
ARAB JOURNAL OF

MATHEMATICAL SCIENCES

Arab J Math Sci 23 (2017) 18–31

A survey on the geometry of production models in economics
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Abstract. In this article we survey selected recent results on the geometry of production
models, focussing on the main production functions that are usually analyzed in economics,
namely homogeneous, homothetic, quasi-sum and quasi-product production functions.
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1. INTRODUCTION

It is well known that the notion of production function is one of the key concepts of main-
stream neoclassical theories, being used in the mathematical modeling of the relationship
between the output of a production process and the inputs that have been used in obtain-
ing it. According to Humphrey [28] and Mishra [32], it seems that the German mathemati-
cal economist, location theorist, and agronomist Johann Heinrich von Thünen was the first
person to algebraically formulate the relationship between output and input as a mapping
f : Rn

+ → R+, f = f(x1, . . . , xn), where f is the quantity of output, n is the number of
the inputs and x1, . . . , xn are the factor inputs, such as labor, capital, land, raw materials etc.
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Because these functions should also model the economic reality, they are required to have
several properties [27,33,34]. As it was pointed in [29], the classical treatment of the pro-
duction functions makes use of the projections of production functions on a plane, but this
approach leads to limited conclusions. Fortunately, this problem can be solved by identify-
ing a production function f with the graph of f , i.e. the nonparametric hypersurface of the
(n + 1)-dimensional Euclidean space En+1, defined by [36]

L(x1, . . . , xn) = (x1, . . . , xn, f(x1, . . . , xn)), (x1, . . . , xn) ∈ Rn
+, (1)

and applying a differential geometric treatment. Using this approach, several basic properties
of production models can be interpreted in terms of the geometry of their graphs [22].

In 2011, the present authors obtained an unexpected link between some fundamental
notions in the theory of production functions and the differential geometry of hypersurfaces
in Euclidean spaces [36,37], giving an impulse to construct a differential geometrical theory
of production models in economics. It is the aim of this paper to give a survey of the
main results on the geometry of production functions obtained after the discovery of this
link. The article is focussed on the main production models that are often analyzed both
in microeconomics and macroeconomics, namely homogeneous, homothetic, quasi-sum and
quasi-product production models.

2. PRELIMINARIES ON THE PRODUCTION MODELS IN ECONOMICS

The simplest production model used in economics is the famous Cobb–Douglas produc-
tion function. It was introduced in 1928 by the mathematician C.W. Cobb and the economist
P.H. Douglas [24] in order to describe the distribution of the national income of the United
States in the following form

f = CKαLβ ,

where f stands for total production, K for capital input, L for labor input and C is a positive
constant which signifies the total factor productivity. We note that in the original definition it
is required that α + β = 1, but this condition has been later relaxed; usually, C, α and β are
estimated from empirical data. A generalized Cobb–Douglas production function depending
on n-inputs is given by

f(x1, . . . , xn) = A ·
n

i=1

xαi
i , (2)

where A, α1, . . . , αn > 0. The advantages of the Cobb–Douglas production function in its
generalized form were highlighted by K.V. Bhanumurthy [10].

The Cobb–Douglas production model was generalized by K.J. Arrow, H.B. Chenery,
B.S. Minhas and R.M. Solow in [3]. They introduced the so-called Constant Elasticity of
Substitution (CES) production function. This model was extended to the n-inputs by H.
Uzawa [35] and D. McFadden [31], who defined a new production function, usually called
generalized CES production function, Armington aggregator or ACMS (Arrow-Chenery-
Minhas-Solow) production function, by

f(x1, . . . , xn) = A


n

i=1

cix
ρ
i

 γ
ρ

, (3)
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where A > 0, ρ < 1, ρ ≠ 0, γ > 0 and ci > 0, for all i ∈ {1, . . . , n}. We note that CES
production functions are of great interest in economics because of their invariant character-
istic, namely that the elasticity of substitution between the parameters is constant on their
domains [30].

We also remark that generalized CES production functions include as special cases many
other famous production models, like multinomial production functions or Leontief produc-
tion functions (see [32] for other examples and definitions). We recall that a multinomial
production function is obtained by taking ρ → 1 in (3). Moreover, if γ = 1, then a multino-
mial production model is said to be a linear production model, also called a perfect substitutes
production model.

We recall next the main indicators of production. If f is a production function with n in-
puts x1, x2, . . . , xn, n ≥ 2, then the elasticity of production with respect to a certain factor
of production xi is defined as

Ei =
xi

f
fi

and the marginal rate of technical substitution of input xj for input xi is given by

MRSij =
fj

fi
,

where the subscripts denote partial derivatives of the function f with respect to the corre-
sponding variables.

A production function is said to satisfy the proportional marginal rate of substitution prop-
erty if and only if

MRSij =
xi

xj
,

for all 1 ≤ i ≠ j ≤ n.
On the other hand, the function Hij defined by

Hij(x1, . . . , xn) =
1

xifi
+ 1

xjfj

− fii

f2
i

+ 2fij

fifj
− fjj

f2
j

,

for all (x1, . . . , xn) ∈ Rn
+, is called the Hicks elasticity of substitution of the ith production

factor with respect to the jth production factor, where i, j ∈ {1, . . . , n}, i ≠ j.
Moreover, the function Aij defined as

Aij(x1, . . . , xn) = − x1f1 + · · · + xnfn

xixj

∆ij

∆
,

for all (x1, . . . , xn) ∈ Rn
+, where ∆ is the determinant of the bordered matrix

A(f) =


0 f1 . . . fn

f1 f11 . . . f1n

...
...

...
...

fn f1n . . . fnn


and ∆ij is the co-factor of the element fij in the determinant ∆ (∆ ≠ 0 is assumed), is
called the Allen elasticity of substitution of the ith production factor with respect to the jth
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production factor, where i, j ∈ {1, . . . , n}, i ≠ j. Moreover, A(f) is said to be the Allen
matrix of f and we call ∆ the Allen determinant [4].

We note that in the case of two inputs, Hicks elasticity of substitution and Allen elasticity
of substitution coincide. So Hij = Aij and in this case the indicator is simply called the
elasticity of substitution between the two factors of production.

3. PRELIMINARIES ON THE GEOMETRY OF HYPERSURFACES

For general references on the geometry of hypersurfaces, we refer to [12,13,15]. If M is a
hypersurface of the Euclidean space En+1, then it is known that the Gauss map ν : M → Sn

maps M to the unit hypersphere Sn of En+1. With the help of the differential dν of ν one can
define a linear operator on the tangent space TpM , denoted by Sp and known as the shape
operator, by g(Spv, w) = g(dν(v), w), for v, w ∈ TpM , where g is the metric tensor on M
induced by the Euclidean metric on En+1. The determinant of the shape operator Sp, denoted
by K(p), is called the Gauss–Kronecker curvature. When n = 2, the Gauss–Kronecker
curvature is simply called the Gauss curvature, which is intrinsic due to Gauss’s famous
Theorema Egregium. The trace of the shape operator Sp is called the mean curvature of the
hypersurfaces. In contrast to the Gauss–Kronecker curvature, the mean curvature is extrinsic,
depending on the immersion of the hypersurface. A hypersurface is said to be minimal if its
mean curvature vanishes identically. The Riemann curvature tensor R of M is given by

R(u, v)w = ∇u∇vw − ∇v ∇uw − ∇[u,v]w,

where ∇ is the Levi-Civita connection of g. It is well known that R measures the non-
commutativity of the covariant derivative, and as such is the integrability obstruction for
the existence of an isometry with Euclidean space [21]. A Riemannian manifold is said to be
flat if its Riemann curvature tensor vanishes identically. We recall now the following result,
which is a basic tool in proving the results presented throughout this paper.

Lemma 3.1 ([13]). For the production hypersurface defined by (1) and w =
1 +

n
i=1 f2

i , we have:

i. The Gauss–Kronecker curvature K is given by

K =
det(fxixj

)
wn+2

. (4)

ii. The mean curvature H is given by

H =
1
n

n
i=1

∂

∂xi


fxi

w


. (5)

iii. The sectional curvature Kij of the plane section spanned by ∂
∂xi

, ∂
∂xj

is

Kij =
fxixi

fxjxj
− f2

xixj

w2

1 + f2

xi
+ f2

xj

 . (6)

iv. The Riemann curvature tensor R and the metric tensor g satisfy

g


R


∂

∂xi
,

∂

∂xj


∂

∂xk
,

∂

∂xℓ


=

fxixℓ
fxjxk

− fxixk
fxjxℓ

w4
. (7)
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4. ON HOMOGENEOUS PRODUCTION MODELS

There are some special classes of production functions that are often analyzed in both
macroeconomics and microeconomics. The first one is given by the class of homogeneous
production functions. A production function f defined on a set D for which (λx1, . . . , λxn) ∈
D whenever λ > 0 and (x1, . . . , xn) ∈ D, is said to be homogeneous of degree p if there
exists a real number p such that

f(λx1, . . . , λxn) = λpf(x1, . . . , xn),

for all (x1, . . . , xn) ∈ D and all λ > 0. This means that if the inputs are multiplied by same
factor, then the output is multiplied by some power of this factor. If p = 1 then the function is
said to have a constant return to scale, if p > 1 then we have an increased return to scale and
if p < 1 then we say that the function has a decreased return to scale. We remark that both
generalized Cobb–Douglas and CES production functions are homogeneous.

In [36], the author established a link between some fundamental notions in the theory of
production functions and the differential geometry of hypersurfaces, proving the following
result.

Theorem 4.1 ([36]). If (GCDPF ) denotes the generalized Cobb–Douglas production
function and (CDH) denotes the corresponding Cobb–Douglas hypersurface, then:

i. (GCDPF ) has constant return to scale if and only if (CDH) has vanishing Gauss–
Kronecker curvature.

ii. (GCDPF ) has decreasing return to scale if and only if (CDH) has positive Gauss–
Kronecker curvature.

iii. (GCDPF ) has increasing return to scale if and only if (CDH) has negative Gauss–
Kronecker curvature.

In [37], the above theorem was generalized to the case of the CES production functions
with n-inputs.

Theorem 4.2 ([37]). If (GCESPF ) denotes the generalized CES production function and
(CESH) denotes the corresponding CES hypersurface, then:

i. (GCESPF ) has constant return to scale if and only if (CESH) has vanishing Gauss–
Kronecker curvature.

ii. (GCESPF ) has decreasing return to scale if and only if (CESH) has positive Gauss–
Kronecker curvature.

iii. (GCESPF ) has increasing return to scale if and only if (CESH) has negative Gauss–
Kronecker curvature.

Because a similar result is also valid for other production functions, a natural question
arises, namely whether a general result of this type can be stated for all homogeneous pro-
duction functions. A first answer was given by B.-Y. Chen in [14]: the decreasing/increasing
return to scale property cannot be determined by the Gauss–Kronecker curvature of produc-
tion hypersurface; even for two-factor homogeneous production functions, as follows from
[14, Example 4.1]. Moreover, an interesting result on the homogeneous production functions
defining flat hypersurfaces follows from the next theorem, which generalizes a classical result
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in differential geometry concerning homogeneous functions of degree two due to F. Brick-
ell [11].

Theorem 4.3 ([21]). Let f be a twice differentiable, r-homogeneous, non-constant, real
valued function of n variables (x1, . . . , xn) on an open domain D ⊂ Rn, n ≥ 2. Then
the hypersurface of En+1 defined by

z = f(x1, . . . , xn), (x1, . . . , xn) ∈ D,

is flat if and only if either f is linearly homogeneous, i.e. r = 1, or

f = (c1x1 + c2x2 + · · · + cnxn)r
, r ≠ 1, (8)

for some real constants c1, . . . , cn.

However, we note that the above theorem is false if we replace the flatness of the hypersur-
face by the vanishing of the Gauss–Kronecker curvature, as was shown in [21, Remark 4.1].

Now, from Theorem 4.3 we obtain a complete classification of homogeneous production
functions with an arbitrary number of inputs whose production hypersurfaces are flat, as
follows.

Theorem 4.4 ([21]). A homogeneous production function with an arbitrary number of inputs
defines a flat hypersurface if and only if either it has constant return to scale or it is a
multinomial production function.

Recently, X. Wang [41] proved that if the sectional curvature for a homogeneous graph
hypersurface is constant, then it must be null. Consequently, applying the above theorem, it
follows that in fact a homogeneous production function defines a hypersurface with constant
sectional curvature if and only if either it has constant return to scale or it is a multinomial
production function.

On the other hand, concerning the minimality of the generalized Cobb–Douglas and CES
production hypersurfaces, we have the following results proved by X. Wang and Y. Fu.

Theorem 4.5 ([42]).

i. There does not exist a minimal generalized Cobb–Douglas production hypersurface in the
Euclidean space En+1.

ii. A generalized CES production hypersurface in En+1 is minimal if and only if the
generalized CES production function is a perfect substitute.

We note that B.-Y. Chen proved in [14] a more general result in the case of 2 inputs: a
homogeneous production function is a perfect substitute if and only if the production surface
is a minimal surface.

In 2010, L. Losonczi [30] showed that twice differentiable two-inputs homogeneous
production functions with CES property are Cobb–Douglas and ACMS production functions.
This result was later generalized to an arbitrary number of inputs in [16], the author
classifying all homogeneous production functions which satisfy the CES property. More
precisely, he proves the following.
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Theorem 4.6 ([16]). Let f be a twice differentiable, homogeneous of degree γ, non-constant,
real valued function of n variables (x1, . . . , xn) on an open domain D ⊂ Rn. If f satisfies
the constant elasticity of substitution property, then it is either the generalized Cobb–Douglas
production function given by (2), with α1+· · ·+αn = γ, or the generalized ACMS production
function given by (3).

On the other hand, homogeneous production functions with proportional marginal rate
of substitution, and with constant elasticity with respect to any factor of production, were
classified in [38].

Theorem 4.7 ([38]). Let f be a twice differentiable, r-homogeneous, non-constant, real
valued function of n variables (x1, x2, . . . , xn) on an open domain D ⊂ Rn. Then:

i. The elasticity of production is a constant ki with respect to a certain factor of production
xi if and only if

f(x1, x2, . . . , xn) = xki
i xr−ki

j F (u1, . . . , un−2),

where j is any element selected from the set {1, . . . , n} \ {i} and F is a twice differentiable
real valued function of n − 2 variables

{u1, . . . , un−2} =


xk

xj
|k ∈ {1, . . . , n} \ {i, j}


.

ii. The elasticity of production is a constant ki with respect to any factor of production xi,
i ∈ {1, 2, . . . , n}, if and only if

k1 + k2 + · · · + kn = r

and f reduces to the Cobb–Douglas production function given by

f(x1, x2, . . . , xn) = Cxk1
1 xk2

2 . . . xkn
n ,

where C is a positive constant.
iii. The production function satisfies the proportional marginal rate of substitution property

if and only if it reduces to the Cobb–Douglas production function given by

f(x1, x2, . . . , xn) = Cx
r
n
1 x

r
n
2 . . . x

r
n
n ,

where C is a positive constant.

Further results concerning the geometry of homogeneous production functions can be
found in [14,17,40].

5. ON QUASI-SUM PRODUCTION MODELS

A second class of production models of interest in economic analysis is given by the quasi-
sum production models. A production function f is called quasi-sum [9,18] if there are strict
monotone functions G, h1, . . . , hn with G′ > 0 such that

f(x) = G(h1(x1) + · · · + hn(xn)), (9)

where x = (x1, . . . , xn) ∈ Rn
+. We note that these functions are of great interest because

they appear as solutions of the general bisymmetry equation, being related to the problem



A survey on the geometry of production models in economics 25

of consistent aggregation [1]. A quasi-sum production function is said to be quasi-linear if
at most one of the functions G, h1, . . . , hn is nonlinear. The following theorem gives a very
simple necessary and sufficient condition for a quasi-sum production function with more than
two factors to be quasi-linear.

Theorem 5.1 ([18]). A twice differentiable quasi-sum production function with more than
two factors is quasi-linear if and only if its production hypersurface is a flat space.

We recall now that a production function given by

f(x1, . . . , xn) = G


n

i=1

xki
i


, (10)

where G is a strictly increasing function and k1, . . . , kn are nonzero real numbers, is called a
homothetic generalized Cobb–Douglas production function. Similarly, a production function
defined by

f(x1, . . . , xn) = G


n

i=1

kix
ρ
i


, (11)

where G is a strictly increasing function and k1, . . . , kn, ρ are nonzero real numbers, is said
to be a homothetic generalized ACMS production function.

The quasi-sum production models whose production hypersurfaces have vanishing
Gauss–Kronecker curvature were completely classified by B.-Y. Chen in [18]. Moreover,
M.E. Aydin and A. Mihai proved in [9] that the production hypersurface of a quasi-sum
production function f has vanishing Gauss–Kronecker curvature if and only if the Allen
matrix of f is singular, provided that one of the h1, . . . , hn is a linear function and G′′ ≠ 0.
We also note that quasi-sum production functions whose Allen matrices are singular were
classified as follows.

Theorem 5.2 ([9]). Let f be a twice differentiable quasi-sum production function. Then the
Allen matrix A(f) is singular if and only if, up to translations, f is one of the following:

i. f = G(c1x1 + c2x2 + h3(x3) + · · · + hn(xn)), where c1, c2 are nonzero constants and
G, h3, . . . , hn are strict monotone functions;

ii. f = G(
n

i=1 ci ln |dixi + ei|), where ci are nonzero constants and di, ei are some
constants, i = 1, . . . , n.

On the other hand, the classification of quasi-sum production functions satisfying the
constant elasticity of substitution property was obtained by B.-Y. Chen as follows.

Theorem 5.3 ([19]). Let f be a twice differentiable quasi-sum production function given
by (9). Then f satisfies the constant elasticity of substitution property if and only if, up to
suitable translations, f is one of the following functions:

i. a homothetic generalized ACMS production function given by

f(x1, . . . , xn) = G(c1x
σ−1

σ
1 + · · · + cnx

σ−1
σ

n ),

where σ ≠ 1 and c1, . . . , cn are nonzero constants;



26 A.-D. Vı̂lcu, G.-E. Vı̂lcu

ii. a homothetic generalized Cobb–Douglas production function given by (10);
iii. a two-input production function of the form

f(x1, x2) = G


x2

x1


,

where G is a strictly increasing function.

Quasi-sum production functions with constant elasticity of production with respect to
any factor of production, and with proportional marginal rate of substitution, were recently
classified in [39], the authors proving the following result.

Theorem 5.4 ([39]). Let f be a quasi-sum production function given by (9). Then:

i. The elasticity of production is a constant ki with respect to a certain factor of production
xi if and only if f reduces to

f(x1, . . . , xn) = A · xki
i · exp

D

j≠i

hj(xj)

 , (12)

where A and D are positive constants.
ii. The elasticity of production is a constant ki with respect to all factors of production

xi, i = 1, . . . , n, if and only if f reduces to the generalized Cobb–Douglas production
function given by (2).

iii. The production function satisfies the proportional marginal rate of substitution property
if and only if it reduces to the homothetic generalized Cobb–Douglas production function
given by

f(x1, . . . , xn) = G


n

i=1

xk
i


, (13)

where k is a nonzero real number.
iv. If the production function satisfies the proportional marginal rate of substitution property,

then:
iv1. The production hypersurface has vanishing Gauss–Kronecker curvature if and only

if, up to a suitable translation, f reduces to the following generalized Cobb–Douglas
production function with constant return to scale:

f(x1, . . . , xn) = A ·
n

i=1

x
1
n
i . (14)

iv2. The production hypersurface cannot be minimal.
iv3. The production hypersurface has vanishing sectional curvature if and only if, up

to a suitable translation, f reduces to the following generalized Cobb–Douglas
production function:

f(x1, . . . , xn) = A ·
n

i=1

√
xi. (15)

From Theorem 5.4 we can easily deduce the following result for quasi-sum production
models with two inputs.
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Corollary 5.5. Let f be a quasi-sum production function with two-inputs given by f(K, L) =
G(g(K) + h(L)) where K is the capital and L is the labor. Then:

i. f has a constant elasticity of labor k if and only if f reduces to f(K, L) = A·KkeD·h(L),
where A and D are positive constants.

ii. f has a constant elasticity of capital ℓ if and only if f reduces to f(K, L) = A·LℓeD·g(K),
where A and D are positive constants.

iii. f has constant elasticities with respect to both labor and capital if and only if f reduces
to the Cobb–Douglas production function given by f(K, L) = AKkLℓ, where A is a
positive constant.

iv. f satisfies the proportional rate of substitution property between capital and labor if
and only if f is a homothetic Cobb–Douglas production function given by f(K, L) =
F (KkLk), where k is a positive constant.

v. If f satisfies the proportional marginal rate of substitution property, then the production
surface cannot be minimal.

vi. If f satisfies the proportional marginal rate of substitution property, then the production
surface is flat if and only if f reduces to the following Cobb–Douglas production function
with constant return to scale: f(K, L) = A

√
KL.

6. ON HOMOTHETIC AND QUASI-PRODUCT PRODUCTION MODELS

Along with the homogeneous and quasi-sum production models presented in the
previous sections, there are two other classes of production models of great interest in
microeconomics and macroeconomics, namely homothetic and quasi-product production
models. A production function of the form

f(x1, . . . , xn) = G(h(x1, . . . , xn)), (16)

where G is a strictly increasing function and h is a homogeneous function of any given degree
p, is said to be a homothetic production function [22].

In [22], B.-Y. Chen classified homothetic functions satisfying the homogeneous Monge–
Ampère equation. As a direct application to production models in economics, the following
result is obtained.

Theorem 6.1 ([22]). Let f be a homothetic function given by (16) such that h is a
p-homogeneous function with p ≠ 1. Then the graph of h has null Gauss–Kronecker
curvature if and only if either

i. h satisfies the homogeneous Monge–Ampère equation det(hij) = 0, or
ii. up to constants, f = G ◦ h is a linearly homogeneous function.

On the other hand, the classification of homothetic production functions satisfying the
constant elasticity of substitution property was realized by B.-Y. Chen as follows.

Theorem 6.2 ([20]). Let f be a homothetic function given by (16). Then f satisfies the
constant elasticity of substitution property if and only if the homogeneous function h is
either a generalized Cobb–Douglas production function or a generalized ACMS production
function.
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A production function is said to be quasi-product [26] if the function has the form

f(x1, . . . , xn) = F


n

i=1

gi(xi)


, (17)

where F, g1, . . . , gn are continuous positive functions with nowhere zero first derivatives
on their domain of definition. We note that quasi-product production functions include
the generalized CES production functions. We also remark that Y. Fu and W.G. Wang
obtained in [26] the following classification of quasi-product productions, provided their
corresponding graph hypersurfaces are flat spaces.

Theorem 6.3 ([26]). Let f be a quasi-product production function given by (17). If the
corresponding production hypersurface is flat, then, up to translations, f is given by one of
the following functions:

(a) f(x1, . . . , xn) = F (exp (
n

i=1 cixi)), where ci ∈ R − {0}, i ∈ {1, . . . , n};
(b) f(x1, . . . , xn) = C1 ln (g1(x1)) +

n
i=2 Cixi, where f1 satisfies g1g

′′
1 ≠ g′

1
2 and

Ci ∈ R − {0}, i ∈ {1, . . . , n};
(c) f(x1, . . . , xn) = A

√
x1 · · · · · xn, where A is a positive constant.

Recently, the following classification results were proved in [2] for quasi-product pro-
duction models whose production hypersurfaces have null Gauss–Kronecker curvature, with
constant elasticity of production with respect to any factor of production, with proportional
marginal rate of substitution, and with constant elasticity of substitution property.

Theorem 6.4. Let f be a quasi-product production function given by (17), where the
functions F, g1, . . . , gn are twice differentiable. Then:

i. The elasticity of production is a constant ki with respect to a certain factor of production
xi if and only if f reduces to

f(x1, . . . , xn) = A · xki
i ·

j≠i

gk
j (xj), (18)

where A is a positive constant and k is a nonzero real constant.
ii. The elasticity of production is constant with respect to all factors of production if and

only if f reduces to the generalized Cobb–Douglas production function given by (2).
iii. The production function satisfies the proportional marginal rate of substitution property

if and only if it reduces to the homothetic generalized Cobb–Douglas production function
given by

f(x1, . . . , xn) = F


A ·

n
i=1

xk
i


, (19)

where A is a positive constant and k is a nonzero real constant.
iv. If the production function satisfies the proportional marginal rate of substitution property,

then:
iv1. The production hypersurface cannot be minimal.
iv2. The production hypersurface has vanishing sectional curvature if and only if, up

to a suitable translation, f reduces to the following generalized Cobb–Douglas
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production function:
f(x1, . . . , xn) = A ·

√
x1 . . . xn, (20)

where A is a positive constant.
v. The production hypersurface has vanishing Gauss–Kronecker curvature if and only if, up

to a suitable translation, f reduces to one of the following forms:
(a) a generalized Cobb–Douglas production function with constant return to scale;

(b) f(x1, . . . , xn) = A · ln

exp(A1x1) ·

n
j=2 gj(xj)


, where A, A1 are nonzero real

constants;
(c) f(x1, . . . , xn) = F


A · exp(A1x1 + A2x2) ·

n
j=3 gj(xj)


, where A is a positive

constant and A1, A2 are nonzero real constants;
(d) an Armington aggregator with constant return to scale, given by

f(x1, . . . , xn) =


n

i=1

Cix
A

A−1
i

A−1
A

,

where A is a nonzero real constant, A ≠ 1, and C1, . . . , Cn are nonzero real
constants;

(e) f(x1, . . . , xn) = A · ln (
n

i=1 Bi exp(Aixi)), where A, Ai, Bi are nonzero real
constants for i = 1, . . . , n.

vi. The production function satisfies the constant elasticity of substitution property if and
only if, up to a suitable translation, f reduces to one of the following forms:
(a) a homothetic generalized Cobb–Douglas production function;

(b) f(x1, . . . , xn) = F

A ·
n

i=1 exp

Aix

σ−1
σ

i


, where A is a positive constant and

A1, . . . , An, σ are nonzero real constants, σ ≠ 1;
(c) a two-input production function given by

f(x1, x2) = F

A ·


x

σ−1
σ

1 + A1

x
σ−1

σ
2 + A2

σ
k
 ,

where A, A1, A2, k, σ are nonzero real constants, σ ≠ 1;
(d) a two-input production function given by

f(x1, x2) = F


A ·


ln(A1x1)
ln(A2x2)

 1
k


,

where A, k are nonzero real constants and A1, A2 are positive constants.

For further results on the geometry of the quasi-product and homothetic production
functions see [5–7]. Many other results concerning production models in economics from
the viewpoint of isotropic geometry can be found in [8,23,25].
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