheses on ϕ, k, h and R. Also suppose:
(H1) R is an increasing and convex function in [0, ∞),
(H2)

 ∞
1

ds
R(s) < ∞,

(H3) limt→∞
k(t)

K(t)h(t) = L ∈ [0, ∞),
(H4)

 ∞
1

h(s)ds = ∞,

(H5) limt→∞
exp(c

 t
1 h(s)ds)

(K(1,t))d/α = ∞, for each c > 0.

Let J : [0, ∞) → [0, ∞) be a continuous function satisfying
(H6) J is submultiplicative, i.e., there exists a constant ã > 0 such that J(x)J(y) ≥

ãJ(xy), for each x, y > 0,
(H7) limx↓0

R(x)
J(x) = L̃ ∈ (0, ∞],

(H8)
 ∞
1

h(s)(2K(s))d/α

J((2K(s))d/α)
ds = ∞ and

 ∞
1

ds
J(s) < ∞.

Then all non-trivial positive solutions of (2) blow up in finite time.

The importance of the study of equations like (1) is well known in applied mathematics.
For example, they arise in fields like molecular biology, hydrodynamics and statistical
physics [7]. Also, notice that generators of the form gi (t)∆αi

arises in models of anomalous
growth of certain fractal interfaces [3].

There are many related works (see for instance [1,5,6] and the references cited therein)
and some of them are contained in the following:

Example 2. Assume that

k(t) = tρ−1,

h(t) = tσ−1,

R(x) = x1+β ,

J(x) = xp + xq,

where ρ, σ, β, p and q are positive constants. If

1 + β ≤ q ≤ p and σ ≥ (q − 1)
αρ

d
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then each non trivial solution of (2) blows up in finite time. If we take p = q = 1 + β, then
we have Theorem 2 in [4] as particular case. We also have, as particular case, the blow up
result in [8] when

1 ≤ q ≤ p and p ≤ 1 +
α

d

and ρ = 1, σ = 1, q = p. In this case R is a convex function satisfying the hypotheses in
Theorem 1.

Let us present others interesting examples.

Example 3. Let us take

k(t) = 1,

h(t) = t1+d/α,

R(x) = ex,

J(x) = (1 + x)2.

In this case there is blows up in finite time of the mild solution of the corresponding integral
equation. However, observe that hypothesis (F.2) in [8] is not satisfied since

lim
x↓0

ex

x1+γ
∉ (0, ∞)

for each γ ∈ R\{−1}. Therefore the criterion in [8] can not be applied.

In the above examples the submultiplicative function J is a power, but this is not necessary.
Several examples of submultiplicative functions are presented in [2], one of them is the
function log(e + x). Observe that a1x

b1(log(x + e))c1 + a2x
b2(log(x + e))c2 , is also

submultiplicative if ai, bi, ci ≥ 0, i = 1, 2.

Example 4. Now take

k(t) = e−t,

h(t) = 1,

R(x) = (x + e)(log(x + e))1+β ,

J(x) = R(x),

where β > 0. This example is quite informative because, contrary to the above example,
now the contribution of the reaction component and the diffusion component is small, but
large enough (R(x) > x) so that there is blows up in finite time of the mild solution of the
corresponding integral equation.

The paper is organized as follows. In Section 1 we prove the existence of local solutions for
Eq. (2). In Section 2 we give some preliminary results and we reduce the study of explosion
to the case of the time component, finally in Section 3 we prove the main result.
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2. LOCAL EXISTENCE

The existence of local solutions to (2) follows form the Banach contraction principle, as
we shall see.

Let us introduce some normed linear spaces. By L∞ 
Rd


we denote the space of all real-

valued functions essentially bounded defined on Rd. Let τ > 0 be a real number that we will
fix later. Define

Eτ =

u : [0, τ ] → L∞ 

Rd

, |||u||| < ∞


,

where

|||u||| = sup {∥u (t)∥∞ : 0 ≤ t ≤ τ } .

Then Eτ is a Banach space and the sets, r > 0,

Pτ = {u ∈ Eτ : u ≥ 0} , Bτ,r = {u ∈ Eτ : |||u||| ≤ r} ,

are closed subspaces of Eτ .

Theorem 5. Let ϕ : Rd → R be a bounded non negative function, k, h : [0, ∞) → [0, ∞)
are continuous functions and R : [0, ∞) → [0, ∞) is a convex function. There exists a τ > 0
such that the integral equation (2) has a local solution in Bτ,r ∩ Pτ .

Proof. Define the operator Ψ : Bτ,r ∩ Pτ → Eτ , by

Ψ (u) (t, x) =


Rd

p (K (t) , y − x) ϕ (y) dy

+
 t

0


Rd

p (K (s, t) , y − x) h (s) R(u (s, y))dyds.

Since ϕ ≥ 0, u ≥ 0, it is clear that Ψ (u) ≥ 0, then Ψ (u) ∈ Pτ . For each t ∈ [0, τ ], x ∈ Rd

and u ∈ Bτ,r,

Ψ (u) (t, x) ≤ ∥ϕ∥∞


Rd

p (K (t) , y − x) dy

+
 t

0


Rd

p (K (s, t) , y − x) h (s) R(∥u (s) ∥∞)dyds

≤ ∥ϕ∥∞ +
 t

0


Rd

p (K (s, t) , y − x) h (s) R(r)dyds

= ∥ϕ∥∞ + R(r)
 τ

0

h (s) ds,

then

|||Ψ (u) ||| ≤ ∥ϕ∥∞ + R(r)
 τ

0

h (s) ds.
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Let us take r = 1 + ∥ϕ∥∞. Since

lim
t→0

 t

0

h (s) ds = 0, (3)

we can choose τ > 0 small enough such that

R(r)
 τ

0

h (s) ds < 1.

Then Ψ (u) ∈ Bτ,r ∩ Pτ , therefore Ψ(Bτ,r ∩ Pτ ) ⊂ Bτ,r ∩ Pτ .
Now let us see that Ψ is a contraction. Let u, ũ ∈ Bτ,r ∩ Pτ ,

|Ψ (u) (t, x) − Ψ (ũ) (t, x) |

=
 t

0


Rd

p (K (s, t) , y − x) h (s) [R(u (s, y)) − R(ũ (s, y))] dyds


≤ sup

t∈[0,τ ]

 t

0


Rd

p (K (s, t) , y − x) h (s) |R(u (s, y)) − R(ũ (s, y))|dyds.

Since R is convex on [0, r], we have for each 0 ≤ x < y ≤ r,

R(y) − R(x)
y − x

≤ DlR(r),

where DlR(r) is the left-hand derivative of R at r (it always exist for convex functions, see
Theorem 14.5 in [9]). From this we can deduce

|R(u (s, y)) − R(ũ (s, y))| ≤ DlR(r) |u (s, x) − ũ (s, x)|
≤ DlR(r)∥u(s) − ũ(s)∥∞,

this turns out

|||Ψ (u) − Ψ (ũ) ||| ≤ sup
t∈[0,τ ]

 t

0

h (s) DlR(r) ∥u(s) − ũ (s)∥∞ ds

≤


DlR(r)
 τ

0

h (s) ds


|||u − ũ|||.

Using again (3) we can choose τ > 0 small enough such that Ψ is a contraction. Therefore
Ψ has a unique fixed point, the local solution to the integral equation (2). �

3. PRELIMINARY RESULTS

We begin recalling a basic integral inequality:

Theorem 6 (Jensen’s Inequality). Let (X, A, µ) be a finite measure space and f a real-
valued integrable function. If ϕ is a convex function on an open interval I in R and if
f(X) ⊂ I , then

ϕ


1

µ(X)


X

fdµ


≤ 1

µ(X)


X

(ϕ ◦ f)dµ.
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Proof. See Theorem 14.16 in [9]. �

Also we state some properties of α-stable densities:

Lemma 7. For any s, t > 0 and any x, y ∈ Rd, we have
(i) p (ts, x) = t−d/αp


s, t−1/αx


.

(ii) p (t, x) ≥


s
t

d/α
p (s, x), for t ≥ s.

Proof. The proof can be seen in Section 2 of [8]. �

The first step is to make a shift in the time for a proper instant, this instant is given by the
following result.

Lemma 8. Let u be a positive solution of (2), then

u (t0, x) ≥ c(t0)p (γ, x) , ∀x ∈ Rd, (4)

where t0, γ and c(t0) are positive constants.

Proof. See Lemma 1 in [4]. �

Using the semigroup property and the previous time t0 (see (4)) we have

u(t + t0, x) =


Rd

p (K (t0, t + t0) , y − x) u(t0, y)dy

+
 t

0


Rd

p (K (s + t0, t + t0) , y − x) h (s + t0) R(u (s + t0, y))dyds

≥ c(t0)


Rd

p (K (t0, t + t0) , y − x) p (γ, y) dy

+
 t

0


Rd

p (K (s + t0, t + t0) , y − x) h (s + t0) R(u (s + t0, y))dyds

= c(t0)p (K (t0, t + t0) + γ, x)

+
 t

0


Rd

h (s + t0) p (K (s + t0, t + t0) , y − x) R(u (s + t0, y))dyds.

In order to eliminate the contribution of the spatial component, we multiply both sides of the
previous inequality by p (K (t + t0) , x) and then we integrate with respect to x, afterwards
we use Fubini’s theorem and the semigroup property to get

ū (t) ≥ c(t0)


Rd

p(K (t + t0) , x)p (K (t0, t + t0) + γ, x) dx

+
 t

0

h (s + t0)


Rd


Rd

p(K (t + t0) , x)p (K (s + t0, t + t0) , y − x)

× R(u (s + t0, y))dxdyds

= c(t0)p (K (t + t0) + K (t0, t + t0) + γ, 0)

+
 t

0

h (s + t0)


Rd

p (K (t + t0) + K (s + t0, t + t0) , y)

× R(u (s + t0, y))dyds, (5)
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where

ū (t) =


Rd

p (K (t + t0) , x) u(t + t0, x)dx.

The desired condition, on blows up of (2), is a consequence of the following fact.

Lemma 9. If u blows up in finite time, then u also does.

Proof. See Lemma 2 in [4]. �

4. PROOF OF THEOREM 1

From (5) and using (ii) of Lemma 7 we get the underestimation

ū (t + t0) ≥ c(t0)p (K (t + t0) + K (t0, t + t0) + γ, 0)

+
 t

0


Rd


K (s + t0)

K (t + t0) + K (s + t0, t + t0)

d/α

p (K(s + t0), y)

× h(s + t0)R(u(s + t0, y))dyds

and Jensen’s inequality yields

ū (t + t0) ≥ c(t0)p (K (t + t0) + K (t0, t + t0) + γ, 0)

+
 t

0

h(s + t0)


K (s + t0)
K (t + t0) + K (s + t0, t + t0)

d/α

R (ū (s + t0)) ds.

Applying now the property (i) of Lemma 7 we obtain

ū (t + t0) ≥ c(t0)(K (t + t0) + K (t0, t + t0) + γ)−d/αp (1, 0)

+
 t

0

h(s + t0)


K (s + t0)
K (t + t0) + K (s + t0, t + t0)

d/α

R (ū (s + t0)) ds

≥ c(t0)p (1, 0) (2K (t + t0) + γ)−d/α

+
 t

0

h(s + t0)


K (s + t0)
2K (t + t0)

d/α

R (ū (s + t0)) ds.

Let

v(t) = (2K (t + t0))d/αū (t + t0) , t ≥ 0,

then

v(t + t0) ≥ c(t0)p (1, 0) (1 + (2K (t0))−1γ)−d/α

+
1

2d/α

 t

0

h(s + t0)(2K (s + t0))d/αR


v (s + t0)

(2K (s + t0))d/α


ds.

Let us consider the integral equation

v̄(t + t0) = c + c

 t

0

h(s + t0)(2K (s + t0))d/αR


v̄ (s + t0)

(2K (s + t0))d/α


ds, (6)
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where c is a positive constant. Set

w(t + t0) = (2K (t + t0))−d/αv̄(t + t0), t ≥ 0.

Observe that, by (6),

d

dt
w(t + t0) = ch(t + t0)R


v̄ (t + t0)

(2K (t + t0))d/α


− d

α
2k (t + t0) (2K (t + t0))− d

α −1v̄(t + t0)

= ch(t + t0)R (w(t + t0)) − dk (t + t0)
αK (t + t0)

w(t + t0). (7)

We are going to prove that w blows up in finite time, but first we will see that w is not
bounded.

Lemma 10. We have limt→∞ w(t) = ∞.

Proof of Lemma 10. Using the Hypothesis (H7) we can find a1, δ > 0, such that

R(x)
J(x)

> a1, ∀x ∈ (0, δ].

By Lemma 1 in [8] there exists a constant M > 0 large enough such that

R(x)
x

> 1, ∀x ∈ [M, ∞).

On the other hand, the continuity of x−1R(x) in [δ, M ], implies that there exists a2 > 0 for
which

R(x)
x

≥ a2, ∀x ∈ [δ, M ].

Choosing a = min{a1, a2, 1} we have

max


R(x)
x

,
R(x)
J(x)


≥ a, ∀x > 0.

The submultiplicative property of J (Hypothesis (H6)) yields

(2K (s + t0))d/αR


v̄ (s + t0)

(2K (s + t0))d/α


≥ a min


v̄ (s + t0) , ã(2K (s + t0))d/α J(v̄ (s + t0))

J((2K (s + t0))d/α)


.

Now let us consider the equation

z(t) = c + c

 t

0

h(s + t0)a min


z (s) , ã
(2K (s + t0))d/α

J((2K (s + t0))d/α)
J(z (s))


ds.
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By the comparison theorem we can see that

z(t) ≥ min{z1(t), z2(t)}, t ≥ 0,

where

z1(t) = c + ca

 t

0

h(s + t0)z1 (s) ds,

z2(t) = c + caã

 t

0

h(s + t0)
(2K (s + t0))d/α

J((2K (s + t0))d/α)
J(z2 (s))ds.

The Hypothesis (H8) implies that z2 blows up in finite time, therefore z(t) ≥ z1(t) for t large
enough. Then the result follows from Hypothesis (H5). �

It is clear that v̄ blows up in finite time if and only if w also does. Let us suppose that
w(t) < ∞ for all t ≥ t0, then the Hypotheses (H1)–(H2) and the previous result implies (see
Lemma 1 in [8])

lim
t→∞

w(t)
R (w(t))

= 0,

then (H3) turns out

lim
t→∞

dk (t) w(t)
αK (t) h(t)R (w(t))

= 0.

Therefore, there exists a t1 > 0 such that

dk (t) w(t)
αK (t) h(t)R (w(t))

<
c

2
, ∀t ≥ t1 + t0,

then (7) can be subestimated as

d

dt
w(t + t0) ≥ c

2
h(t + t0)R (w(t + t0)) , ∀t ≥ t1.

Let w̄ be the solution to
d

dt
w̄(t) =

c

2
h(t)R (w̄(t)) , t > t0 + t1,

w̄(t0 + t1) = c.

This implies t

t0+t1

w̄′(s)
R (w̄(s))

ds =
c

2

 t

t0+t1

h(s)ds.

Doing the change of variable z = w̄(s) we have w̄(t)

w̄(t0+t1)

ds

R (s)
=

c

2

 t

t0+t1

h(s)ds, ∀t > t0 + t1.

The continuity of R and the non-negativity property of h imply that

∞ >

 ∞

w̄(t0+t1)

ds

R (s)
≥ c

2

 ∞

t0+t1

h(s)ds.
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This contradicts the assumption H4. Therefore there exists a te > t0 such that limt↑te w(t)
= ∞. �
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