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Abstract This note studies the iterative solutions to the extended Sylvester-con-

jugate transpose matrix equations with a unique solution. By using the hierarchi-

cal identification principle, an iterative algorithm is presented for solving this

class of extended matrix equations. It is proved that the iterative solution consis-

tently converges to the exact solution for any initial values. Meanwhile, by means

of a real representation of a complex matrix, sufficient conditions are derived to

guarantee that the iterative solutions given by the proposed algorithm converge

to the exact solution for any initial matrices. Finally, a numerical example is

given to illustrate the efficiency of the proposed approach.
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1. Introduction

Matrix equations are often encountered in systems and control, such as Lyapunov
matrix equations, Sylvester matrix equations and so on. Traditional methods con-
vert such matrix equations into their equivalent forms by using the Kronecker
product, however, which involve the inversion of the associated large matrix and
result in increasing computation and excessive computer memory. In the matrix
algebra field, some complex matrix equations have attached much attention from
many researchers since it was shown in Bevis et al. (1987) that the consistence of
the matrix equation AX� XB ¼ C was related to the consimilarity (Horn and
John, 1990; Huang, 2001; Jiang et al., 2006) of two partitioned matrices associated
with the matrices A;B and C. In the preceding matrix equations, X denotes the ma-
trix obtained by taking the complex conjugate of each element of X. By consimilar-
ity decomposition, explicit solutions can were established in Bevis et al. (1987) and
Bevis et al. (1988). Recently, in Wu et al. (2006) some explicit expressions of the
solution to the matrix equation AX� XB ¼ C were established by means of real
representation of a complex matrix, and it shown that there exists a unique solution
if and only if AA and BB have no common eigenvalues. The explicit solution of the
matrix equation X� AXB ¼ C was proposed in Jiang and Wei (2003) with matrix
polynomial as a tool. In Wu et al. (2010), the Homogeneous Sylvester-conjugate
matrix equations AXþ BY ¼ XF and Nonhomogeneous Sylvester-conjugate ma-
trix equations AXþ BY ¼ XFþ R are investigated. Some explicit closed-form
solutions of the above two matrix equations are provided. Very recently, in Wu
et al. (2011) proposed a new operator of conjugate product for complex polynomial
matrices. It is shown that an arbitrary complex polynomial matrix can be converted
into the so-called Smith normal form by elementary transformations in the frame-
work of conjugate product. Meanwhile, the conjugate product and the Sylvester-
conjugate sum are also proposed by in Wu et al. (2011). Based on the important
properties of the above new operators, a unified approach to solve a general class
of Sylvester-polynomial-conjugate matrix equations is given. The complete solu-
tion of the Sylvester-polynomial-conjugate matrix equation is obtained.

Iterative approaches for solving matrix equations and recursive identifications
have attached much attention from many researches since Huang et al. (2008) pro-
posed an iterative method for solving the linear matrix equation AXB ¼ F over
skew-symmetric matrix X. By extending the well-known Jacobi and Gauss Seidel
iterations for Ax ¼ b, Ding et al. (2008) derived iterative solutions of matrix equa-
tion AXB ¼ F and the generalized Sylvester matrix equation AXBþ CXD ¼ F.
The gradient based iterative algorithm (Ding and Chen, 2006, Ding and Chen,
2005, Wu et al., 2010) and least squares based iterative algorithm (Ding and Chen,
2006) for solving (coupled) matrix equations are a novel and efficiently numerical
algorithms were presented based on the hierarchical identification principle (Ding
and Chen, 2005; Ding and Chen, 2005) which regards the unknown matrix as the
system parameter matrix to be identified. In Wu et al. (2011), the matrix equation
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X� AXB ¼ C is considered. Some Smith-type iterative algorithms were estab-
lished and the corresponding convergence analysis were also given in Wu et al.
(2010, 2011) investigated the following so-called coupled Sylvester-conjugate ma-
trix equations:
Xp

g¼1
ðAigXgBig þ CigXgDigÞ ¼ Fi; i 2 I½1:N�: ð1:1Þ
In Wu et al. (2010), by applying a hierarchical identification principle, an iterative
algorithm is established and the iterative solutions with a unique solution is given.
In Wu et al. (2011), by using a real inner product in complex matrix spaces, a solu-
tion can be obtained within finite iterative steps for any initial values in the ab-
sence of roundoff errors. In Li et al. (2010) and Xie et al. (2009), the following
linear equations
Xr

i¼1
AiXBi þ

Xs
j¼1

CjX
TDj ¼ E; ð1:2Þ
where Ai;Bi;Cj;Dj; i ¼ 1; . . . ; r; j ¼ 1; . . . ; s. and E are some known constant
matrices of appropriate dimensions and X is a matrix to be determined, was con-
sidered. In Wang et al. (2007), the special case of (1) AXBþ CXTD ¼ E was con-
sidered by the iterative algorithm. A more special case of (1), namely the matrix
equation AXþ XTB ¼ C, was investigated by Piao et al. (2007). The Moore-Pen-
rose generalized inverse was used in Piao et al. (2007) to find explicit solutions to
this matrix equation. Now in this paper we consider the following matrix equation
Xr

i¼1
AiXBi þ

Xs
j¼1

CjX
HDj ¼ E; ð1:3Þ
where Ai;Bi;Cj;Dj; i ¼ 1; . . . ; r; j ¼ 1; . . . ; s. and E are some known constant
matrices of appropriate dimensions and X is a matrix to be determined, was con-
sidered. The current paper uses the iterative approach to study the iterative solu-
tions of complex Sylvester matrix equations. The method in this paper differs from
ones in Ding and Chen (2006), Ding and Chen (2005), Wu et al. (2010), Ding and
Chen (2005) and Liang et al. (2007) because the proposed methods in this paper is
for a complex matrixs using the hierarchical identification principle (Wu et al.,
2010,) and some properties of the real representation of a complex matrix. These
results, however, are difficult to be extended to the more general case (1).

The remainder of this paper is organized as follows. In Section 3, we introduce
an iterative method for solving the iterative solution to the coupled Sylvester-con-
jugate transpose matrix equation, and give the convergence properties of this iter-
ative algorithm. We also show that this iterative method can be used to a more
general coupled Sylvester-conjugate transpose matrix equations in Section 4. In
Section 5, we present a numerical example to verify our results. Conclusions will
be put in Section 6.
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Throughout this paper, we use AT;A;AH, kAk and kAk2 to denote transpose,
conjugate, conjugate transpose, the Frobenius norm and the spectral norm of
A, respectively. A� B ¼ ðaijBÞ denotes the Kronecker product of two matrices
A and B. For two integers m < n, the symbol I½m; n� is used to denote the set
fm;mþ 1; . . . ; ng. Let R denote the real number field, C the complex number field.
For a matrix X ¼ x1 x2 . . . xn½ � 2 Cm�n, vecðXÞ is the column stretching oper-
ation of X, and defined as vecðXÞ ¼ xT

1 xT
2 . . . xT

n

� �T
. In addition, it is obvi-

ous that kAk ¼ kvecðAÞk for any matrix A.

2. Preliminaries

In this section, we provide some useful results which will play vital roles in the se-
quel section.

Referring to work Al Zhour and Kilicman (2007), let Pðm; nÞ 2 Rmn�mn be a
square mn�mn matrix partitioned into m� n sub-matrices such that jith position
and zeros elsewhere, i.e.,
Pðm; nÞ ¼
Xm
i¼1

Xn
j¼1

Eij � ET
ij ;
where Eij ¼ eie
T
j called an elementary matrix of order m� 1ðn� 1Þ. Using this def-

inition, we have
vecðXTÞ ¼ Pðm; nÞvecðXÞ;Pðm; nÞPðn;mÞ ¼ Imn;Pðm; nÞT ¼ Pðm; nÞ�1

¼ Pðm; nÞ:

Next we give a real representation of complex matrix. This concept is firstly pro-
posed in Jiang and Wei (2003). Let A 2 Cm�n, then A can be uniquely written as
A ¼ A1 þ A2k with A1;A2 2 Rm�n; k ¼

ffiffiffiffiffiffiffi
�1
p

. Define real representation r as
Ar ¼
A1 A2

A2 �A1

� �
2 R2m�2n;
Ar is called the real representation of the matrix A.
For an n� n complex matrix A, Define Ai

r ¼ ðArÞi, and
Rj ¼
Ij 0

0 �Ij

� �
; Qj ¼

0 Ij

�Ij 0

� �
;

where Ij is the j� j identity matrix. The real representation possesses the following
properties.

Lemma 1 Jiang and Wei, 2003.

(1) If A;B 2 Cm�n; a 2 R, then
ðAþ BÞr ¼ Ar þ Br; ðaAÞr ¼ aAr;RmArRn ¼ Ar:
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(2) If A 2 Cm�n; B 2 Cn�r; C 2 Cr�p; a 2 R, then
ðABÞr ¼ ArRnBr ¼ ArBrRr; ðABCÞr ¼ ArBrCr:
(3) If A 2 Cm�n, then QmArQn ¼ Ar.
(4) If A 2 Cm�n, then AH

r ¼ RnðArÞT Rm and AT
r ¼ ðArÞT .

In Lemma 1, Items (1)–(3) can be found in Jiang and Wei (2003). Item 4 can be
obtained by simple computation.

Lemma 2 Wu et al., 2010. Given a complex matrix,the following relations hold.

(1) kArk2 ¼ 2kAk2,
(2) kArk2 ¼ kAk2.

The proof can be found in Wu et al., 2010.

Lemma 3 Wu et al., 2010. Consider the following matrix equation
AXB ¼ F
where A 2 Cm�r; B 2 Cs�n and F 2 Cm�n are known matrices, and X 2 Cr�s is the
matrix to be determined. For this matrix equation, an iterative algorithm is con-
structed as
Xðkþ 1Þ ¼ XðkÞ þ lAHðF� XðkÞÞBH
with
0 < l <
2

kAk22kBk
2
2

:

If this matrix equation has a unique solution X�, then the iterative solution XðkÞ con-
verges to the unique solution X�, that is limk!1XðkÞ ¼ X�.
3. The matrix equation AXBþ CXHD ¼ F

In this section, we consider the following extended Sylvester-conjugate transpose
matrix equation
AXBþ CXHD ¼ F; ð3:1Þ

where A 2 Cm�r;B 2 Cs�n;C 2 Cm�s;D 2 Cr�n, F 2 Cm�n, are the given known
matrices, and X 2 Cr�s is the matrix to be determined. The hierarchical identifica-
tion principle (Wu et al., 2010; Ding and Chen, 2005) implies that by defining two
matrices
F1 ¼ F� CXHD; ð3:2Þ
F2 ¼ FH � ðAXBÞH: ð3:3Þ
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With the preceding definitions, the matrix Eq. (3.1) can be decomposed into the
following matrix equations
AXB ¼ F1; ð3:4Þ
DHXCH ¼ F2: ð3:5Þ
According to Lemma 4, for these matrix equation one can construct the following
respective iterative forms
X1ðkþ 1Þ ¼ X1ðkÞ þ lAHðF1 � AX1ðkÞBÞBH; ð3:6Þ
X2ðkþ 1Þ ¼ X2ðkÞ þ lDðF2 �DHX2ðkÞCHÞD: ð3:7Þ
Substituting (3.4) and (3.5) into (3.6) and (3.7), respectively, gives
X1ðkþ 1Þ ¼ X1ðkÞ þ lAH½F� CXHD� AX1ðkÞB�BH; ð3:8Þ
X2ðkþ 1Þ ¼ X2ðkÞ þ lD½F� AXB� CXH

2 ðkÞD�
H
C: ð3:9Þ
The right-hand sides of these equations contain the unknown matrices matrices X,
so it is impossible to realize these algorithms. In order to make the algorithm in
(3.8) and (3.9) work, the unknown variable matrices X in (3.8) and (3.9) are respec-
tively replaced with their estimates XðkÞ by applying the hierarchical identification
principle (Wu et al., 2010; Ding and Chen, 2005). Hence, one obtains the following
recursive forms:
X1ðkþ 1Þ ¼ X1ðkÞ þ lAH½F� CXH
1 ðkÞD� AX1ðkÞB�BH; ð3:10Þ

X2ðkþ 1Þ ¼ X2ðkÞ þ lD½F� AX2ðkÞB� CXH
2 ðkÞD�

H
C; ð3:11Þ
Taking the average of X1ðkÞ and X2ðkÞ, we give the following iterative algorithm
X1ðkþ 1Þ ¼ XðkÞ þ lAH½F� CXHðkÞD� AXðkÞB�BH; ð3:12Þ

X2ðkþ 1Þ ¼ XðkÞ þ lD½F� AXðkÞB� CXHðkÞD�HC; ð3:13Þ

XðkÞ ¼ X1ðkÞ þ X2ðkÞ
2

: ð3:14Þ
This algorithm can be equivalently rewritten as
Xðkþ 1Þ ¼ XðkÞ þ l
2
AH½F� AXðkÞB� CXHðkÞD�BH þ l

2
D½F

� AXðkÞB� CXHðkÞD�HC: ð3:15Þ

In the following, we consider convergence properties of the proposed algorithm
(3.15). During the proof of the convergence properties, it adopts the line of the
one in Wu et al. (2010).

Theorem 1. If the extended Sylvester-conjugate transpose matrix Eq. (3.1) has a
unique solution X�, then the iterative solution XðkÞ given by the algorithm in 3.12,
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3.13, 3.14, or equivalently, algorithm (3.15), converges to X� for arbitrary initial
Xð0Þ if
0 < l <
4N

k½ðRnðBHÞrÞ
T � ðAHÞrRm þ ððCrÞT �DrÞPðm; nÞ�k22

: ð3:16Þ
Proof. Define error matrices
eXiðkÞ ¼ XiðkÞ � X�
Thus one has
eXiðkÞ ¼ XðkÞ � X� ¼
eX1ðkÞ þ eX2ðkÞ

2

By using the algorithm (3.12) and (3.13), one has
eX1ðkþ 1Þ ¼ eXðkÞ þ lAH½F� AXðkÞB� CXHðkÞD�BH

¼ eXðkÞ þ lAH½AX�Bþ CXH
� ðkÞD� AXðkÞB� CXHðkÞD�BH

¼ eXðkÞ � lAH½A eXðkÞBþ C eXHðkÞD�BH
and
 eX2ðkþ 1Þ ¼ eXðkÞ þ lD½F� AXðkÞB� CXHðkÞD�HC

¼ eXðkÞ � l1D½A eXðkÞBþ C eXHðkÞD�HC

Denote
ZðkÞ ¼ A eXðkÞBþ C eXHðkÞD: ð3:17Þ

Then, combining this relation with the preceding expression, one has
eXðkþ 1Þ ¼ eXðkÞ � 1

2
lAHZðkÞBH � 1

2
lDZHðkÞC
Recall the well known fact that trðABÞ ¼ trðBAÞ; trðAþ BÞ ¼ trðAÞ þ trðBÞ. Then
by simple computations it follows
k eXðkþ1Þk2

¼ tr½ eXHðkþ1Þ eXðkþ1Þ� ¼ k eXðkÞk2�1

2
ltr½ eXHðkÞAHZðkÞBHþDZHðkÞC�

�1

2
ltr½ðBZHðkÞAþCHZðkÞDHÞ eXðkÞ�þ1

4
l2kAHZðkÞBHþDZHðkÞCk2

¼k eXðkÞk2�1

2
ltr½BH eXHðkÞAHZðkÞ�1

2
ltr½ZHðkÞA eXðkÞB�

�1

2
ltr½ZðkÞDH eXðkÞCH��1

2
ltr½C eXHðkÞDZHðkÞ��1

4
l2kAHZðkÞBHþDZHðkÞCk2
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It is obvious that tr½C eXHðkÞDZHðkÞ� þ tr½ZðkÞDH eXðkÞCH� is real. Then, by using
Lemma 4 one has
tr½C eXHðkÞDZHðkÞ� þ tr½ZðkÞDH eXðkÞCH�

¼ tr½DH eXðkÞCHZðkÞ� þ tr½ZHðkÞC eXHðkÞD�

Combining this expression with (3.17), it is easily obtained that
tr½BH eXHðkÞAHZðkÞ� þ tr½ZHðkÞA eXðkÞB� þ tr½C eXHðkÞDZHðkÞ�
þ tr½ZðkÞDH eXðkÞCH� ¼ tr½ðBH eXHðkÞAH þDH eXðkÞCHÞZðkÞ�
þ tr½ZHðkÞðA eXðkÞBþ C eXHðkÞDÞ� ¼ 2kZðkÞk2: ð3:19Þ
In addition, by using Lemma 3 and Lemma 2 one has
kAHZðkÞBH þDZHðkÞCk2

¼ 1

2
kðAHZðkÞBH þDZHðkÞCÞrk

2

¼ 1

2
kððAHÞrRmðZðkÞÞrRnðBHÞr þ ðDÞrððZðkÞÞrÞ

T
CrÞk2

¼ 1

2
k½ðRnðBHÞrÞ

T � ðAHÞrRm þ ððCrÞT �DrÞPðm; nÞ�vecððZðkÞÞrÞk
2

6
1

2
k½ðRnðBHÞrÞ

T � ðAHÞrRm þ ððCrÞT �DrÞPðm; nÞ�k22kvecððZðkÞÞrÞk
2

¼ k½ðRnðBHÞrÞ
T � ðAHÞrRm þ ððCrÞT �DrÞPðm; nÞ�k22kZðkÞk

2
: ð3:20Þ
Denote
T ¼ k½ðRnðBHÞrÞ
T � ðAHÞrRm þ ððCrÞT �DrÞPðm; nÞ�k22; ð3:21Þ
Then combining (3.19), (3.20), (3.21) with (3.18), yields
k eXðkþ 1Þk2 6 k eXðkÞk2 � l 1� 1

4
lT

� �
ðkZðk� 1Þk2 þ kZðkÞk2Þ

6 k eXð0Þk2 � l 1� 1

4
lT

� �Xk
i¼0
kZðiÞk: ð3:22Þ
If the parameter l is chosen in (3.16), then one has
0 < l 1� 1

4
lT

� �Xk
i¼0
kZðiÞk 6 k eXð0Þk2:
Then we have
0 < l 1� 1

4
lT

� �X1
i¼0
kZðiÞk 6 k eXð0Þk2:
It follows the convergence theorem of series that
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lim
i!1
kZðiÞk ¼ 0;
Since the matrix Eq. (3.1) has a unique solution, it follows from the definition Eq.
(3.17) of ZðkÞ that
lim
i!1

eXðiÞ ¼ 0:
Thus we complete the proof. h

Remark 1. In the proof of Theorem 1, vector vecððZHðkÞÞrÞ has a special struc-
ture. This implies that the estimation (3.16) is a bit conservative. Therefore, the
range of the parameter l given in Theorem 1 may be a bit conservative. In other
words, the algorithm (3.15) might be still convergent even if the parameter l does
not satisfy (3.16). It is our future work to reduce this conservatism.

In view of the expression of the algorithm (3.15) and the condition (3.16), we
give the following corollary.

Corollary 1. If the extended Sylvester-conjugate transpose matrix Eq. (3.1) has a
unique solution X�, then the iterative solution XðkÞ given by the algorithm (3.15)
converge to X� for arbitrary initial values Xð0Þ if
0 < l <
1

½kAk22kBk
2
2 þ kCk

2
2kDk

2
2�
: ð3:23Þ
Proof. Recall the fact that kðA� BÞPðm;nÞk2 ¼ kA� Bk2 ¼ kAk2kBk2, one has
kA� Bk2 ¼ kAk2kBk2:
Applying this fact and Lemma 3, one has
k½ðRnðBHÞrÞ
T � ðAHÞrRm þ ððCrÞT �DrÞPðm; nÞ�k22

6 ðkðRnðBHÞrÞ
T � ðAHÞrRmk2 þ kððCrÞT � ðDÞrÞPðm; nÞk2Þ

2

¼ ðkðBHÞrk2kAHk2 þ kðCrÞTk2kDrPðm; nÞk2Þ
2
:

¼ ðkAk2kBk2 þ kCk2kDk2Þ
2
: 6 2ðkAk22kBk

2
2 þ kCk

2
2kDk

2
2Þ:
Combining this relation with (3.15), gives the conclusion. h

Remark 2. Compared with Theorem 1, the range of the parameter l guaranteeing
the convergence of the algorithm (3.15) is given in terms of the original coefficient
matrices instead of their real representation matrices. It is easy to compute than
that of (3.16). Nevertheless, it is obvious that the result of Corollary 2is more con-
servative than the one of Theorem 1.
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4. A more general extended Sylvester-conjugate transpose matrix equation

In this section, we consider a class of more general extended Sylvester-conjugate
transpose matrix equations which include the extended Sylvester- conjugate trans-
pose matrix Eq. (3.1) as a special case. Such a class of matrix equation is in the
form of
Xp

i¼1
AiXBi þ

Xq
j¼1

CjX
HDj ¼ F; ð4:1Þ
where Ai 2 Cm�r;Bi 2 Cs�n;Cj 2 Cm�s;Dj 2 Cr�ni 2 I½1; p�; j 2 I½1; q�, F 2 Cm�n, are
the given known matrices, and X 2 Cr�s is the matrix to be determined. Now we
define the following matrices (4.2) and (4.3).
Fi ¼ F�
Xp
l¼1

AlXBl �
Xq
j¼1

CjgX
HDj þ AiXBi; i 2 I½1;N�; ð4:2Þ

Fpþj ¼ F�
Xp
i¼1

AiXBi �
Xq
l¼1

ClX
HDl

" #H
þDH

j XC
H
j ; j 2 I½1; q�: ð4:3Þ
According to the preceding definitions, the matrix Eq. (4.1) can be decomposed
into the following matrix equations
AiXBi ¼ Fi; i 2 I½1; p�;
DH

j XC
H
j ¼ Fpþj; j 2 I½1; p�:
According to Lemma 1, for these matrix equations one can construct the following
respective iterative forms
Xiðkþ 1Þ ¼ XiðkÞ þ lAH
i ðFi � AiXiðkÞBiÞBH

i ; i 2 I½1; p�; ð4:4Þ
Xpþjðkþ 1Þ ¼ XpþjðkÞ þ lDjðFpþj �DH

j XpþjðkÞCH
j ÞCj; j 2 I½1; q�: ð4:5Þ
Substituting (4.2) and (4.3) into (4.4) and (4.5), respectively, gives
Xiðkþ1Þ¼XiðkÞþlAH
i F�

Xp
l¼1

AlXBl�
Xq
l¼1

ClX
HDlþAiXBi�AiXiðkÞBi

" #
BH

i ;

i2 I½1;p�; ð4:6Þ

Xpþjðkþ 1Þ

¼ XpþjðkÞ þ lDj F�
Xp
l¼1

AlXBl �
Xq
l¼1

ClX
HDl þ CjX

HDj � CjX
H
pþjðkÞDj

" #H
Cj;

j 2 I½1; q�: ð4:7Þ
The right-hand sides of these equations contain the unknown matrices X, so it is
impossible to realize these algorithms in (4.6) and (4.7). Similar to Section 3, by
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applying the hierarchical identification principle (Wu et al., 2010; Ding and Chen,
2005), the unknown variable matrices X in these two expressions is replaced with
its estimate XðkÞ at time k. Hence, one obtains the following recursive forms:
Xiðkþ1Þ¼XiðkÞþlAH
i F�

Xp
l¼1

AlXiðkÞBl�
Xq
l¼1

ClX
H
i ðkÞDl

" #
BH

i ; i2 I½1;p�;

Xpþjðkþ1Þ¼XpþjðkÞþlDj F�
Xp
l¼1

AlXpþjðkÞBl�
Xq
l¼1

ClX
H
pþjðkÞDl

" #H
Cj; j2 I½1;q�:
Taking the average of XiðkÞ; i 2 I½1; pþ q�, one obtain an iterative algorithm
Xiðkþ1Þ¼XiðkÞþlAH
i F�

Xp
l¼1

AlXiðkÞBl�
Xq
l¼1

ClX
H
i ðkÞDl

" #
BH

i ; i2 I½1;p�;

ð4:8Þ

Xpþjðkþ 1Þ ¼ XpþjðkÞ

þ lDj F�
Xp
l¼1

AlXpþjðkÞBl �
Xq
l¼1

ClX
H
pþjðkÞDl

" #H
Cj; j

2 I½1; q�; ð4:9Þ

XðkÞ ¼ 1

pþ q

Xpþq
i¼1

XiðkÞ: ð4:10Þ
This algorithm can be equivalently rewritten as
Xðkþ 1Þ ¼ XðkÞ þ l
pþ q

�
Xp
i¼1

AH
i F�

Xp
l¼1

AlXðkÞBl �
Xq
l¼1

ClX
HðkÞDl

" #
BH

i

þ l
pþ q

Xq
j¼1

Dj F�
Xp
l¼1

AlXðkÞBl �
Xq
l¼1

ClX
HðkÞDl

" #H
Cj: ð4:11Þ
Theorem 2. If the general Sylvester-transpose matrix Eq. (4.1) has a unique
solution X�, then the iterative solution XðkÞ given by the algorithm in (4.11)
convergence to X� for any initial matrix Xð0Þ if
0 < l <
2ðpþ qÞPp

i¼1
ðRnðBH

i ÞrÞ
T � ðAH

i ÞrRm þ
Pq
j¼1
ðððCjÞrÞ

T � ðDjÞrÞPðm; nÞ
					

					
2

2

:

ð4:12Þ
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Proof. Define error matrices
eXiðkÞ ¼ XiðkÞ � Xi�; i 2 I½1; pþ q�:
Thus, one has
eXðkÞ ¼ XðkÞ � X� ¼

Ppþq
i¼1
eXiðkÞ

pþ q
Using the algorithm (4.8) and (4.9), one has for i 2 I½1; p�
eXiðkþ1Þ¼ eXðkÞþlAH
i F�

Xp
l¼1

AlXðkÞBl�
Xq
l¼1

ClX
HðkÞDl

" #
BH

i

¼ eXðkÞþlAH
i

Xp
l¼1

AlX�Blþ
Xq
l¼1

ClX
H
� Dl�

Xp
l¼1

AlXðkÞBl�
Xq
l¼1

ClX
HðkÞDl

" #
BH

i

¼ eXðkÞ�lAH
i

Xp
l¼1

Al
eXðkÞBlþ

Xq
l¼1

Cl
eXHðkÞDl

" #
BH

i :
and for j 2 I½1; q�
eXpþjðkþ 1Þ ¼ eXðkÞ þ lDj F�
Xp
l¼1

AlXðkÞBl �
Xq
l¼1

ClX
HðkÞDl

" #H
Cj

¼ eXðkÞ � lDj

Xp
l¼1

Al
eXðkÞBl þ

Xq
l¼1

Cl
eXHðkÞDl

" #H
Cj
Denote
ZðkÞ ¼
Xp
l¼1

Al
eXðkÞBl þ

Xq
l¼1

Cl
eXHðkÞDl; ð4:13Þ
Then, combining this relation with the preceding expression, one has
k eXðkþ 1Þk2 ¼ tr½ eXHðkþ 1Þ eXðkþ 1Þ�

¼ k eXðkÞk2 � l
pþ q

tr eXHðkÞ
Xp
i¼1

AH
i ZðkÞBH

i þ
Xq
j¼1

DjZ
HðkÞCj

 !" #



An efficient algorithm for solving extended Sylvester-conjugate transpose matrix equations 127
� l
pþ q

tr
Xp
i¼1

BiZ
HðkÞAiþ

Xq
j¼1

CH
j ZðkÞDH

j

 ! eXðkÞ" #

þ l2

ðpþ qÞ2
Xp
i¼1

AH
i ZðkÞBH

i þ
Xq
j¼1

DjZ
HðkÞCj

					
					
2

:

¼ k eXðkÞk2� l
pþ q

tr
Xp
i¼1

BH
i
eXHðkÞAH

i ZðkÞ
" #

� l
pþ q

tr
Xp
i¼1

ZHðkÞAi
eXðkÞBi

" #
� l
pþ q

tr
Xq
j¼1

ZHðkÞCj
eXHðkÞDj

" #

� l
pþ q

tr
Xq
j¼1

DH
j
eXðkÞCH

j ZðkÞ
" #

þ l2

ðpþ qÞ2
Xp
i¼1

AH
i ZðkÞBH

i

					
þ
Xq
j¼1

DjZ
HðkÞCj

					
2

¼ k eXðkÞk2� l
pþ q

tr
Xp
i¼1

BH
i
eXHðkÞAH

i þ
Xq
j¼1

DH
j
eXðkÞCH

j

 !
ZðkÞ

" #

� l
pþ q

tr ZHðkÞ
Xp
i¼1

Ai
eXðkÞBiþ

Xq
j¼1

Cj
eXHðkÞDj

 !" #

þ l2

ðpþ qÞ2
Xp
i¼1

AH
i ZðkÞBH

i þ
Xq
j¼1

DjZ
HðkÞCj

					
					
2

¼ k eXðkÞk2� l
pþ q

tr½ZHðkÞZðkÞ� � l
pþ q

tr½ZðkÞZHðkÞ�

þ l2

ðpþ qÞ2
Xp
i¼1

AH
i ZðkÞBH

i þ
Xq
j¼1

DjZ
HðkÞCj

					
					
2

¼ k eXðkÞk2� 2l
pþ q

kZðkÞk2þ l2

ðpþ qÞ2
Xp
i¼1

AH
i ZðkÞBH

i

					
þ
Xq
j¼1

DjZ
HðkÞCj

					
2

In addition, by using Lemma 2 and 3 one has
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Xp
i¼1

AH
i ZðkÞBH

i þ
Xq
j¼1

DjZ
HðkÞCj

					
					
2

¼1

2

Xp
i¼1

AH
i ZðkÞBH

i þ
Xq
j¼1

DjZ
HðkÞCj

 !
r

					
					
2

¼1

2

Xp
i¼1
ðAH

i ÞrRmðZðkÞÞrRnðBH
i Þrþ

Xq
j¼1
ðDjÞrððZðkÞÞrÞ

TðCjÞr

					
					
2

¼1

2

Xp
i¼1
ðRnðBH

i ÞrÞ
T�ðAH

i ÞrRmþ
Xq
j¼1
ðððCjÞrÞ

T�ðDjÞrÞPðm;nÞk
2kvecðZðkÞÞr

					
					
2

6
1

2

Xp
i¼1
ðRnðBH

i ÞrÞ
T�ðAH

i ÞrRmþ
Xq
j¼1
ðððCjÞrÞ

T�ðDjÞrÞPðm;nÞ
					

					
2

2

kvecðZðkÞÞrk
2

¼
Xp
i¼1
ðRnðBH

i ÞrÞ
T�ðAH

i ÞrRmþ
Xq
j¼1
ðððCjÞrÞ

T�ðDjÞrÞPðm;nÞ
					

					
2

2

kZðkÞk2
Denote
T ¼
Xp
i¼1
ðRnðBH

i ÞrÞ
T � ðAH

i ÞrRm þ
Xq
j¼1
ðððCjÞrÞ

T � ðDjÞrÞPðm; nÞ
					

					
2

2

Then, combining the preceding three relations, yields
k eXðkþ 1Þk2 6 k eXðkÞk2 � l
pþ q

ð2� l
pþ q

TÞkZðkÞk2

6 k eXðk� 1Þk2 � l
pþ q

2� l
pþ q

T

� �
ðkZðk� 1Þk2 þ kZðkÞk2Þ

6 k eXð0Þk2 � l
pþ q

2� l
pþ q

T

� �Xk
i¼0
ðkZðiÞk2Þ:
If the parameter l is chosen in (4.12), then one has
0 <
l

pþ q
2� l

pþ q

� �Xk
i¼0
kZðiÞk 6 k eXð0Þk2:
Then we have
0 <
l

pþ q
2� l

pþ q

� �X1
i¼0
kZðiÞk 6 k eXð0Þk2:
It follows the convergence theorem of series that
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lim
i!1

ZðiÞ ¼ 0:
Since the matrix (4.1) has a unique solution, it follows from the definition (4.13) of
ZðkÞ that
lim
i!1

XðiÞ ¼ 0:
Thus we complete the proof. h

In view of the expression of the algorithm (4.11) and the condition (4.12), we
give the following corollary.

Corollary 2. If the general Sylvester-conjugate transpose matrix Eq. (4.1) has a
unique solution X�, then the iterative solution XðkÞ given by
Xðkþ 1Þ ¼ XlðkÞ

þ l
Xp
i¼1

AH
i F�

Xp
l¼1
ðAlXðkÞBl �

Xq
l¼1

ClX
HðkÞDlÞ

" #
BH

i

þ l
Xq
j¼1

Dj F�
Xp
l¼1
ðAlXðkÞBl �

Xq
l¼1

ClX
HðkÞDlÞ

" #H
Cj; ð4:15Þ
converge to the exact solution X� for arbitrary initial matrices Xð0Þ if
0 < l

<
2Pp

i¼1
ðRnðBH

i ÞrÞ
T � ðAH

i ÞrRm þ
Pq
j¼1
ðððCjÞrÞ

T � ðDjÞrÞPðm; nÞ
					

					
2

2

: ð4:16Þ
Similar to the Section 1, at the end of this section, we also provide a sufficient con-
dition that is easier to compute. The given condition does not invoke Kronecker
product and the real representations of the coefficient matrices.

Corollary 3. If the general Sylvester- conjugate transpose matrix Eq. (4.1) has a
unique solution X�, then the iterative solution XðkÞ given by the algorithm (4.11)
converge to X� for arbitrary initial values Xð0Þ if
0 < l <
2Pp

i¼1
kAik22kBik22 þ

Pq
j¼1
kCjk22kDjk22

: ð4:17Þ
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Proof. By applying Lemma 2 and Lemma 3, one has
Xp
i¼1
ðRnðBH

i ÞrÞ
T � ðAH

i ÞrRm þ
Xq
j¼1
ððCT

j Þr � ðDjÞrÞPðm; nÞ
					

					
2

2

6

Xp
i¼1
kðRnðBH

i ÞrÞ
T � ðAH

i ÞrRmk22 þ
Xq
j¼1
kðCT

j Þr � ðDjÞrk
2
2

 !2

¼
Xp
i¼1
kAik2kBik2 þ

Xq
j¼1
kCjk2kDjk2

 !2

6 ðpþ qÞð
Xp
i¼1
kAik22kBik22 þ

Xq
j¼1
kCjk22kDjk22Þ
Combining this relation with (4.17), gives the conclusion. h

Corollary 4. If the general Sylvester-conjugate transpose matrix Eq. (4.1) has a
unique solution X�, then the iterative solution XðkÞ given by the algorithm
(4.11) converge to X� for arbitrary initial values Xð0Þ if
0 < l <
2

p
Pp
i¼1
kAik22kBik22 þ q

Pq
j¼1
kCjk22kDjk22

:

Proof. It follows from the proof of the above corollary that
Xp
i¼1
ðRnðBH

i ÞrÞ
T � ðAH

i ÞrRm þ
Xq
j¼1
ððCT

j Þr � ðDjÞrÞPðm; nÞ
					

					
2

2

6

Xp
i¼1
kAik2kBik2 þ

Xq
j¼1
kCjk2kDjk2

 !2

6 2
Xp
i¼1
kAik2kBik2

 !2

þ 2
Xq
j¼1
kCjk2kDjk2

 !2

6 2 p
Xp
i¼1
kAik22kBik22

 !
þ 2 q

Xq
j¼1
kCjk22kDjk22

 !
:

h
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5. Numerical example

In this section, we report two numerical examples to test the proposed iterative
method.

Example 1. Consider the following extended Sylvester-conjugate transpose matrix
equation
AXBþMXNþ CXHD ¼ F
with the following parameter matrices:
A ¼
1 2

3 0

� �
; B ¼

1 i

0 2

� �
; C ¼

1 2

0 1� i

� �
; D ¼

1� i 1

2 4

� �
;

M ¼
1 0

2 i

� �
; N ¼

1 0

2 4

� �
; F ¼

5� i 7þ 11i

4þ 5i �1þ 16i

� �
;

It can be verified that the above coupled matrix equation has a unique solution
X ¼
1 i

1� i 0

� �
:

We apply algorithm (21) to compute the above extended Sylvester-conjugate
transpose matrix equation. The initial matrices are chosen as Xð0Þ ¼ 10�6 � I2.
According to Theorem 2, the algorithm (21) is convergent for
0 < l < 1:03� 10�2. According to Corollary 2, the algorithm (21) is convergent
for 0 < l < 6:2� 10�3. Define the relative iterative error as
fðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kXðkÞ � Xk2 þ kYðkÞ � Yk2

kXk2 þ kYk2

s
:
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Figure 1 The convergence performance of algorithm (21).



Table 1 The iterative solution of Example for l ¼ 1:03� 10�2.

k x11 x12 x21 x22 f

20 0.9680 � 0.1242i �0.1960 + 0.9649i 0.7732 � 0.7217i 0.2714 � 0.1688i 0.2752

40 1.0025 � 0.1209i �0.1310 + 0.9711i 0.8931 � 0.8462i 0.1515 � 0.1095i 0.1461

60 1.0002 � 0.0847i �0.0834 + 0.9814i 0.9487 � 0.9014i 0.0891 � 0.0704i 0.1022

80 0.9985 � 0.0561i �0.0527 + 0.9883i 0.9769 � 0.9337i 0.0531 � 0.0456i 0.0649

100 0.9981 � 0.0367i �0.0335 + 0.9926i 0.9910 � 0.9547i 0.0319 � 0.0296i 0.0419

120 0.9983 � 0.0241i �0.0214 + 0.9952i 0.9979 � 0.9689i 0.0192 � 0.0194i 0.0275

140 0.9985 � 0.0159i �0.0137 + 0.9969i 1.0009 � 0.9786i 0.0117 � 0.0127i 0.0182

160 0.9988 � 0.0106i �0.0089 + 0.9980i 1.0020 � 0.9852i 0.0071 � 0.0084i 0.0122

180 0.9991 � 0.0071i �0.0058 + 0.9987i 1.0022 � 0.9898i 0.0044 � 0.0056i 0.0082

200 0.9993 � 0.0047i �0.0038 + 0.9992i 1.0020 � 0.9930i 0.0027 � 0.0038i 0.0056

220 0.9995 � 0.0032i �0.0025 + 0.9994i 1.0017 � 0.9951i 0.0017 � 0.0025i 0.0038

240 0.9996 � 0.0022i �0.0017 + 0.9996i 1.0013 � 0.9966i 0.0010 � 0.0017i 0.0026

260 0.9997 � 0.0014i �0.0011 + 0.9998i 1.0010 � 0.9977i 0.0006 � 0.0011i 0.0018

280 0.9998 � 0.0009i �0.0007 + 0.9998i 1.0007 � 0.9985i 0.0004 � 0.0007i 0.0012

300 0.9999 � 0.0007i �0.0005 + 0.9999i 1.0006 � 0.9989i 0.0003 � 0.0005i 0.0009

solution 1 i 1 � i 0 0.0009
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From Fig 1, it is clear that the error f become smaller and go to zero as k increases.
The effect of changing the convergence factor l is illustrated in Fig 1. We can see
that for l ¼ 1:02� 10�2; 6:2� 10�3; 8� 10�3, the larger the convergence factor l,
the faster the convergence rate. However, if we keep enlarging l, the algorithm will
diverge. How to choose a best convergence factor is still a project to be studied.

Algorithm (3.15) can also be constructed to the complex number equation. In
the following, we give a numerical example (see Table 1).
6. Conclusions

The gradient based iterative algorithms for solving the coupled Sylvester-trans-
pose matrix equation are studied by using the hierarchical identification principle.
The basic idea of a hierarchical identification principle is to regard the unknown
matrix as the system parameter matrix to be identified (Ding and Chen, 2005;
Wu et al., 2010; Xie et al., 2009; Ding and Chen, 2005; Wu et al., 2010). We prove
that the iterative solutions given by the proposed algorithms converge fast to their
true solutions for any initial values and in the roundoff errors. We test the pro-
posed algorithm using MATLAB and the results verify our theoretical findings.
Sufficient conditions that guarantee the convergence of the proposed algorithm
are given. The analysis indicates that the proposed convergence conditions may
be conservative. Such statement is also confirmed by the given numerical example.
It is our future work to establish a sufficient and necessary condition guaranteeing
that the proposed iterative algorithm converges to the exact solution for any initial
matrices. Furthermore, extending the adopted idea to study iterative solutions for
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nonlinear matrix equations and some more complicated linear matrix equations
requires further research.

References

Al Zhour Z, Kilicman A. Some new connections between matrix products for partitioned and non-partitioned

matrices. Comput Math Appl 2007;54(6):763–84.

Bevis JH, Hall FJ, Hartwing RE. Consimilarily and the matrix equation AX� XB ¼ C, in: current trends in

matrix theory. New York: North-Holland; 1987.

Bevis JH, Hall FJ, Hartwig RE. The matrix equation AX� XB ¼ C and its special cases. SIAM J Matrix Anal

Appl 1988;9(3):348–59.

Ding F, Chen T. Iterative least squares solutions of coupled matrix equations. System Control Lett

2005;54:95–107.

Ding F, Chen T. Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica

2005;41:315–25.

Ding F, Chen T. Hierarchical least squares identification methods for multivariable systems. IEEE Trans Autom

Control 2005;50:397–402.

Ding F, Chen T. Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans Autom

Control 2005;50:1216–21.

Ding F, Chen T. Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica

2005;41:2269–84.

Ding F, Chen T. On iterative solutions of general coupled matrix equations. SIAM J Control Optim

2006;44:2269–84.

Ding F, Liu PX, Ding J. Iterative solutions of the generalized Sylvester matrix equation by using the hierarchical

identification principle. Appl Math Comput 2008;197:41–50.

Horn RA, John CR. Matrix analysis. Cambridge: Cambridge University Press; 1990.

Huang LP. Consimilarity of quaternion matrices and complex matrices. Linear Algebra Appl 2001;331:21–30.

Huang GX, Yin F, Guo K. An iterative method for the skew-symmetric solution and the optimal approximate

solution of the matrix equation AXB ¼ C. J Comput Appl Math 2008;212:231–44.

Jiang TS, Wei MS. On solutions of X� AXB ¼ C, and X� AXB ¼ C. Linear Algebra Appl 2003;367:225–33.

Jiang TS, Cheng XH, Chen L. An algebraic relation between consimilarity and similarity of complex matrices and

its applications. J Phys A Math General 2006;39:9215–22.

Liang ML, You CH, Dai LF. An efficient algorithm for the generalized centro-symmetric solution of matrix

equation AXB ¼ C. Numer Algorithm 2007;4:173–84.

Li ZY, Wang Y, Zhou B, Duan GR. Least squares solution with the minimum-norm to general matrix equations

via iteration. Appl Math Comput 2010;215:3547–62.

Piao F, Zhang Q, Wang Z. The solution to matrix equation AXþ XTC ¼ B. J Franklin Inst 2007;344:1056–62.

Wang MH, Cheng XH, Wei MS. Iterative algorithms for solving the matrix equation AXBþ CXTD ¼ E. Appl

Math Comput 2007;187:622–9.

Wu AG, Duan GR, Yu HH. On solutions of XF� AX ¼ C and XF� AX ¼ C. Appl Math Comput

2006;182(2):932–41.

Wu AG, Feng G, Duan GR, WuWJ. Iterative solutions of coupled Sylvester-conjugte matrix equations. Comput

Math Appl 2010;60(1):54–66.

Wu AG, Zeng XL, Duan GR, Wu WJ. Iterative solutions to the extended Sylvester-conjugte matrix equations.

Appl Math Comput 2010;217:130–42.

Wu AG, Feng G, Duan GR, Wu WJ. Iterative solutions to coupled Sylvester-conjugate matrix equations.

Comput Math Appl 2010;60(1):54–66.

Wu AG, Feng G, Duan GR, Wu WJ. Closed-form solutions to Sylvester-conjugate matrix equations. Comput

Math Appl 2010;60(1):95–111.

Wu AG, Liu WQ, Duan GR. On the conjugate product of matrix polynomial matrices. Math Comput Modell

2011;53:2031–43.

Wu AG, Feng G, Liu WQ, Duan GR. The complete solution to the Sylvester-polynomial-conjugate matrix

equations. Math Comput Modell 2011;53:2044–56.

Wu AG, Feng G, Duan GR, Liu WQ. Iterative solutions to the Kalman–Yakubovich-conjugate matrix equation.

Appl Math Comput 2011;217:4427–38.



134 C. Song, G. Chen
Wu AG, Li B, Zhang Y, Duan GR. Finite iterative solutions to coupled Sylvester-conjugate matrix equations.

Appl Math Modell 2011;35(3):1065–80.

Xie L, Ding J, Ding F. Gradient based iterative solutions for general linear matrix equations. Comput Math Appl

2009;58:1441–8.


	An efficient algorithm for solving extended Sylvester-conjugate transpose matrix equations
	1 Introduction
	2 Preliminaries
	3 The matrix equation ? 
	4 A more general extended Sylvester-conjugate transpose matrix equation
	5 Numerical example
	6 Conclusions
	References


