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Abstract.  In this article, we consider the system of differential equations

—Aput = 2V a(x)wOv) 4+ hy(x)] i Q,

Ay = BRI + ()] in Q,

u=v=>0 on 0Q,
where Q € R is a bounded domain with C*-boundary 9Q, 1 < p(x), ¢(x) € C'(Q) are functions. The
operator —A, u = — div( Vil V72V is called the p(x)-Laplacian. When o, f, J, y satisfy some suitable
conditions, we prove the existence of positive solution via sub-supersolution arguments without assuming

sign conditions on the functions /4, and /,.
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1. INTRODUCTION AND PRELIMINARIES

The study of differential equations and variational problems with nonstandard p(x)-
growth conditions is a new and interesting topic. It arises from nonlinear elasticity
theory, electrorheological fluids, etc. (see [1,2,14,20]). Many existence results have been
obtained on this kind of problems, see for example [4,9,10,12,15-18]. In [6-8], Fan
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et al. studied the regularity of solutions for differential equations with nonstandard
p(x)-growth conditions.

In this paper, we mainly consider the existence of positive weak solutions for the
system

—Apu = Xa(x)u @y + hy(x)] in Q,

By = F B+ (0] in Q. (1)

u=v=_0 on 0Q,
where Q ¢ R" is a bounded domain with C*-boundary 9Q, 1 < p(x), ¢(x) € C'(Q) are
two functions. The operator — A,u = —div( Vi P 72Vu) is called the p(x)-
Laplacian and the corresponding equation is called a variable exponent equation.
Especially, if p(x)=p (a constant), (1.1) is the well-known (p,q)-Laplacian system
and the corresponding equation is called a constant exponent equation. We have
known that the existence of solutions for p-Laplacian elliptic systems has been inten-

sively studied in the last decades, we refer to [3,11,13]. In [11], Hai et al. considered
the existence of positive weak solutions for the p-Laplacian problem

—Au=f(v) inQ,
—A,y=Jg(u) in Q, (1.2)
u=v=_0 on 0Q,

in which the first eigenfunction was used for constructing the subsolution of p-Laplacian
problems. Under the condition

(M) )

u—+00 w1

=0 for all M > 0,

the authors showed that the problem (1.2) has at least one positive solution provided
that 4 > 0 is large enough.

In [3], the author studied the existence and nonexistence of positive weak solution to
the following quasilinear elliptic system

—Ayu = flu,v) = v’ in Q,
—Ayy = Agu,v) = 2’V in Q, (1.3)
u=v=_0 on 0Q.

The first eigenfunction is used to construct the subsolution of problem (1.3), the main
results are as follows:

@HIf 0,fp=09,0>0, 0=@— 1—a)g—1—p)—17y5 > 0, then problem (1.3)
has a positive weak solution for each 4 > 0;

(@) If 6 =0 and py = q(p — 1 —a), then there exists Ao > 0 such that for
0 < A < Jg, then problem (1.3) has no nontrivial nonnegative weak solution.
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In recent papers [15-18], Zhang has developed problems (1.2) and (1.3) in the variable
exponent Sobolev space. On the p(x)-Laplacian problems, maybe the first eigenvalue and
the first eigenfunction of p(x)-Laplacian do not exist. Even if the first eigenfunction of
p(x)-Laplacian exists, because of the nonhomogeneity of p(x)-Laplacian, the first
eigenfunction cannot be used to construct the subsolution of p(x)-Laplacian problems.
Motivated by the above papers, in this note, we are interested in the existence of positive
solution for problem (1.1), where a, b are continuous functions in Q and A is a positive
parameter. Our main goal is to improve the result introduced in [18], in whicha = b=1.

To be more precise, we assume that Q C R" is an open bounded domain with
C*-boundary dQ and the following conditions hold:

(H)) p(x),q(x) € C'(Q)and I < p~ <p*and 1 < ¢ <q’;

(H>) hy,hy, o, B,7,0 € C'(Q) satisfy o, = 0 on Q, and 7,6 > 0 on Q;

(Hy) 0<a” <p —10<p"  <qg -1 and @ =(p —1—-a")g —1-8")
. 5+y+ > 0;

(Hy) a,b:Q — (0,00) are continuous functions such that a; = min__ga(x),
by = min _gb(x),a; = max, _ga(x) and by = max, _gb(x).

To study p(x)-Laplacian problems, we need some theories on the spaces L/“(Q),
whrP(Q) and properties of p(x)-Laplacian which we will use later (see [5]). If
Q c R" is an open domain, write

C.(Q)={h:heCQ),h(x)>1for x € Q},
h" = sup.coh(x),h~ = infycoh(x), for any i € C(Q), and

’'(Q) = {u|u is a measurable real-valued function such that / |u"dx < oo}.
o

Throughout the paper, we assume that p,g€ C.(Q) and 1 < inf,cgp(x) <
supceap(x) < N,1 < infy cag(x) < supieaq(x) < N. We introduce the norm I/“)(Q)

by
p(x)
|u] () = inf )»>0:/ dx <1y,
o

and (L’V(Q)] -| p(x)) becomes a Banach space, we call it the generalized Lebesgue
space. The space (L/“(Q),| | »(x) 18 a separable, reflexive and uniform convex Banach
space (see [5, Theorem 1.10, 1.14]).

The space W'"™(Q) is defined by W'"*“YQ) = {u € L’'(Q)| Vil € 1/(Q)}, and
it is equipped with the norm

u(x)

leell = lul,) + [Vtly, Vi € WHO(Q).

p(x)
We denote by W"™(Q) the closure of C*(Q) in W!'7(Q). W'™(Q) and W™ (Q)
are separable, reflexive and uniform convex Banach space (see [5, Theorem 2.1]). We
define
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(L(u),v) :/ IVl P VuVvdx, Yu,v e WPO(Q),
RY

then L: W'"7™(Q) — (W'*(Q))" is a continuous, bounded and is a strictly monotone
operator, and it is a homeomorphism [9, Theorem 3.11].

Definition 1.1. If (u,v) € (W(l,’p(x)(Q), Wé"q(x)(Q)>, (u,v) is called a weak solution of
(1.1) if it satisfies
[0 Va2V - Vodx = [, 279 [a(x)u* v + by (x)]pdx, Yo € Wy (Q),
[y V91720 - Wdx = [, 299 [B(x)ud OV 4 Iy (x)|pdx, Y € Wy (Q).

Define 4 : W'7™0(Q) — (W)"(Q))" as

(Au, @) :/ (|Vu\”(x)72Vquo —l—h(x,u)(p)dx, Yu, o € W(Q),
Q

where A(x,u) is continuous on Q x R, and A(x,") is increasing and satisfies
Ih(x, 1) < Cy + Cole]™!
where

Np(x)
. Lo, p(x) <N
p(x) = {N 7

o0,  p(x) =N

It is easy to check that A is a continuous bounded mapping. Copying the proof of [19],
we have the following lemma.

Lemma 1.2 (Comparison principle). Let u,v € W"P(x){Q) satisfy Au— Av =2 0 in
(Wé"pm (Q)", o(x) = min{u(x) — v(x),0}. If (x) € Wlp Q) (i.e.u = vondQ), then
uz= vae. inQ.

Here and hereafter, we will use the notation d(x,0Q) to denote the distance of x € Q
to the boundary of Q. Denote d(x) = d(x,0Q) and 0Q, = {x € Ol d(x,0Q) < €}. Since
0Q is C? regularly, then there exists a constant / € (0, 1) such that d(x) € C*(0Qy,), and
|V d(x) =1.

Denote

{d(x), d(x )<1
y(x) =4 U+ [ ,),, Tay+ 17 Tdr, 1< d(x) < 2,
Ut [ LET T a + 17, 20 < d(x).
Obviously, 0 < v,(x) € C'(Q). Consider the problem

—Apyw(x) =15 inQ,
w=20 on 0Q,
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where 7 is a parameter. The following result plays an important role in our argument
whose proof can be found in [18] or [4].

Lemma 1.3 (see [18]). If the positive parameter 3 is large enough and w is the unique
solution of (1.4), then we have

(i) For any 0 € (0, 1) there exists a positive constant C; such that

1
Cip7 =+ < maxw(x);
xeQ

(it) There exists a positive constant C, such that

maxw(x) < ConT.
xeQ

Proof

(7)) By computation,
—PYIT(VpVd) In{ + Ad(x)], d(x) <o,

{42005 (224) [ (1n ¢ (54)7 ) 9pVd + Ad] |

Ay (x) = W1
)P ED T (0 + 1), < d(x) <2,
0, 2/<d(x).
Then |—Ap(x)v1(x)| LGP0 g6 on Q, for any 6e(0,1), where C» =

C«(1,0,p,Q) is a positive constant depending on (.

When C,07 0 = In, we can see that vi(x) is a subsolution of (I.1). According to
the comparison principle, it follows that v;(x) < Q(x) on Q. Obviously, (/<
max, _gvi(x) < 2{/, there exists a positive constant C; such that

maxw(x) = maxv,(x) > C.nm.
xeQ xeQ

(ii) It is easy to see from Lemma 1.2 of [4]. This completes the proof. [

2. EXISTENCE OF SOLUTIONS

In the following, when there is no misunderstanding, we always use C; to denote
positive constants. Our main result of this paper is the following theorem.

Theorem 2.1. On the conditions of (H;) — (Hy), then problem (1.1) has positive
solution when A is large enough.
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Proof. We shall establish Theorem 2.1 by constructing a positive subsolution (¢, ¢»)
and supersolution (z;,z,) of (1.1), such that ¢ < z; and ¢, < z,. That is (¢, ¢») and
(z1,2») satisfies

Jo IV PV, Vodx < [, 7 a(x <1>1 T3+ (x)) dx
{fgwwwwz-ww < Jo 2B G Y+ (x) ),
and
[, V2P Vz, - Vodx = [, 77 Y by (x)] dx
{fQ|V22|’ Yz Vdx = [, 27 4y (),

for all (¢, ¥) € (W, "( Q), W, 1‘1 Y(Q)) with ¢, lp 0. Accordmg to the sub-supersolu-
tion method for p(x) Laplaman equations (see [4]), then (1.1) has a positive solution.

Step 1.  We construct a subsolution of (1.1).
Let o € (0,)

M — 1, d(x) < o,
o, (x) = ko — 1 + fd(x) /ca(zzf;(;)%(al 4 I)F%‘dl, o < d(x) <2,
1+f2lk o (2et)i *‘(a + 17 Tdr, 20 < d(x).

K 1, d(x) < o,

$() = § & =1 [ ke GE)T Ty + 7L 0 < d(x) < 2,
¢ — 14 [P ket (227N (by + 1, 20 < d(x).

It is easy to see that ¢,, ¢, € C'(Q). Denote

. infp(x) — 1 infg(x) —1
re {4<sup Vp(x)[ + 1) 4(sup [Vg(x)[ + 1)’ 1}’

b =min {a, + |, (0)|, b, + |h2(0)|, -1}

By computation

—k (ke YO [(p(x) = 1) + (d(x) + 85 VpVd+29], d(x

=Dy = {2’1“ 7 :1 l Knkeka 21 d " 7I>VPVd+Ad]}
p(x)P1 —

x (ke 7y 1(35‘(,)2%" Nay+1), o<d(x)<2l,
0, 2/<d(x).
k kekd ( ( ( ) lnk)VPVd+Akd] d(x)<o-
A ( )4) _ {211 zrzp—fll ( ) {(lnke/w (2/ d)p 71)VPVd+Ad}}
p(x) P2 = :
X (ke YO QT 4 1), 6 < d(x) <21,

0, 2/<d(x).



A remark on the existence of positive solutions for variable exponent elliptic systems 91

From (H,) and (H3), there exists a positive constant M > 2 such that
b)Y +ha(x) > La()$ V1 + h(x) = 1, Vx
€Q when ¢, ¢, = M—1.
Let 6 =1 In M. Then

ok =1In M. (2.1)
If k is sufficiently large, from (2.1), we have
Ay < —K"Yo,  d(x) < 0. (2.2)

Let —1b = ko, then

Wy > ;LP(X)b7
from (2.2) and the definition of 5, we have

A1 <A@y + 1) < D (a(x)iY i + by (x),  d(x) < . (2.3)
Since d(x) € C*(0Qy), then there exists a positive constant C3 such that

w01
ot 1 (2= d) F
bt < kP (3297 @)
2
2p)—1)  (2-d o (2= d\F
- Inkeh (22 A
“la-oo -1 \a—) |[\" \ai=g) )VPVitad

< C3(ke Y a4+ 1) Ink, o<d(x)<2L.

If k is sufficiently large, let —A{ = ka, we have
(ay 4+ D) C(ké" Y Ink = (ay + D) C(kMY'Y " Ink < 9@ +1),  (2.4)

then

—Apydy < Fay + 1), o <d(x)<2L (2.5)
Since ¢1(x),¢»(x) = 0 and combining (2.4) and (2.5) when A is large enough, then
we have

Ay < A(a(x) ¢y + i (x), o <d(x) < 2L, (2.6)
Obviously,

—Apody =0 < 9@ + 1) < P a(x);Y ¢ + b (x)), 21

< d(x). (2.7)

Combining (2.5)—(2.7), we can conclude that

Ay by < (g + i (x)), ae. in Q. (2.8)
Similarly,

—Ago by < A (b(x)PT PEY + hy(x)), ae. in Q. (2.9)

From (2.8) and (2.9), we can see that (¢, ¢,) is a subsolution of (1.1).
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Step 2. 'We construct a supersolution of (1.1).
We consider
Az =2 (@ + Dy in Q
Az = a (bo+ Dy, inQ,
Z) = Zp = 0 on 69,
when pu;, u, satisfy some conditions.
If we could prove that

Jot o 10+

(a2 + Dy, = a(x) |maxz, maxzy| + max|h (x)], (2.10)
L xeQ i L xeQ i xeQ
and
r 1+ 18+
(b + )i, = b(x) |maxz, maxz,| + max|(x)|, (2.11)
L xeQ | L xeQ | xeQ

we would see that (zy,2z,) is a supersolution for (1.1).
From Lemma 1.3, we have

1

maxz;(x) < G, (}J"+ (ar + 1),111)"7_71 and maxz;(x)
xeQ xeQ

<G <)~p+ (a2 + l),u]>'r#7l
Let
. | qat . .
= 2[C2()~p (ax + 1)#1)”_"} [C2(7up (by + 1)u2)ﬁ}

We only need

P+

p+

A% N L
u2>z[c2(zﬂ*<az+1>ul)" } [0 (b + )™ (2.12)

when p;, u, are large enough.

Indeed, since 0 < o™ < p~ —1land 0 < < ¢ — 1, from (2.11), we can see that
Uz is large enough when p, is large enough. From (H,) and (H3), relation (2.12) is
satisfied.

According to (2.10) and (2.11), we can conclude that (z;, z») is a supersolution for
(1.1). It only remains to prove that ¢ < z; and ¢, < z».

In the definition of v(x), let

(= (maxd, () + max| V6, (0] ).
xeQ xeQ

We will claim that
d(x) <v(x), VxeQ. (2.13)
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From the definition of vy, it is easy to see that

$1(x) < 2maxgs, (x) < m(x), when d(x) =1,

xeQ
and

¢, (x) < 2max¢,(x) < vi(x), when d(x) > L
xeQ

It only remains to prove that
¢ (x) < vi(x), when d(x) <
Since v, — ¢, € C'(0Q;), then there exists a point x, € 0Q; such that

vi(Xo) — ¢y (x0) = min [v1(x) — ¢ (x)].

X0€0Qy
If vi(xg) — ¢p1(xp) < 0, it is easy to see that 0 < d(x) < /, and then
Vvl(xo) — V(]S] ()C()) = 0

From the definition of v;, we have
2
O] = £ = (maxdy () + max| V(9] ) > 9 )
RIS RIS

It is a contradiction to Vvi(xg) — V¢i(xg) = 0. Thus (2.13) is valid.
Obviously, there exists a positive constant C3 such that
{ < Gy

Since d(x) € C*(0Qy), according to the proof of Lemma 1.3, then there exists a positive
constant C, such that

—Ayyvi(x) < CLITH T ae in Q where 0 € (0, 1).
When 7 > s large enough, we have
—Apvi(x) <11
According to the comparison principle, we have
n(x) <w(x), VxeQ. (2.14)

From (2.13) and (2.14), when > 7" and the parameter 4 > 1 is sufficiently large, we
have

o1 (x) <vi(x) <w(x), VxeQ. (2.15)

According to the comparison principle, when u is large enough, we have

vi(x) < wx) < z1(x), VxeQ.

Combining the definition of v{(x) and (2.15), it is easy to see that

$1(x) < vi(x) <wlx) <zi(x), VxeQ
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When u > 1 and the parameter A is large enough, from Lemma 1.3, we can see that
ﬂ(/l”+ (A +,u,),u> is large enough, then " (1, +ﬂ2)h(/3(}f’+(il +,u1)u)) is large en-
ough. Similarly, we have ¢, < z,. This completes the proof. [
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