A remark on the existence of positive solutions for variable exponent elliptic systems

G.A. Afrouzi a,*, S. Shakeri a, N.T. Chung b

Received 12 March 2012; revised 21 July 2012; accepted 26 August 2012 Available online 5 September 2012

Abstract. In this article, we consider the system of differential equations

$$\begin{cases} -\Delta_{p(x)}u = \lambda^{p(x)}[a(x)u^{\alpha(x)}v^{\gamma(x)} + h_1(x)] & \text{in } \Omega, \\ -\Delta_{q(x)}v = \lambda^{q(x)}[b(x)u^{\delta(x)}v^{\beta(x)} + h_2(x)] & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with C^2 -boundary $\partial \Omega$, 1 < p(x), $q(x) \in C^1(\overline{\Omega})$ are functions. The operator $-\Delta_{p(x)} u = -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$ is called the p(x)-Laplacian. When α , β , δ , γ satisfy some suitable conditions, we prove the existence of positive solution via sub-supersolution arguments without assuming sign conditions on the functions h_1 and h_2 .

Mathematics subject classifications: 35J25; 35J60

Keywords: Positive solutions; Variable exponent elliptic systems; Sub-supersolutions

1. Introduction and preliminaries

The study of differential equations and variational problems with nonstandard p(x)-growth conditions is a new and interesting topic. It arises from nonlinear elasticity theory, electrorheological fluids, etc. (see [1,2,14,20]). Many existence results have been obtained on this kind of problems, see for example [4,9,10,12,15–18]. In [6–8], Fan

E-mail addresses: afrouzi@umz.ac.ir (G.A. Afrouzi), s.shakeri@umz.ac.ir (S. Shakeri), ntchung82@yahoo.com (N.T. Chung).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

^{*} Corresponding author.

et al. studied the regularity of solutions for differential equations with nonstandard p(x)-growth conditions.

In this paper, we mainly consider the existence of positive weak solutions for the system

$$\begin{cases}
-\Delta_{p(x)}u = \lambda^{p(x)}[a(x)u^{\alpha(x)}v^{\gamma(x)} + h_1(x)] & \text{in } \Omega, \\
-\Delta_{q(x)}v = \lambda^{q(x)}[b(x)u^{\delta(x)}v^{\beta(x)} + h_2(x)] & \text{in } \Omega, \\
u = v = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with C^2 -boundary $\partial \Omega$, $1 < p(x), q(x) \in C^1(\overline{\Omega})$ are two functions. The operator $-\Delta_{p(x)}u = -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$ is called the p(x)-Laplacian and the corresponding equation is called a variable exponent equation. Especially, if $p(x) \equiv p$ (a constant), (1.1) is the well-known (p,q)-Laplacian system and the corresponding equation is called a constant exponent equation. We have known that the existence of solutions for p-Laplacian elliptic systems has been intensively studied in the last decades, we refer to [3,11,13]. In [11], Hai et al. considered the existence of positive weak solutions for the p-Laplacian problem

$$\begin{cases}
-\Delta_p u = \lambda f(v) & \text{in } \Omega, \\
-\Delta_p v = \lambda g(u) & \text{in } \Omega, \\
u = v = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.2)

in which the first eigenfunction was used for constructing the subsolution of p-Laplacian problems. Under the condition

$$\lim_{u\to+\infty}\frac{f\Big(M(g(u))^{1/(p-1)}\Big)}{u^{p-1}}=0 \text{ for all } M>0,$$

the authors showed that the problem (1.2) has at least one positive solution provided that $\lambda > 0$ is large enough.

In [3], the author studied the existence and nonexistence of positive weak solution to the following quasilinear elliptic system

$$\begin{cases}
-\Delta_{p}u = \lambda f(u, v) = \lambda u^{\alpha} v^{\gamma} & \text{in } \Omega, \\
-\Delta_{q}v = \lambda g(u, v) = \lambda u^{\delta} v^{\beta} & \text{in } \Omega, \\
u = v = 0 & \text{on } \partial\Omega.
\end{cases}$$
(1.3)

The first eigenfunction is used to construct the subsolution of problem (1.3), the main results are as follows:

- (i) If $\alpha, \beta \ge 0, \gamma, \delta > 0$, $\theta = (p 1 \alpha)(q 1 \beta) \gamma \delta > 0$, then problem (1.3) has a positive weak solution for each $\lambda > 0$;
- (ii) If $\theta = 0$ and $p\gamma = q(p-1-\alpha)$, then there exists $\lambda_0 > 0$ such that for $0 < \lambda < \lambda_0$, then problem (1.3) has no nontrivial nonnegative weak solution.

In recent papers [15–18], Zhang has developed problems (1.2) and (1.3) in the variable exponent Sobolev space. On the p(x)-Laplacian problems, maybe the first eigenvalue and the first eigenfunction of p(x)-Laplacian do not exist. Even if the first eigenfunction of p(x)-Laplacian exists, because of the nonhomogeneity of p(x)-Laplacian, the first eigenfunction cannot be used to construct the subsolution of p(x)-Laplacian problems. Motivated by the above papers, in this note, we are interested in the existence of positive solution for problem (1.1), where a, b are continuous functions in $\overline{\Omega}$ and λ is a positive parameter. Our main goal is to improve the result introduced in [18], in which $a = b \equiv 1$.

To be more precise, we assume that $\Omega \subset \mathbb{R}^N$ is an open bounded domain with C^2 -boundary $\partial \Omega$ and the following conditions hold:

$$(H_1) \ p(x), q(x) \in C^1(\overline{\Omega}) \text{ and } 1 < p^- \leqslant p^+ \text{ and } 1 < q^- \leqslant q^+;$$

$$(H_2)$$
 $h_1, h_2, \alpha, \beta, \gamma, \delta \in C^1(\overline{\Omega})$ satisfy $\alpha, \beta \geq 0$ on $\overline{\Omega}$, and $\gamma, \delta \geq 0$ on $\overline{\Omega}$:

$$(H_1) \ p(x), q(x) \in C^1(\Omega) \ \text{and} \ 1 < p^- \leqslant p^+ \ \text{and} \ 1 < q^- \leqslant q^+;$$

 $(H_2) \ h_1, h_2, \alpha, \beta, \gamma, \delta \in C^1(\overline{\Omega}) \ \text{satisfy} \ \alpha, \beta \geqslant 0 \ \text{on} \ \overline{\Omega}, \ \text{and} \ \gamma, \delta > 0 \ \text{on} \ \overline{\Omega};$
 $(H_3) \ 0 \leqslant \alpha^+ < p^- - 1, 0 \leqslant \beta^+ < q^- - 1 \ \text{and} \ \varpi := (p^- - 1 - \alpha^+)(q^- - 1 - \beta^+) - \delta^+ \gamma^+ > 0;$

$$(H_4)$$
 $a,b:\overline{\Omega}\to (0,\infty)$ are continuous functions such that $a_1=\min_{x\in\overline{\Omega}}a(x),$ $b_1=\min_{x\in\overline{\Omega}}b(x),$ $a_2=\max_{x\in\overline{\Omega}}a(x)$ and $b_2=\max_{x\in\overline{\Omega}}b(x).$

To study p(x)-Laplacian problems, we need some theories on the spaces $L^{p(x)}(\Omega)$, $W^{1,p(x)}(\Omega)$ and properties of p(x)-Laplacian which we will use later (see [5]). If $\Omega \subset \mathbb{R}^N$ is an open domain, write

$$C_+(\Omega) = \{h : h \in C(\Omega), h(x) > 1 \text{ for } x \in \Omega\},\$$

$$h^+ = \sup_{x \in \Omega} h(x), h^- = \inf_{x \in \Omega} h(x)$$
, for any $h \in C(\Omega)$, and

$$L^{p(x)}(\Omega) = \left\{ u | u \text{ is a measurable real-valued function such that } \int_{\Omega} |u|^{p(x)} dx < \infty \right\}.$$

Throughout the paper, we assume that $p,q \in C_+(\Omega)$ and $1 < \inf_{x \in \Omega} p(x) \le$ $\sup_{x \in \Omega} p(x) < N, 1 < \inf_{x \in \Omega} q(x) \leq \sup_{x \in \Omega} q(x) < N$. We introduce the norm $L^{p(x)}(\Omega)$ by

$$|u|_{p(x)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{p(x)} dx \leqslant 1 \right\},$$

and $(L^{p(x)}(\Omega), |\cdot|_{p(x)})$ becomes a Banach space, we call it the generalized Lebesgue space. The space $(L^{p(x)}(\Omega), |\cdot|_{p(x)})$ is a separable, reflexive and uniform convex Banach space (see [5, Theorem 1.10, 1.14]).

The space $W^{1,p(x)}(\Omega)$ is defined by $W^{1,p(x)}(\Omega) = \{u \in L^{p(x)}(\Omega): |\nabla u| \in L^{p(x)}(\Omega)\}$, and it is equipped with the norm

$$||u|| = |u|_{p(x)} + |\nabla u|_{p(x)}, \quad \forall u \in W^{1,p(x)}(\Omega).$$

We denote by $W_0^{1,p(x)}(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p(x)}(\Omega)$. $W^{1,p(x)}(\Omega)$ and $W_0^{1,p(x)}(\Omega)$ are separable, reflexive and uniform convex Banach space (see [5, Theorem 2.1]). We define

$$(L(u), v) = \int_{\mathbb{D}^N} |\nabla u|^{p(x)-2} \nabla u \nabla v dx, \quad \forall u, v \in W^{1,p(x)}(\Omega),$$

then $L: W^{1,p(x)}(\Omega) \to (W^{1,p(x)}(\Omega))^*$ is a continuous, bounded and is a strictly monotone operator, and it is a homeomorphism [9, Theorem 3.11].

Definition 1.1. If $(u, v) \in (W_0^{1,p(x)}(\Omega), W_0^{1,q(x)}(\Omega)), (u, v)$ is called a weak solution of (1.1) if it satisfies

$$\begin{cases} \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \cdot \nabla \varphi dx = \int_{\Omega} \lambda^{p(x)} [a(x)u^{\alpha(x)}v^{\gamma(x)} + h_1(x)] \varphi dx, & \forall \varphi \in W_0^{1,p(x)}(\Omega), \\ \int_{\Omega} |\nabla v|^{q(x)-2} \nabla v \cdot \nabla \psi dx = \int_{\Omega} \lambda^{q(x)} [b(x)u^{\delta(x)}v^{\beta(x)} + h_1(x)] \psi dx, & \forall \psi \in W_0^{1,q(x)}(\Omega). \end{cases}$$

Define $A: W^{1,p(x)}(\Omega) \to (W_0^{1,p(x)}(\Omega))^*$ as

$$\langle Au, \varphi \rangle = \int_{\Omega} \Big(|\nabla u|^{p(x)-2} \nabla u \nabla \varphi + h(x, u) \varphi \Big) dx, \quad \forall u, \varphi \in W^{1, p(x)}(\Omega),$$

where h(x, u) is continuous on $\overline{\Omega} \times \mathbb{R}$, and $h(x, \cdot)$ is increasing and satisfies

$$|h(x,t)| \leq C_1 + C_2 |t|^{p^*(x)-1},$$

where

$$p^*(x) = \begin{cases} \frac{Np(x)}{N - p(x)}, & p(x) < N \\ \infty, & p(x) \geqslant N. \end{cases}$$

It is easy to check that A is a continuous bounded mapping. Copying the proof of [19], we have the following lemma.

Lemma 1.2 (Comparison principle). Let $u,v \in W^{1,p(x)}(\Omega)$ satisfy $Au - Av \ge 0$ in $(W_0^{1,p(x)}(\Omega))^*, \varphi(x) = \min\{u(x) - v(x), 0\}$. If $\varphi(x) \in W_0^{1,p(x)}(\Omega)$ (i.e. $u \ge v$ on $\partial\Omega$), then $u \ge v$ a.e. in Ω .

Here and hereafter, we will use the notation $d(x, \partial\Omega)$ to denote the distance of $x \in \Omega$ to the boundary of Ω . Denote $d(x) = d(x, \partial\Omega)$ and $\partial\Omega_{\epsilon} = \{x \in \Omega | d(x, \partial\Omega) < \epsilon\}$. Since $\partial\Omega$ is C^2 regularly, then there exists a constant $l \in (0, 1)$ such that $d(x) \in C^2(\overline{\partial\Omega_{3l}})$, and $|\nabla d(x)| \equiv 1$.

Denote

$$v_{1}(x) = \begin{cases} \zeta d(x), & d(x) < l, \\ \zeta l + \int_{l}^{d(x)} \zeta \left(\frac{2l-t}{l}\right)^{\frac{2}{p^{-}-1}} (a_{1} + 1)^{\frac{2}{p^{-}-1}} dt, & l \leq d(x) < 2l, \\ \zeta l + \int_{l}^{2l} \zeta \left(\frac{2l-t}{l}\right)^{\frac{2}{p^{-}-1}} (a_{1} + 1)^{\frac{2}{p^{-}-1}} dt, & 2l \leq d(x). \end{cases}$$

Obviously, $0 \le v_1(x) \in C^1(\overline{\Omega})$. Consider the problem

$$\begin{cases}
-\Delta_{p(x)}w(x) = \eta & \text{in } \Omega, \\
w = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.4)

where η is a parameter. The following result plays an important role in our argument whose proof can be found in [18] or [4].

Lemma 1.3 (see [18]). If the positive parameter η is large enough and w is the unique solution of (1.4), then we have

(i) For any $\theta \in (0,1)$ there exists a positive constant C_1 such that

$$C_1 \eta^{\frac{1}{p^+-1+\theta}} \leqslant \max_{x \in \overline{\Omega}} w(x);$$

(ii) There exists a positive constant C_2 such that

$$\max_{x \in \overline{\Omega}} w(x) \leqslant C_2 \eta^{\frac{1}{p^{-1}}}.$$

Proof

(i) By computation,

$$-\Delta_{p(x)}v_1(x) = \begin{cases} -\zeta^{p(x)-1}[(\nabla p\nabla d)\ln\zeta + \Delta d(x)], & d(x) < \sigma, \\ \left\{\frac{1}{l}\frac{2(p(x)-1)}{p^--1} - \left(\frac{2l-d}{l}\right)\left[\left(\ln\zeta\left(\frac{2l-d}{l}\right)^{\frac{2}{p^--1}}\right)\nabla p\nabla d + \Delta d\right]\right\} \\ \times \zeta^{p(x)-1}\left(\frac{2l-d}{2l-\sigma}\right)^{\frac{2(p(x)-1)}{p^--1}-1}(a_1+1), & l < d(x) < 2l, \\ 0, & 2l < d(x). \end{cases}$$

Then $|-\Delta_{p(x)}\nu_1(x)| \le C_*\zeta^{p(x)-1+\theta}$ a.e. on Ω , for any $\theta \in (0,1)$, where $C_* = C_*(l,\theta,p,\Omega)$ is a positive constant depending on ζ . When $C_*\zeta^{p^+-1+\theta} = \frac{1}{2}\eta$, we can see that $\nu_1(x)$ is a subsolution of (1.1). According to

When $C_*\zeta^{p^{r-1+\theta}} = \frac{1}{2}\eta$, we can see that $v_1(x)$ is a subsolution of (1.1). According to the comparison principle, it follows that $v_1(x) \leq \Omega(x)$ on $\overline{\Omega}$. Obviously, $\zeta l \leq \max_{x \in \overline{\Omega}} v_1(x) \leq 2\zeta l$, there exists a positive constant C_1 such that

$$\max_{x \in \overline{\Omega}} w(x) \geq \max_{x \in \overline{\Omega}} v_1(x) \geq C_1 \eta^{\frac{1}{p^+ - 1 + \theta}}.$$

(ii) It is easy to see from Lemma 1.2 of [4]. This completes the proof. \Box

2. Existence of solutions

In the following, when there is no misunderstanding, we always use C_i to denote positive constants. Our main result of this paper is the following theorem.

Theorem 2.1. On the conditions of $(H_I) - (H_4)$, then problem (1.1) has positive solution when λ is large enough.

Proof. We shall establish Theorem 2.1 by constructing a positive subsolution (ϕ_1, ϕ_2) and supersolution (z_1, z_2) of (1.1), such that $\phi_1 \le z_1$ and $\phi_2 \le z_2$. That is (ϕ_1, ϕ_2) and (z_1, z_2) satisfies

$$\begin{cases} \int_{\Omega} \left| \nabla \phi_1 \right|^{p(x)-2} \nabla \phi_1 \cdot \nabla \varphi dx \leqslant \int_{\Omega} \lambda^{p(x)} [a(x) \phi_1^{\alpha(x)} \phi_2^{\gamma(x)} + h_1(x)] \varphi dx \\ \int_{\Omega} \left| \nabla \phi_2 \right|^{q(x)-2} \nabla \phi_2 \cdot \nabla \psi dx \leqslant \int_{\Omega} \lambda^{q(x)} [b(x) \phi_1^{\delta(x)} \phi_2^{\beta(x)} + h_2(x)] \psi dx, \end{cases}$$

and

$$\begin{cases} \int_{\Omega} |\nabla z_1|^{p(x)-2} \nabla z_1 \cdot \nabla \varphi dx \geqslant \int_{\Omega} \lambda^{p(x)} [a(x) z_1^{\alpha(x)} z_2^{\gamma(x)} + h_1(x)] \varphi dx \\ \int_{\Omega} |\nabla z_2|^{q(x)-2} \nabla z_2 \cdot \nabla \psi dx \geqslant \int_{\Omega} \lambda^{p(x)} [b(x) z_1^{\delta(x)} z_2^{\beta(x)} + h_2(x)] \psi dx, \end{cases}$$

for all $(\varphi, \psi) \in (W_0^{1,p(x)}(\Omega), W_0^{1,q(x)}(\Omega))$ with $\varphi, \psi \geqslant 0$. According to the sub-supersolution method for p(x)-Laplacian equations (see [4]), then (1.1) has a positive solution.

Step 1. We construct a subsolution of (1.1). Let $\sigma \in (0,l)$

$$\phi_{1}(x) = \begin{cases} e^{kd(x)} - 1, & d(x) < \sigma, \\ e^{k\sigma} - 1 + \int_{\sigma}^{d(x)} k e^{k\sigma} \left(\frac{2l-t}{2l-\sigma}\right)^{\frac{2}{p^{-}-1}} (a_{1} + 1)^{\frac{2}{p^{-}-1}} dt, & \sigma \leqslant d(x) < 2l, \\ e^{k\sigma} - 1 + \int_{\sigma}^{2l} k e^{k\sigma} \left(\frac{2l-t}{2l-\sigma}\right)^{\frac{2}{p^{-}-1}} (a_{1} + 1)^{\frac{2}{p^{-}-1}} dt, & 2l \leqslant d(x). \end{cases}$$

$$\phi_{2}(x) = \begin{cases} e^{kd(x)} - 1, & d(x) < \sigma, \\ e^{k\sigma} - 1 + \int_{\sigma}^{d(x)} k e^{k\sigma} \left(\frac{2l - t}{2l - \sigma}\right)^{\frac{2}{p^{-} - 1}} (b_{1} + 1)^{\frac{2}{p^{-} - 1}} dt, & \sigma \leqslant d(x) < 2l, \\ e^{k\sigma} - 1 + \int_{\sigma}^{2l} k e^{k\sigma} \left(\frac{2l - t}{2l - \sigma}\right)^{\frac{2}{p^{-} - 1}} (b_{1} + 1)^{\frac{2}{p^{-} - 1}} dt, & 2l \leqslant d(x). \end{cases}$$

It is easy to see that $\phi_1, \phi_2 \in C^1(\overline{\Omega})$. Denote

$$\alpha = \min \left\{ \frac{\inf p(x) - 1}{4(\sup |\nabla p(x)| + 1)}, \frac{\inf q(x) - 1}{4(\sup |\nabla q(x)| + 1)}, 1 \right\},$$

$$b = \min \left\{ a_1 + |h_1(0)|, b_1 + |h_2(0)|, -1 \right\}$$

By computation

$$-\Delta_{p(x)}\phi_{1} = \begin{cases} -k(ke^{kd(x)})^{p(x)-1} \left[(p(x)-1) + \left(d(x) + \frac{\ln k}{k}\right) \nabla p \nabla d + \frac{\Delta d}{k} \right], & d(x) < \sigma \\ \left\{ \frac{1}{2l-\sigma} \frac{2(p(x)-1)}{p^{-}-1} - \left(\frac{2l-d}{2l-\sigma} \right) \left[\left(\ln ke^{k\sigma} \left(\frac{2l-d}{2l-\sigma} \right)^{\frac{2}{p^{-}-1}} \right) \nabla p \nabla d + \Delta d \right] \right\} \\ \times (ke^{k\sigma})^{p(x)-1} \left(\frac{2l-d}{2l-\sigma} \right)^{\frac{2(p(x)-1)}{p^{-}-1}-1} (a_{1}+1), & \sigma < d(x) < 2l, \\ 0, & 2l < d(x). \end{cases}$$

$$-\Delta_{p(x)}\phi_2 = \begin{cases} -k(ke^{kd(x)})^{p(x)-1} \left[(p(x)-1) + \left(d(x) + \frac{\ln k}{k} \right) \nabla p \nabla d + \frac{\Delta d}{k} \right], & d(x) < \sigma, \\ \left\{ \frac{1}{2l-\sigma} \frac{2(p(x)-1)}{p^--1} - \left(\frac{2l-d}{2l-\sigma} \right) \left[\left(\ln ke^{k\sigma} \left(\frac{2l-d}{2l-\sigma} \right)^{\frac{p^2}{p^2-1}} \right) \nabla p \nabla d + \Delta d \right] \right\} \\ \times (ke^{k\sigma})^{p(x)-1} \left(\frac{2l-d}{2l-\sigma} \right)^{\frac{2(p(x)-1)}{p^2-1}-1} (b_1+1), & \sigma < d(x) < 2l, \\ 0, & 2l < d(x). \end{cases}$$

From (H_2) and (H_3) , there exists a positive constant M > 2 such that

$$b(x)\phi_1^{\delta(x)}\phi_2^{\delta(x)} + h_2(x) \geqslant 1, a(x)\phi_1^{\alpha(x)}\phi_2^{\gamma(x)} + h_1(x) \geqslant 1, \quad \forall x$$

$$\in \overline{\Omega} \quad \text{when} \quad \phi_1, \phi_2 \geqslant M - 1.$$

Let $\sigma = \frac{1}{k} \ln M$. Then

$$\sigma k = \ln M. \tag{2.1}$$

If k is sufficiently large, from (2.1), we have

$$-\Delta_{p(x)}\phi \leqslant -k^{p(x)}\alpha, \quad d(x) < \sigma. \tag{2.2}$$

Let $-\lambda b = k\alpha$, then

$$k^{p(x)}\alpha \geqslant \lambda^{p(x)}b$$

from (2.2) and the definition of b, we have

$$-\Delta_{p(x)}\phi_1 \leqslant \lambda^{p(x)}(a_1+1) \leqslant \lambda^{p(x)}(a(x)\phi_1^{\alpha(x)}\phi_2^{\gamma(x)} + h_1(x)), \quad d(x) < \sigma. \tag{2.3}$$

Since $d(x) \in C^2(\overline{\partial \Omega_{3l}})$, then there exists a positive constant C_3 such that

$$\begin{split} -\Delta_{p(x)}\phi_{1} &\leqslant (ke^{k\sigma})^{p(x)-1} \left(\frac{2l-d}{2l-\sigma}\right)^{\frac{2(p(x)-1)}{p^{-}-1}-1} (a_{1}+1) \\ &\times \left| \frac{2(p(x)-1)}{(2l-\sigma)(p^{-}-1)} - \left(\frac{2l-d}{2l-\sigma}\right) \left[\left(\ln ke^{k\sigma} \left(\frac{2l-d}{2l-\sigma}\right)^{\frac{2}{p^{-}-1}}\right) \nabla p \nabla d + \Delta d \right] \right| \\ &\leqslant C_{3} (ke^{k\sigma})^{p(x)-1} (a_{1}+1) \ln k, \quad \sigma < d(x) < 2l. \end{split}$$

If k is sufficiently large, let $-\lambda \zeta = k\alpha$, we have

$$(a_1+1)C_3(ke^{k\sigma})^{p(x)-1}\ln k = (a_1+1)C_3(kM)^{p(x)-1}\ln k \leqslant \lambda^{p(x)}(a_1+1), \qquad (2.4)$$

then

$$-\Delta_{p(x)}\phi_1 \leqslant \lambda^{p(x)}(a_1+1), \quad \sigma < d(x) < 2l. \tag{2.5}$$

Since $\phi_1(x), \phi_2(x) \ge 0$ and combining (2.4) and (2.5) when λ is large enough, then we have

$$-\Delta_{p(x)}\phi_1 \leqslant \lambda^{p(x)}(a(x)\phi_1^{\alpha(x)}\phi_2^{\gamma(x)} + h_1(x)), \quad \sigma < d(x) < 2l.$$
 (2.6)

Obviously,

$$-\Delta_{p(x)}\phi_1 = 0 \leqslant \lambda^{p(x)}(a_1 + 1) \leqslant \lambda^{p(x)}(a(x)\phi_1^{\alpha(x)}\phi_2^{\gamma(x)} + h_1(x)), \quad 2l < d(x).$$
(2.7)

Combining (2.5)–(2.7), we can conclude that

$$-\Delta_{p(x)}\phi_1 \leqslant \lambda^{p(x)}(\lambda_1\phi_1^{\alpha(x)}\phi_2^{\gamma(x)} + h_1(x)), \quad \text{a.e. in } \Omega.$$
 (2.8)

Similarly,

$$-\Delta_{q(x)}\phi_2 \leqslant \lambda^{q(x)}(b(x)\phi_1^{\delta(x)}\phi_2^{\beta(x)} + h_2(x)), \quad \text{a.e. in } \Omega.$$
 (2.9)

From (2.8) and (2.9), we can see that (ϕ_1, ϕ_2) is a subsolution of (1.1).

Step 2. We construct a supersolution of (1.1). We consider

$$\begin{cases} -\Delta_{p(x)} z_1 = \lambda^{p^+} (a_2 + 1) \mu_1 & \text{in } \Omega, \\ -\Delta_{q(x)} z_2 = \lambda^{q^+} (b_2 + 1) \mu_2 & \text{in } \Omega, \\ z_1 = z_2 = 0 & \text{on } \partial \Omega, \end{cases}$$

when μ_1 , μ_2 satisfy some conditions.

If we could prove that

$$(a_2+1)\mu_1 \geqslant a(x) \left[\max_{x \in \overline{\Omega}} z_1 \right]^{\alpha+} \left[\max_{x \in \overline{\Omega}} z_2 \right]^{\gamma+} + \max_{x \in \overline{\Omega}} |h_1(x)|, \tag{2.10}$$

and

$$(b_2+1)\mu_2 \geqslant b(x) \left[\max_{x \in \overline{\Omega}} z_1 \right]^{\delta+} \left[\max_{x \in \overline{\Omega}} z_2 \right]^{\beta+} + \max_{x \in \overline{\Omega}} |h_2(x)|, \tag{2.11}$$

we would see that (z_1, z_2) is a supersolution for (1.1).

From Lemma 1.3, we have

$$\max_{x \in \overline{\Omega}} z_1(x) \leqslant C_2 \left(\lambda^{p^+} (a_2 + 1) \mu_1 \right)^{\frac{1}{p^- - 1}} \quad \text{and} \quad \max_{x \in \overline{\Omega}} z_2(x)
\leqslant C_2 \left(\lambda^{p^+} (a_2 + 1) \mu_1 \right)^{\frac{1}{p^- - 1}}.$$

Let

$$\mu_1 = 2 \left[C_2 (\lambda^{p^+} (a_2 + 1) \mu_1)^{\frac{1}{p^- - 1}} \right]^{\alpha +} \left[C_2 (\lambda^{p^+} (b_2 + 1) \mu_2)^{\frac{1}{q^- - 1}} \right]^{\gamma +}.$$

We only need

$$\mu_2 \geqslant 2 \left[C_2 \left(\lambda^{p^+} (a_2 + 1) \mu_1 \right)^{\frac{1}{p^- - 1}} \right]^{\delta +} \left[C_2 \left(\lambda^{p^+} (b_2 + 1) \mu_2 \right)^{\frac{1}{q^- - 1}} \right]^{\beta +}, \tag{2.12}$$

when μ_1 , μ_2 are large enough.

Indeed, since $0 \le \alpha^+ < p^- - 1$ and $0 \le \beta^+ < q^- - 1$, from (2.11), we can see that μ_2 is large enough when μ_1 is large enough. From (H_2) and (H_3) , relation (2.12) is satisfied.

According to (2.10) and (2.11), we can conclude that (z_1, z_2) is a supersolution for (1.1). It only remains to prove that $\phi_1 \le z_1$ and $\phi_2 \le z_2$.

In the definition of $v_1(x)$, let

$$\zeta = \frac{2}{l} \left(\max_{x \in \overline{\Omega}} \phi_1(x) + \max_{x \in \overline{\Omega}} |\nabla \phi_1(x)| \right).$$

We will claim that

$$\phi_1(x) \leqslant v_1(x), \quad \forall x \in \Omega.$$
 (2.13)

From the definition of v_1 , it is easy to see that

$$\phi_1(x) \leqslant 2\max_{x \in \overline{\Omega}} \phi_1(x) \leqslant v_1(x)$$
, when $d(x) = l$,

and

$$\phi_1(x) \leqslant 2\max_{x \in \overline{\Omega}} \phi_1(x) \leqslant v_1(x)$$
, when $d(x) \geqslant l$.

It only remains to prove that

$$\phi_1(x) \leqslant v_1(x)$$
, when $d(x) < l$.

Since $v_1 - \phi_1 \in C^1(\overline{\partial \Omega_l})$, then there exists a point $x_0 \in \overline{\partial \Omega_l}$ such that

$$v_1(x_0) - \phi_1(x_0) = \min_{x_0 \in \overline{\partial \Omega_I}} [v_1(x) - \phi_1(x)].$$

If $v_1(x_0) - \phi_1(x_0) < 0$, it is easy to see that 0 < d(x) < l, and then

$$\nabla v_1(x_0) - \nabla \phi_1(x_0) = 0.$$

From the definition of v_1 , we have

$$|\nabla v_1(x_0)| = \zeta = \frac{2}{l} \left(\max_{x \in \overline{\Omega}} \phi_1(x) + \max_{x \in \overline{\Omega}} |\nabla \phi_1(x)| \right) > |\nabla \phi_1(x_0)|.$$

It is a contradiction to $\nabla v_1(x_0) - \nabla \phi_1(x_0) = 0$. Thus (2.13) is valid. Obviously, there exists a positive constant C_3 such that

$$\zeta \leqslant C_3\lambda$$
.

Since $d(x) \in C^2(\overline{\partial\Omega_{3l}})$, according to the proof of Lemma 1.3, then there exists a positive constant C_4 such that

$$-\Delta_{p(x)}\nu_1(x)\leqslant C_*\zeta^{p(x)-1+\theta}\leqslant C_4\lambda^{p(x)-1+\theta},\quad \text{a.e. in }\Omega, \text{where }\theta\in(0,1).$$

When $\eta \ge \lambda^{p^+}$ is large enough, we have

$$-\Delta_{p(x)}v_1(x)\leqslant \eta.$$

According to the comparison principle, we have

$$v_1(x) \leqslant w(x), \quad \forall x \in \Omega.$$
 (2.14)

From (2.13) and (2.14), when $\eta \ge \lambda^{p^+}$ and the parameter $\lambda \ge 1$ is sufficiently large, we have

$$\phi_1(x) \leqslant v_1(x) \leqslant w(x), \quad \forall x \in \Omega.$$
 (2.15)

According to the comparison principle, when μ is large enough, we have

$$v_1(x) \leqslant w(x) \leqslant z_1(x), \quad \forall x \in \Omega.$$

Combining the definition of $v_1(x)$ and (2.15), it is easy to see that

$$\phi_1(x) \leqslant v_1(x) \leqslant w(x) \leqslant z_1(x), \quad \forall x \in \Omega.$$

When $\mu \ge 1$ and the parameter λ is large enough, from Lemma 1.3, we can see that $\beta(\lambda^{p^+}(\lambda_1 + \mu_1)\mu)$ is large enough, then $\lambda^{p^+}(\lambda_2 + \mu_2)h(\beta(\lambda^{p^+}(\lambda_1 + \mu_1)\mu))$ is large enough. Similarly, we have $\phi_2 \le z_2$. This completes the proof. \square

ACKNOWLEDGMENT

The authors would like to thank the referees for their suggestions and helpful comments which improved the presentation of the original manuscript.

REFERENCES

- [1] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002) 213–259.
- [2] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (4) (2006) 1383–1406.
- [3] M. Chen, On positive weak solutions for a class of quasilinear elliptic systems, Nonlinear Anal. 62 (2005) 751–756.
- [4] X.L. Fan, On the sub-supersolution method for *p*(*x*)-Laplacian equations, J. Math. Anal. Appl. 330 (2007) 665–682.
- [5] X.L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001) 424–446.
- [6] X.L. Fan, D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (1999) 295–318.
- [7] X.L. Fan, D. Zhao, The quasi-minimizer of integral functionals with m(x) growth conditions, Nonlinear Anal. 39 (2000) 807–816.
- [8] X.L. Fan, D. Zhao, Regularity of minimizers of variational integrals with continuous *p*(*x*)-growth conditions, Chin. Ann. Math. 17A (5) (1996) 557–564.
- [9] X.L. Fan, Q.H. Zhang, Existence of solutions for *p*(*x*)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843–1852.
- [10] X.L. Fan, Q.H. Zhang, D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005) 306–317.
- [11] D.D. Hai, R. Shivaji, An existence result on positive solutions of *p*-Laplacian systems, Nonlinear Anal. 56 (2004) 1007–1010.
- [12] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004) 30–42.
- [13] P. Marcellini, Regularity and existence of solutions of elliptic equations with (p,q)-growth conditions, J. Differ. Equat. 90 (1991) 1–30.
- [14] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.
- [15] Q.H. Zhang, Existence of positive solutions for a class of p(x)-Laplacian systems, J. Math. Anal. Appl. 333 (2007) 591–603.
- [16] Q.H. Zhang, Existence of positive solutions for elliptic systems with nonstandard p(x)-growth conditions via sub-supersolution method, Nonlinear Anal. 67 (2007) 1055–1067.
- [17] Q.H. Zhang, Existence of radial solutions for p(x)-Laplacian equations in \mathbb{R}^N , J. Math. Anal. Appl. 315 (2) (2006) 506–516.
- [18] Q.H. Zhang, Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems without variational structure, Nonlinear Anal. 72 (2010) 354–363.
- [19] Q.H. Zhang, A strong maximum principle for differential equations with nonstandard p(x)-growth conditions, J. Math. Anal. Appl. 312 (2005) 24–32.
- [20] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv29 (1987) 33–36.