A remark on the existence of positive solutions for variable exponent elliptic systems

G.A. Afrouzi ${ }^{\text {a,* }}$, S. Shakeri ${ }^{\text {a }}$, N.T. Chung ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
${ }^{\mathrm{b}}$ Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Viet Nam
Received 12 March 2012; revised 21 July 2012; accepted 26 August 2012
Available online 5 September 2012

Abstract. In this article, we consider the system of differential equations

$$
\begin{cases}-\Delta_{p(x)} u=\lambda^{p(x)}\left[a(x) u^{\alpha(x)} v^{\gamma(x)}+h_{1}(x)\right] & \text { in } \Omega \\ -\Delta_{q(x)} v=\lambda^{q(x)}\left[b(x) u^{\delta(x)} v^{\beta(x)}+h_{2}(x)\right] & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with C^{2}-boundary $\partial \Omega, 1<p(x), q(x) \in C^{1}(\bar{\Omega})$ are functions. The operator $-\Delta_{p(x)} u=-\operatorname{div}\left(\nabla u| |^{p(x)-2} \nabla u\right)$ is called the $p(x)$-Laplacian. When $\alpha, \beta, \delta, \gamma$ satisfy some suitable conditions, we prove the existence of positive solution via sub-supersolution arguments without assuming sign conditions on the functions h_{1} and h_{2}.

Mathematics subject classifications: 35J25; 35J60
Keywords: Positive solutions; Variable exponent elliptic systems; Sub-supersolutions

1. Introduction and preliminaries

The study of differential equations and variational problems with nonstandard $p(x)$ growth conditions is a new and interesting topic. It arises from nonlinear elasticity theory, electrorheological fluids, etc. (see [1,2,14,20]). Many existence results have been obtained on this kind of problems, see for example [4,9,10,12,15-18]. In [6-8], Fan

[^0]

1319-5166 © 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ajmsc.2012.08.002
et al. studied the regularity of solutions for differential equations with nonstandard $p(x)$-growth conditions.

In this paper, we mainly consider the existence of positive weak solutions for the system

$$
\begin{cases}-\Delta_{p(x)} u=\lambda^{p(x)}\left[a(x) u^{\alpha(x)} v^{\gamma(x)}+h_{1}(x)\right] & \text { in } \Omega \tag{1.1}\\ -\Delta_{q(x)} v=\lambda^{q(x)}\left[b(x) u^{\delta(x)} v^{\beta(x)}+h_{2}(x)\right] & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with C^{2}-boundary $\partial \Omega, 1<p(x), q(x) \in C^{1}(\bar{\Omega})$ are two functions. The operator $-\Delta_{p(x)} u=-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is called the $p(x)$ Laplacian and the corresponding equation is called a variable exponent equation. Especially, if $p(x) \equiv p$ (a constant), (1.1) is the well-known (p, q)-Laplacian system and the corresponding equation is called a constant exponent equation. We have known that the existence of solutions for p-Laplacian elliptic systems has been intensively studied in the last decades, we refer to [3,11,13]. In [11], Hai et al. considered the existence of positive weak solutions for the p-Laplacian problem

$$
\begin{cases}-\Delta_{p} u=\lambda f(v) & \text { in } \Omega, \tag{1.2}\\ -\Delta_{p} v=\lambda g(u) & \text { in } \Omega, \\ u=v=0 & \text { on } \partial \Omega,\end{cases}
$$

in which the first eigenfunction was used for constructing the subsolution of p-Laplacian problems. Under the condition

$$
\lim _{u \rightarrow+\infty} \frac{f\left(M(g(u))^{1 /(p-1)}\right)}{u^{p-1}}=0 \text { for all } M>0
$$

the authors showed that the problem (1.2) has at least one positive solution provided that $\lambda>0$ is large enough.

In [3], the author studied the existence and nonexistence of positive weak solution to the following quasilinear elliptic system

$$
\begin{cases}-\Delta_{p} u=\lambda f(u, v)=\lambda u^{\alpha} v^{\gamma} & \text { in } \Omega, \tag{1.3}\\ -\Delta_{q} v=\lambda g(u, v)=\lambda u^{\delta} v^{\beta} & \text { in } \Omega, \\ u=v=0 & \text { on } \partial \Omega .\end{cases}
$$

The first eigenfunction is used to construct the subsolution of problem (1.3), the main results are as follows:
(i) If $\alpha, \beta \geqslant 0, \gamma, \delta>0, \quad \theta=(p-1-\alpha)(q-1-\beta)-\gamma \delta>0$, then problem (1.3) has a positive weak solution for each $\lambda>0$;
(ii) If $\theta=0$ and $p \gamma=q(p-1-\alpha)$, then there exists $\lambda_{0}>0$ such that for $0<\lambda<\lambda_{0}$, then problem (1.3) has no nontrivial nonnegative weak solution.

In recent papers [15-18], Zhang has developed problems (1.2) and (1.3) in the variable exponent Sobolev space. On the $p(x)$-Laplacian problems, maybe the first eigenvalue and the first eigenfunction of $p(x)$-Laplacian do not exist. Even if the first eigenfunction of $p(x)$-Laplacian exists, because of the nonhomogeneity of $p(x)$-Laplacian, the first eigenfunction cannot be used to construct the subsolution of $p(x)$-Laplacian problems. Motivated by the above papers, in this note, we are interested in the existence of positive solution for problem (1.1), where a, b are continuous functions in $\bar{\Omega}$ and λ is a positive parameter. Our main goal is to improve the result introduced in [18], in which $a=b \equiv 1$.

To be more precise, we assume that $\Omega \subset \mathbb{R}^{N}$ is an open bounded domain with C^{2}-boundary $\partial \Omega$ and the following conditions hold:
$\left(H_{1}\right) p(x), q(x) \in C^{1}(\bar{\Omega})$ and $1<p^{-} \leqslant p^{+}$and $1<q^{-} \leqslant q^{+}$;
$\left(H_{2}\right) h_{1}, h_{2}, \alpha, \beta, \gamma, \delta \in C^{1}(\bar{\Omega})$ satisfy $\alpha, \beta \geqslant 0$ on $\bar{\Omega}$, and $\gamma, \delta>0$ on $\bar{\Omega}$;
$\left(H_{3}\right) 0 \leqslant \alpha^{+}<p^{-}-1,0 \leqslant \beta^{+}<q^{-}-1$ and $\varpi \quad:=\left(p^{-}-1-\alpha^{+}\right)\left(q^{-}-1-\beta^{+}\right)$ $-\delta^{+} \gamma^{+}>0$
$\left(H_{4}\right) a, b: \bar{\Omega} \rightarrow(0, \infty)$ are continuous functions such that $a_{1}=\min _{x \in \bar{\Omega}} a(x)$, $b_{1}=\min _{x \in \bar{\Omega}} b(x), a_{2}=\max _{x \in \bar{\Omega}} a(x)$ and $b_{2}=\max _{x \in \bar{\Omega}} b(x)$.

To study $p(x)$-Laplacian problems, we need some theories on the spaces $L^{p(x)}(\Omega)$, $W^{1, p(x)}(\Omega)$ and properties of $p(x)$-Laplacian which we will use later (see [5]). If $\Omega \subset \mathbb{R}^{N}$ is an open domain, write

$$
C_{+}(\boldsymbol{\Omega})=\{h: h \in C(\boldsymbol{\Omega}), h(x)>1 \text { for } x \in \Omega\}
$$

$h^{+}=\sup _{x \in \Omega} h(x), h^{-}=\inf _{x \in \Omega} h(x)$, for any $h \in C(\Omega)$, and

$$
L^{p(x)}(\Omega)=\left\{u \mid u \text { is a measurable real-valued function such that } \int_{\Omega}|u|^{p(x)} d x<\infty\right\} .
$$

Throughout the paper, we assume that $p, q \in C_{+}(\Omega)$ and $1<\inf _{x \in \Omega} p(x) \leqslant$ $\sup _{x \in \Omega} p(x)<N, 1<\inf _{x \in \Omega} q(x) \leqslant \sup _{x \in \Omega} q(x)<N$. We introduce the norm $L^{p(x)}(\Omega)$ by

$$
|u|_{p(x)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} d x \leqslant 1\right\}
$$

and $\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ becomes a Banach space, we call it the generalized Lebesgue space. The space $\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ is a separable, reflexive and uniform convex Banach space (see [5, Theorem 1.10, 1.14]).

The space $W^{1, p(x)}(\Omega)$ is defined by $W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega):|\nabla u| \in L^{p(x)}(\Omega)\right\}$, and it is equipped with the norm

$$
\|u\|=|u|_{p(x)}+|\nabla u|_{p(x)}, \quad \forall u \in W^{1, p(x)}(\Omega)
$$

We denote by $W_{0}^{1, p(x)}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p(x)}(\Omega)$. $W^{1, p(x)}(\Omega)$ and $W_{0}^{1, p(x)}(\Omega)$ are separable, reflexive and uniform convex Banach space (see [5, Theorem 2.1]). We define

$$
(L(u), v)=\int_{\mathbb{R}^{N}}|\nabla u|^{p(x)-2} \nabla u \nabla v d x, \quad \forall u, v \in W^{1, p(x)}(\Omega),
$$

then $L: W^{1, p(x)}(\Omega) \rightarrow\left(W^{1, p(x)}(\Omega)\right)^{*}$ is a continuous, bounded and is a strictly monotone operator, and it is a homeomorphism [9, Theorem 3.11].

Definition 1.1. If $(u, v) \in\left(W_{0}^{1, p(x)}(\Omega), W_{0}^{1, q(x)}(\Omega)\right),(u, v)$ is called a weak solution of (1.1) if it satisfies

$$
\begin{cases}\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} \lambda^{p(x)}\left[a(x) u^{\alpha(x)} v^{\gamma(x)}+h_{1}(x)\right] \varphi d x, & \forall \varphi \in W_{0}^{1, p(x)}(\Omega), \\ \int_{\Omega}|\nabla v|^{q(x)-2} \nabla v \cdot \nabla \psi d x=\int_{\Omega} \lambda^{q(x)}\left[b(x) u^{\delta(x)} v^{\beta(x)}+h_{1}(x)\right] \psi d x, & \forall \psi \in W_{0}^{1, q(x)}(\Omega) .\end{cases}
$$

Define $A: W^{1, p(x)}(\boldsymbol{\Omega}) \rightarrow\left(W_{0}^{1, p(x)}(\Omega)\right)^{*}$ as

$$
\langle A u, \varphi\rangle=\int_{\Omega}\left(|\nabla u|^{p(x)-2} \nabla u \nabla \varphi+h(x, u) \varphi\right) d x, \quad \forall u, \varphi \in W^{1, p(x)}(\Omega)
$$

where $h(x, u)$ is continuous on $\bar{\Omega} \times \mathbb{R}$, and $h(x, \cdot)$ is increasing and satisfies

$$
|h(x, t)| \leqslant C_{1}+C_{2}|t|^{p^{*}(x)-1}
$$

where

$$
p^{*}(x)= \begin{cases}\frac{N p(x)}{N-p(x)}, & p(x)<N \\ \infty, & p(x) \geqslant N\end{cases}
$$

It is easy to check that A is a continuous bounded mapping. Copying the proof of [19], we have the following lemma.

Lemma 1.2 (Comparison principle). Let $u, v \in W^{1, p(x)}(\Omega)$ satisfy $A u-A v \geqslant 0$ in $\left(W_{0}^{1, p(x)}(\Omega)\right)^{*}, \varphi(x)=\min \{u(x)-v(x), 0\}$. If $\varphi(x) \in W_{0}^{1, p(x)}(\Omega)$ (i.e. $u \geqslant v$ on $\left.\partial \boldsymbol{\Omega}\right)$, then $u \geqslant v$ a.e. in Ω.

Here and hereafter, we will use the notation $d(x, \partial \Omega)$ to denote the distance of $x \in \Omega$ to the boundary of Ω. Denote $d(x)=d(x, \partial \Omega)$ and $\partial \Omega_{\epsilon}=\{x \in \Omega \mid d(x, \partial \Omega)<\epsilon\}$. Since $\partial \Omega$ is C^{2} regularly, then there exists a constant $l \in(0,1)$ such that $d(x) \in C^{2}\left(\overline{\partial \Omega_{3 l}}\right)$, and $|\nabla d(x)| \equiv 1$.

Denote

$$
v_{1}(x)= \begin{cases}\zeta d(x), \quad d(x)<l, \\ \zeta l+\int_{l}^{d(x)} \zeta\left(\frac{2 l-t}{l}\right)^{\frac{2}{p-1}}\left(a_{1}+1\right)^{\frac{2}{p^{\prime-1}}} d t, \quad l \leqslant d(x)<2 l, \\ \zeta l+\int_{l}^{2 l} \zeta\left(\frac{2 l-t}{l}\right)^{\frac{2}{p-1}}\left(a_{1}+1\right)^{\frac{2}{p^{\prime-1}}} d t, \quad 2 l \leqslant d(x) .\end{cases}
$$

Obviously, $0 \leqslant v_{1}(x) \in C^{1}(\bar{\Omega})$. Consider the problem

$$
\begin{cases}-\Delta_{p(x)} w(x)=\eta & \text { in } \Omega \tag{1.4}\\ w=0 & \text { on } \partial \Omega\end{cases}
$$

where η is a parameter. The following result plays an important role in our argument whose proof can be found in [18] or [4].

Lemma 1.3 (see [18]). If the positive parameter η is large enough and w is the unique solution of (1.4), then we have
(i) For any $\theta \in(0,1)$ there exists a positive constant C_{1} such that

$$
C_{1} \eta^{\frac{1}{p^{+-1+\theta}}} \leqslant \max _{x \in \bar{\Omega}} w(x)
$$

(ii) There exists a positive constant C_{2} such that

$$
\max _{x \in \bar{\Omega}} w(x) \leqslant C_{2} \eta^{\frac{1}{p^{-1}}}
$$

Proof

(i) By computation,

$$
-\Delta_{p(x)} v_{1}(x)=\left\{\begin{array}{l}
-\zeta^{p(x)-1}[(\nabla p \nabla d) \ln \zeta+\Delta d(x)], \quad d(x)<\sigma, \\
\left\{\frac{1}{l} \frac{2(p(x)-1)}{p^{x}-1}-\left(\frac{2 l-d}{l}\right)\left[\left(\ln \zeta\left(\frac{2 l-d}{l}\right)^{\frac{2}{p^{p-1}}}\right) \nabla p \nabla d+\Delta d\right]\right\} \\
\times \zeta^{p(x)-1}\left(\frac{2 l-d}{2 l-\sigma}\right)^{\frac{2(p(x)-1)}{p-1}-1}\left(a_{1}+1\right), \quad l<d(x)<2 l, \\
0, \quad 2 l<d(x) .
\end{array}\right.
$$

Then $\left|-\Delta_{p(x)} v_{1}(x)\right| \leqslant C_{*} \zeta^{p(x)-1+\theta}$ a.e. on Ω, for any $\theta \in(0,1)$, where $C_{*}=$ $C_{*}(l, \theta, p, \Omega)$ is a positive constant depending on ζ.

When $C_{*} p^{p^{+}-1+\theta}=\frac{1}{2} \eta$, we can see that $v_{1}(x)$ is a subsolution of (1.1). According to the comparison principle, it follows that $v_{1}(x) \leqslant \Omega(x)$ on $\bar{\Omega}$. Obviously, $\zeta l \leqslant$ $\max _{x \in \bar{\Omega}} v_{1}(x) \leqslant 2 \zeta l$, there exists a positive constant C_{1} such that

$$
\max _{x \in \bar{\Omega}} w(x) \geqslant \max _{x \in \bar{\Omega}} v_{1}(x) \geqslant C_{1} \eta^{\frac{1}{p^{+}-1+\theta}}
$$

(ii) It is easy to see from Lemma 1.2 of [4]. This completes the proof.

2. Existence of solutions

In the following, when there is no misunderstanding, we always use C_{i} to denote positive constants. Our main result of this paper is the following theorem.

Theorem 2.1. On the conditions of $\left(H_{l}\right)-\left(H_{4}\right)$, then problem (1.1) has positive solution when λ is large enough.

Proof. We shall establish Theorem 2.1 by constructing a positive subsolution (ϕ_{1}, ϕ_{2}) and supersolution $\left(z_{1}, z_{2}\right)$ of (1.1), such that $\phi_{1} \leqslant z_{1}$ and $\phi_{2} \leqslant z_{2}$. That is $\left(\phi_{1}, \phi_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
\int_{\Omega}\left|\nabla \phi_{1}\right|^{p(x)-2} \nabla \phi_{1} \cdot \nabla \varphi d x \leqslant \int_{\Omega} \lambda^{p(x)}\left[a(x) \phi_{1}^{\alpha(x)} \phi_{2}^{\gamma(x)}+h_{1}(x)\right] \varphi d x \\
\int_{\Omega}\left|\nabla \phi_{2}\right|^{q(x)-2} \nabla \phi_{2} \cdot \nabla \psi d x \leqslant \int_{\Omega} \lambda^{q(x)}\left[b(x) \phi_{1}^{\delta(x)} \phi_{2}^{\beta(x)}+h_{2}(x)\right] \psi d x
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\int_{\Omega}\left|\nabla z_{1}\right|^{p(x)-2} \nabla z_{1} \cdot \nabla \varphi d x \geqslant \int_{\Omega} \lambda^{p(x)}\left[a(x) z_{1}^{\alpha(x)} z_{2}^{\gamma(x)}+h_{1}(x)\right] \varphi d x \\
\int_{\Omega}\left|\nabla z_{2}\right|^{q(x)-2} \nabla z_{2} \cdot \nabla \psi d x \geqslant \int_{\Omega} \lambda^{p(x)}\left[b(x) z_{1}^{\delta(x)} z_{2}^{\beta(x)}+h_{2}(x)\right] \psi d x,
\end{array}\right.
$$

for all $(\varphi, \psi) \in\left(W_{0}^{1, p(x)}(\Omega), W_{0}^{1, q(x)}(\Omega)\right)$ with $\varphi, \psi \geqslant 0$. According to the sub-supersolution method for $p(x)$-Laplacian equations (see [4]), then (1.1) has a positive solution.

Step 1. We construct a subsolution of (1.1).
Let $\sigma \in(0, l)$

$$
\begin{aligned}
& \phi_{1}(x)=\left\{\begin{array}{l}
e^{k d(x)}-1, \quad d(x)<\sigma, \\
e^{k \sigma}-1+\int_{\sigma}^{d(x)} k e^{k \sigma}\left(\frac{2 l-t}{2 l-\sigma}\right) \frac{2}{\rho^{-1}}\left(a_{1}+1\right)^{\frac{2}{p^{2}-1}} d t, \quad \sigma \leqslant d(x)<2 l, \\
e^{k \sigma}-1+\int_{\sigma}^{2 l} k e^{k \sigma}\left(\frac{2 l-t}{2 l-\sigma}\right)^{\frac{2}{p-1}}\left(a_{1}+1\right)^{\frac{2}{\rho^{-1}-1}} d t, \quad 2 l \leqslant d(x) .
\end{array}\right. \\
& \phi_{2}(x)=\left\{\begin{array}{l}
e^{k d(x)}-1, \quad d(x)<\sigma, \\
e^{k \sigma}-1+\int_{\sigma}^{d(x)} k e^{k \sigma}\left(\frac{2 l-t}{2 l-\sigma} \frac{p^{\frac{2}{p-1}}}{p^{\prime}}\left(b_{1}+1\right)^{\frac{2}{p^{\prime}-1}} d t, \quad \sigma \leqslant d(x)<2 l,\right. \\
e^{k \sigma}-1+\int_{\sigma}^{2 l} k e^{k \sigma}\left(\frac{2 l-t}{2 l-\sigma}\right)^{\frac{2}{p-1}}\left(b_{1}+1\right)^{\frac{2}{p-1}} d t, \quad 2 l \leqslant d(x) .
\end{array}\right.
\end{aligned}
$$

It is easy to see that $\phi_{1}, \phi_{2} \in C^{1}(\bar{\Omega})$. Denote

$$
\begin{aligned}
& \alpha=\min \left\{\frac{\inf p(x)-1}{4(\sup |\nabla p(x)|+1)}, \frac{\inf q(x)-1}{4(\sup |\nabla q(x)|+1)}, 1\right\}, \\
& b=\min \left\{a_{1}+\left|h_{1}(0)\right|, b_{1}+\left|h_{2}(0)\right|,-1\right\}
\end{aligned}
$$

By computation

$$
\begin{aligned}
& -\Delta_{p(x)} \phi_{1}=\left\{\begin{array}{l}
-k\left(k e^{k d(x)}\right)^{p(x)-1}\left[(p(x)-1)+\left(d(x)+\frac{\ln k}{k}\right) \nabla p \nabla d+\frac{\Delta d}{k}\right], \quad d(x)<\sigma, \\
\left\{\frac{1}{2 l-\sigma} \frac{2(p(x)-1)}{p^{p-1}}-\left(\frac{2 l-d}{2 l-\sigma}\right)\left[\left(\ln k e^{k \sigma}\left(\frac{2 l-d}{2 l-\sigma}\right)^{\frac{2}{p-1}}\right) \nabla p \nabla d+\Delta d\right]\right\} \\
\times\left(k e^{k \sigma}\right)^{p(x)-1}\left(\frac{2 l-d}{2 l-\sigma}\right)^{\frac{2(p(x)-1)}{p^{\prime-1}-1}}\left(a_{1}+1\right), \quad \sigma<d(x)<2 l, \\
0, \quad 2 l<d(x) .
\end{array}\right. \\
& -\Delta_{p(x)} \phi_{2}=\left\{\begin{array}{l}
-k\left(k e^{k d(x)}\right)^{p(x)-1}\left[(p(x)-1)+\left(d(x)+\frac{\ln k}{k}\right) \nabla p \nabla d+\frac{\Delta d}{k}\right], \quad d(x)<\sigma, \\
\left\{\frac{1}{2 l-\sigma} \frac{2(p(x)-1)}{p^{p-1}}-\left(\frac{2 l-d}{2 l-\sigma}\right)\left[\left(\ln k e^{k \sigma}\left(\frac{2 l-d}{2 l-\sigma}\right)^{\frac{2}{p-1}}\right) \nabla p \nabla d+\Delta d\right]\right\} \\
\times\left(k e^{k \sigma}\right)^{p(x)-1}\left(\frac{2 l-d}{2 l-\sigma}\right)^{\frac{2(p(x)-1)}{p^{2-1}-1}}\left(b_{1}+1\right), \quad \sigma<d(x)<2 l, \\
0, \quad 2 l<d(x) .
\end{array}\right.
\end{aligned}
$$

From $\left(H_{2}\right)$ and $\left(H_{3}\right)$, there exists a positive constant $M>2$ such that

$$
\begin{aligned}
b(x) \phi_{1}^{\delta(x)} \phi_{2}^{\beta(x)}+h_{2}(x) & \geqslant 1, a(x) \phi_{1}^{\alpha(x)} \phi_{2}^{\gamma(x)}+h_{1}(x) \geqslant 1, \quad \forall x \\
& \in \bar{\Omega} \quad \text { when } \quad \phi_{1}, \phi_{2} \geqslant M-1 .
\end{aligned}
$$

Let $\sigma=\frac{1}{k} \ln M$. Then

$$
\begin{equation*}
\sigma k=\ln M . \tag{2.1}
\end{equation*}
$$

If k is sufficiently large, from (2.1), we have

$$
\begin{equation*}
-\Delta_{p(x)} \phi \leqslant-k^{p(x)} \alpha, \quad d(x)<\sigma . \tag{2.2}
\end{equation*}
$$

Let $-\lambda b=k \alpha$, then

$$
k^{p(x)} \alpha \geqslant \lambda^{p(x)} b,
$$

from (2.2) and the definition of b, we have

$$
\begin{equation*}
-\Delta_{p(x)} \phi_{1} \leqslant \lambda^{p(x)}\left(a_{1}+1\right) \leqslant \lambda^{p(x)}\left(a(x) \phi_{1}^{\alpha(x)} \phi_{2}^{\gamma(x)}+h_{1}(x)\right), \quad d(x)<\sigma . \tag{2.3}
\end{equation*}
$$

Since $d(x) \in C^{2}\left(\overline{\partial \Omega_{3 l}}\right)$, then there exists a positive constant C_{3} such that

$$
\begin{aligned}
-\Delta_{p(x)} \phi_{1} \leqslant & \left(k e^{k \sigma}\right)^{p(x)-1}\left(\frac{2 l-d}{2 l-\sigma}\right)^{\frac{2(p(x)-1)}{p^{-1}-1}-1}\left(a_{1}+1\right) \\
& \times\left|\frac{2(p(x)-1)}{(2 l-\sigma)\left(p^{-}-1\right)}-\left(\frac{2 l-d}{2 l-\sigma}\right)\left[\left(\ln k e^{k \sigma}\left(\frac{2 l-d}{2 l-\sigma}\right)^{\frac{2}{p-1}}\right) \nabla p \nabla d+\Delta d\right]\right| \\
& \leqslant C_{3}\left(k e^{k \sigma}\right)^{p(x)-1}\left(a_{1}+1\right) \ln k, \quad \sigma<d(x)<2 l .
\end{aligned}
$$

If k is sufficiently large, let $-\lambda \zeta=k \alpha$, we have

$$
\begin{equation*}
\left(a_{1}+1\right) C_{3}\left(k e^{k \sigma}\right)^{p(x)-1} \ln k=\left(a_{1}+1\right) C_{3}(k M)^{p(x)-1} \ln k \leqslant \lambda^{p(x)}\left(a_{1}+1\right), \tag{2.4}
\end{equation*}
$$

then

$$
\begin{equation*}
-\Delta_{p(x)} \phi_{1} \leqslant \lambda^{p(x)}\left(a_{1}+1\right), \quad \sigma<d(x)<2 l . \tag{2.5}
\end{equation*}
$$

Since $\phi_{1}(x), \phi_{2}(x) \geqslant 0$ and combining (2.4) and (2.5) when λ is large enough, then we have

$$
\begin{equation*}
-\Delta_{p(x)} \phi_{1} \leqslant \lambda^{p(x)}\left(a(x) \phi_{1}^{\alpha(x)} \phi_{2}^{\gamma(x)}+h_{1}(x)\right), \quad \sigma<d(x)<2 l . \tag{2.6}
\end{equation*}
$$

Obviously,

$$
\begin{align*}
-\Delta_{p(x)} \phi_{1} & =0 \leqslant \lambda^{p(x)}\left(a_{1}+1\right) \leqslant \lambda^{p(x)}\left(a(x) \phi_{1}^{\alpha(x)} \phi_{2}^{\gamma(x)}+h_{1}(x)\right), \quad 2 l \\
& <d(x) . \tag{2.7}
\end{align*}
$$

Combining (2.5)-(2.7), we can conclude that

$$
\begin{equation*}
-\Delta_{p(x)} \phi_{1} \leqslant \lambda^{p(x)}\left(\lambda_{1} \phi_{1}^{\alpha(x)} \phi_{2}^{\gamma(x)}+h_{1}(x)\right), \quad \text { a.e. in } \Omega . \tag{2.8}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
-\Delta_{q(x)} \phi_{2} \leqslant \lambda^{q(x)}\left(b(x) \phi_{1}^{\delta(x)} \phi_{2}^{\beta(x)}+h_{2}(x)\right), \quad \text { a.e. in } \Omega . \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9), we can see that $\left(\phi_{1}, \phi_{2}\right)$ is a subsolution of (1.1).

Step 2. We construct a supersolution of (1.1).
We consider

$$
\begin{cases}-\Delta_{p(x)} z_{1}=\lambda^{p^{+}}\left(a_{2}+1\right) \mu_{1} & \text { in } \Omega \\ -\Delta_{q(x)} z_{2}=\lambda^{q^{+}}\left(b_{2}+1\right) \mu_{2} & \text { in } \Omega \\ z_{1}=z_{2}=0 & \text { on } \partial \Omega\end{cases}
$$

when μ_{1}, μ_{2} satisfy some conditions.
If we could prove that

$$
\begin{equation*}
\left(a_{2}+1\right) \mu_{1} \geqslant a(x)\left[\max _{x \in \bar{\Omega}} z_{1}\right]^{\alpha+}\left[\max _{x \in \bar{\Omega}} z_{2}\right]^{\gamma+}+\max _{x \in \bar{\Omega}}\left|h_{1}(x)\right|, \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(b_{2}+1\right) \mu_{2} \geqslant b(x)\left[\max _{x \in \bar{\Omega}} z_{1}\right]^{\delta+}\left[\max _{x \in \bar{\Omega}} z_{2}\right]^{\beta+}+\max _{x \in \bar{\Omega}}\left|h_{2}(x)\right| \tag{2.11}
\end{equation*}
$$

we would see that $\left(z_{1}, z_{2}\right)$ is a supersolution for (1.1).
From Lemma 1.3, we have

$$
\begin{aligned}
& \max _{x \in \bar{\Omega}} z_{1}(x) \leqslant C_{2}\left(\lambda^{p^{+}}\left(a_{2}+1\right) \mu_{1}\right)^{\frac{1}{p^{--1}}} \text { and } \max _{x \in \bar{\Omega}} z_{2}(x) \\
& \quad \leqslant C_{2}\left(\lambda^{p^{+}}\left(a_{2}+1\right) \mu_{1}\right)^{\frac{1}{p^{--1}}}
\end{aligned}
$$

Let

$$
\mu_{1}=2\left[C_{2}\left(\lambda^{p^{+}}\left(a_{2}+1\right) \mu_{1}\right)^{\frac{1}{\rho^{-}-1}}\right]^{\alpha+}\left[C_{2}\left(\lambda^{p^{+}}\left(b_{2}+1\right) \mu_{2}\right)^{\frac{1}{q-1}}\right]^{\gamma+} .
$$

We only need

$$
\begin{equation*}
\mu_{2} \geqslant 2\left[C_{2}\left(\lambda^{p^{+}}\left(a_{2}+1\right) \mu_{1}\right)^{\frac{1}{p^{p--}}}\right]^{\delta+}\left[C_{2}\left(\lambda^{p^{+}}\left(b_{2}+1\right) \mu_{2}\right)^{\frac{1}{q^{--1}}}\right]^{\beta+}, \tag{2.12}
\end{equation*}
$$

when μ_{1}, μ_{2} are large enough.
Indeed, since $0 \leqslant \alpha^{+}<p^{-}-1$ and $0 \leqslant \beta^{+}<q^{-}-1$, from (2.11), we can see that μ_{2} is large enough when μ_{1} is large enough. From $\left(H_{2}\right)$ and $\left(H_{3}\right)$, relation (2.12) is satisfied.

According to (2.10) and (2.11), we can conclude that $\left(z_{1}, z_{2}\right)$ is a supersolution for (1.1). It only remains to prove that $\phi_{1} \leqslant z_{1}$ and $\phi_{2} \leqslant z_{2}$.

In the definition of $v_{1}(x)$, let

$$
\zeta=\frac{2}{l}\left(\max _{x \in \bar{\Omega}} \phi_{1}(x)+\max _{x \in \bar{\Omega}}\left|\nabla \phi_{1}(x)\right|\right) .
$$

We will claim that

$$
\begin{equation*}
\phi_{1}(x) \leqslant v_{1}(x), \quad \forall x \in \Omega . \tag{2.13}
\end{equation*}
$$

From the definition of v_{1}, it is easy to see that

$$
\phi_{1}(x) \leqslant 2 \max _{x \in \bar{\Omega}} \phi_{1}(x) \leqslant v_{1}(x), \quad \text { when } d(x)=l,
$$

and

$$
\phi_{1}(x) \leqslant 2 \max _{x \in \bar{\Omega}} \phi_{1}(x) \leqslant v_{1}(x), \quad \text { when } d(x) \geqslant l .
$$

It only remains to prove that

$$
\phi_{1}(x) \leqslant v_{1}(x), \quad \text { when } d(x)<l .
$$

Since $v_{1}-\phi_{1} \in C^{1}\left(\overline{\partial \Omega_{l}}\right)$, then there exists a point $x_{0} \in \overline{\partial \Omega_{l}}$ such that

$$
v_{1}\left(x_{0}\right)-\phi_{1}\left(x_{0}\right)=\min _{x_{0} \in \overline{\partial \Omega_{l}}}\left[v_{1}(x)-\phi_{1}(x)\right] .
$$

If $v_{1}\left(x_{0}\right)-\phi_{1}\left(x_{0}\right)<0$, it is easy to see that $0<d(x)<l$, and then

$$
\nabla v_{1}\left(x_{0}\right)-\nabla \phi_{1}\left(x_{0}\right)=0
$$

From the definition of v_{1}, we have

$$
\left|\nabla v_{1}\left(x_{0}\right)\right|=\zeta=\frac{2}{l}\left(\max _{x \in \bar{\Omega}} \phi_{1}(x)+\max _{x \in \bar{\Omega}}\left|\nabla \phi_{1}(x)\right|\right)>\left|\nabla \phi_{1}\left(x_{0}\right)\right| .
$$

It is a contradiction to $\nabla v_{1}\left(x_{0}\right)-\nabla \phi_{1}\left(x_{0}\right)=0$. Thus (2.13) is valid.
Obviously, there exists a positive constant C_{3} such that

$$
\zeta \leqslant C_{3} \lambda
$$

Since $d(x) \in C^{2}\left(\overline{\partial \Omega_{3 l}}\right)$, according to the proof of Lemma 1.3, then there exists a positive constant C_{4} such that

$$
-\Delta_{p(x)} v_{1}(x) \leqslant C_{*} \xi^{p(x)-1+\theta} \leqslant C_{4} \lambda^{p(x)-1+\theta}, \quad \text { a.e. in } \Omega, \text { where } \theta \in(0,1)
$$

When $\eta \geqslant \lambda^{p^{+}}$is large enough, we have

$$
-\Delta_{p(x)} v_{1}(x) \leqslant \eta
$$

According to the comparison principle, we have

$$
\begin{equation*}
v_{1}(x) \leqslant w(x), \quad \forall x \in \Omega \tag{2.14}
\end{equation*}
$$

From (2.13) and (2.14), when $\eta \geqslant \lambda^{p^{+}}$and the parameter $\lambda \geqslant 1$ is sufficiently large, we have

$$
\begin{equation*}
\phi_{1}(x) \leqslant v_{1}(x) \leqslant w(x), \quad \forall x \in \Omega \tag{2.15}
\end{equation*}
$$

According to the comparison principle, when μ is large enough, we have

$$
v_{1}(x) \leqslant w(x) \leqslant z_{1}(x), \quad \forall x \in \Omega
$$

Combining the definition of $v_{1}(x)$ and (2.15), it is easy to see that

$$
\phi_{1}(x) \leqslant v_{1}(x) \leqslant w(x) \leqslant z_{1}(x), \quad \forall x \in \Omega .
$$

When $\mu \geqslant 1$ and the parameter λ is large enough, from Lemma 1.3, we can see that $\beta\left(\lambda^{p^{+}}\left(\lambda_{1}+\mu_{1}\right) \mu\right)$ is large enough, then $\lambda^{p^{+}}\left(\lambda_{2}+\mu_{2}\right) h\left(\beta\left(\lambda^{p^{+}}\left(\lambda_{1}+\mu_{1}\right) \mu\right)\right)$ is large enough. Similarly, we have $\phi_{2} \leqslant z_{2}$. This completes the proof.

Acknowledgment

The authors would like to thank the referees for their suggestions and helpful comments which improved the presentation of the original manuscript.

References

[1] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002) 213-259.
[2] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (4) (2006) 1383-1406.
[3] M. Chen, On positive weak solutions for a class of quasilinear elliptic systems, Nonlinear Anal. 62 (2005) 751-756.
[4] X.L. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations, J. Math. Anal. Appl. 330 (2007) 665-682.
[5] X.L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001) 424-446.
[6] X.L. Fan, D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (1999) 295-318.
[7] X.L. Fan, D. Zhao, The quasi-minimizer of integral functionals with $m(x)$ growth conditions, Nonlinear Anal. 39 (2000) 807-816.
[8] X.L. Fan, D. Zhao, Regularity of minimizers of variational integrals with continuous $p(x)$-growth conditions, Chin. Ann. Math. 17A (5) (1996) 557-564.
[9] X.L. Fan, Q.H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1852.
[10] X.L. Fan, Q.H. Zhang, D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005) 306-317.
[11] D.D. Hai, R. Shivaji, An existence result on positive solutions of p-Laplacian systems, Nonlinear Anal. 56 (2004) 1007-1010.
[12] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004) 30-42.
[13] P. Marcellini, Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions, J. Differ. Equat. 90 (1991) 1-30.
[14] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.
[15] Q.H. Zhang, Existence of positive solutions for a class of $p(x)$-Laplacian systems, J. Math. Anal. Appl. 333 (2007) 591-603.
[16] Q.H. Zhang, Existence of positive solutions for elliptic systems with nonstandard $p(x)$-growth conditions via sub-supersolution method, Nonlinear Anal. 67 (2007) 1055-1067.
[17] Q.H. Zhang, Existence of radial solutions for $p(x)$-Laplacian equations in \mathbb{R}^{N}, J. Math. Anal. Appl. 315 (2) (2006) 506-516.
[18] Q.H. Zhang, Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems without variational structure, Nonlinear Anal. 72 (2010) 354-363.
[19] Q.H. Zhang, A strong maximum principle for differential equations with nonstandard $p(x)$-growth conditions, J. Math. Anal. Appl. 312 (2005) 24-32.
[20] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv29 (1987) 33-36.

[^0]: * Corresponding author.

 E-mail addresses: afrouzi@umz.ac.ir (G.A. Afrouzi), s.shakeri@umz.ac.ir (S. Shakeri), ntchung82@yahoo. com (N.T. Chung).
 Peer review under responsibility of King Saud University.

