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Abstract. We investigate commutativity of the ring R involving some additive map-

ping with necessary torsion restrictions on commutators. We give counter examples

which show that the hypotheses of our theorems are not superfluous.
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1. INTRODUCTION

This research is inspired by the work of Ashraf and Quadri [1,2]. Throughout this pa-
per R will denote an associative ring with the identity 1. A ring R is said to be n-torsion
free if nx = 0 implies x = 0 for all x 2 R. For any x,y 2 R, the symbol [x,y] will denote
the commutator xy � yx. An additive mapping d:R fi R is said to be a derivation of R
if d(xy) = d(x)y + xd(y) holds for all x,y 2 R. We say that a map f:R fi R preserves
commutativity if [f(x), f(y)] = 0 whenever [x,y] = 0 for x,y 2 R. In [3], Bell and Daif
investigated a certain kind of commutativity preserving maps as follows: Let S be a
subset of R. A map f:S fi R is called strong commutativity preserving (SCP) on S if
[f(x),f(y)] = [x,y] for all x,y 2 S. Precisely, they proved that if a semiprime ring R ad-
mits a derivation which is SCP on a right ideal q, then q ˝ Z(R). In particular, R is
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commutative if q = R. In [4], Deng and Ashraf proved that if there exist a derivation d
of a semiprime ring R and a map f: I fi R defined on a nonzero ideal I of R such that
[f(x),d(y)] = [x,y] for all x,y 2 I, then R contains a nonzero central ideal. In particular,
they showed that R is commutative if I = R.

The literature includes several papers on commutativity in rings with commutator
constraints involving elements of the ring and images of elements under suitable maps
(see [1,5–8]). In this paper, our intent is to investigate the commutativity of rings sat-
isfying certain identities involving additive mapping on the ring R. Throughout this pa-
per we will denote max{m,n} by (m � n), where m and n are positive integers.

2. THE MAIN RESULTS

We begin with the following lemma which is essential for developing the proof of our
main results.

Lemma 2.1. If there is a positive integer n such that [x,yn] = 0 for all x,y 2 R and
commutators in R are n!-torsion free, then R is commutative.

Proof. By the hypothesis, we have
½x; yn� ¼ 0 for all x; y 2 R: ð2:1Þ

Replacing y by 1 + y in (2.1), we obtain
n

1

� �
½x; y� þ

n

2

� �
½x; y2� þ . . .þ

n

n� 1

� �
½x; yn�1� ¼ 0 for all x; y 2 R: ð2:2Þ
Substituting qy for y in (2.2), where q = 1, 2, . . . , (n � 1), we get
q
n

1

� �
½x; y� þ q2

n

2

� �
½x; y2� þ . . .þ qn�1

n

n� 1

� �
½x; yn�1� ¼ 0 for all x; y 2 R:

ð2:3Þ

The above equation produces the system of (n � 1) homogeneous equations, the coef-
ficient matrix of this system is Vandermonde matrix
1 1 . . . 1

2 22 . . . 2n�1

..

. ..
. ..

. ..
.

ðn� 1Þ ðn� 1Þ2 . . . ðn� 1Þn�1

0
BBBB@

1
CCCCA:
Since the determinant of the matrix is equal to a product of positive integers, each of

which is less than n, it follows that
n
r

� �
½x; yr� ¼ 0 for all x,y 2 R and r= 1, 2, . . .,

(n � 1). In particular, for r= 1, we have n[x,y] = 0 for all x,y 2 R. Since commutators
in R are n-torsion free, the last expression implies that [x,y] = 0 for all x,y 2 R. Hence,
R is commutative. This proves the lemma. h
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Theorem 2.2. Let f:R fi R be any mapping. Then the following are equivalent:

(i) There is an integer n > 1 such that (f[x,y])n = ±[xn,yn] for all x,y 2 R and com-
mutators in R are n!-torsion free.

(ii) There is an integer n > 1 such that f([x,y]n) = ±[xn,yn] for all x,y 2 R and com-
mutators in R are n!-torsion free.

(iii) There are positive integers m and n with m + n > 2 such that
(fm[x,y])n = ±[xm,yn] for all x,y 2 R or (fm[x,y])n = ±[xn,ym] for all x,y 2 R
and commutators in R are (m � n)!-torsion free.

(iv) There are positive integers m and n with m + n > 2 such that
fm([x,y]n) = ±[xm,yn] for all x,y 2 R or fm([x,y]n) = ±[xn,ym] for all x,y 2 R
and commutators in R are (m � n)!-torsion free.

(v) R is commutative.

Proof. It is immediate that commutativity of R implies each of the conditions (i)
through (iv). Now, we show that each of the conditions implies commutativity of
R.(i)) (v).
We assume that
ðf½x; y�Þn ¼ �½xn; yn� for all x; y 2 R: ð2:4Þ

Substituting x by 1 + x in (2.4), we get
ðf½x;y�Þn¼�
n

1

� �
½x;yn��

n

2

� �
½x2;yn�� . . .�

n

n�1

� �
½xn�1;yn�� ½xn;yn� for all x;y2R:
Application of (2.4) yields that
n

1

� �
½x; yn� þ

n

2

� �
½x2; yn� þ . . .þ

n

n� 1

� �
½xn�1; yn� ¼ 0 for all x; y 2 R: ð2:5Þ
Now, using the same techniques as we have used in Lemma 2.1, we get [x,yn] = 0 for
all x,y 2 R. Thus, in view of Lemma 2.1, we conclude that R is commutative.

(ii)) (v) is similar to (i)) (v).

(iii)) (v). First we consider the case
ðfm½x; y�Þn ¼ �½xm; yn� for all x; y 2 R: ð2:6Þ

Replacing x by 1 + x in (2.6), we get
m

1

� �
½x; yn� þ

m

2

� �
½x2; yn� þ . . .þ

m

m� 1

� �
½xm�1; yn� ¼ 0 for all x; y 2 R:

ð2:7Þ

Using the same arguments as we have used to prove (i)) (v), we conclude that

m
r

� �
½xr; yn� ¼ 0 for all x,y 2 R and r = 1, 2, . . . , (m � 1). In particular, for r = 1

we have m[x,yn] = 0 for all x,y 2 R. The last expression implies that [x,yn] = 0 for
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all x,y 2 R, since commutators in R are m-torsion free. Thus, by Lemma 2.1, R is
commutative.

Similar conclusion holds for the case (fm[x,y])n = ±[xn,ym] for all x,y 2 R.

(iv)) (v). Use the parallel arguments as we have used in the proof of (iii)) (v).
This completes the proof of the theorem. h

Theorem 2.3. Let f,g:R fi R be two mappings such that f is additive and f(1) = 1. Then
the following are equivalent:

(i) There is an integer n > 1 such that [f(x),g(y)]n = ±[xn,yn] for all x,y 2 R, and
commutators in R are n!-torsion free.

(ii) There are positive integers m and n with m + n> 2 such that
[fm(x),gn(y)] = ±[xm,yn] for all x,y 2 R or [fm(x),gn(y)] = ±[xn,ym] for
all x,y 2 R, and commutators in R are (m � n)!-torsion free.

(iii) There are positive integers m and n with m + n> 2 such that
[fm(x),gm(y)]n = ±[xm,yn] for all x,y 2 R or [fm(x),gm(y)]n = ±[xn,ym] for
all x,y 2 R, and commutators in R are (m � n)!-torsion free.

(iv) R is commutative.
Proof. Clearly, (iv)) (i), (iv)) (ii) and (iv)) (iii). Now, we will prove that

(i)) (iv). By the assumption, we have
½fðxÞ; gðyÞ�n ¼ �½xn; yn� for all x; y 2 R: ð2:8Þ

Replacing x by 1 + x in (2.8), we get
½fð1Þþ fðxÞ;gðyÞ�n¼�
n

1

� �
½x;yn��

n

2

� �
½x2;yn�� . . .�

n

n�1

� �
½xn�1;yn�� ½xn;yn�
for all x,y 2 R. Using (2.8) and the fact that image of identity is identity under f, we
conclude that
n

1

� �
½x; yn� þ

n

2

� �
½x2; yn� þ . . .þ

n

n� 1

� �
½xn�1; yn� ¼ 0 for all x; y 2 R:
Using parallel arguments as we have used to prove (i)) (v) in Theorem 2.2, we find

that
n
r

� �
½xr; yn� ¼ 0 for all x,y 2 R and r = 1, 2, . . . , (n � 1). In particular, we have

n[x,yn] = 0 for all x,y 2 R. Since commutators in R are n-torsion free, the last expres-
sion yields that [x,yn] = 0 for all x,y 2 R. Hence, R is commutative by Lemma
2.1.(ii)) (iv).
First we assume that
½fmðxÞ; gnðyÞ� ¼ �½xm; yn� for all x; y 2 R: ð2:9Þ

Replacing x by 1 + x in (2.9), we obtain
½fmð1þxÞ;gnðyÞ�¼�
m

1

� �
½x;yn��

m

2

� �
½x2;yn�� . . .�

m

m�1

� �
½xm�1;yn��½xm;yn�
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for all x,y 2 R. Using (2.9) and the fact that the image of identity is identity under f, we
get
m

1

� �
½x; yn� þ

m

2

� �
½x2; yn� þ . . .þ

m

m� 1

� �
½xm�1; yn� ¼ 0 for all x; y 2 R:
The above expression is similar to the relation (2.7) and henceforth using the same
approach as we have used to obtain commutativity of R from the expression (2.7) in
the proof of Theorem 2.2, we get the required result.

Similarly, we can prove the result for the case [fm(x),gn(y)] = ±[xn,ym] for all
x,y 2 R.

(iii)) (iv). It can be proved by using the same techniques with necessary variations.
Thereby, the proof is completed. h

The next theorem is motivated by [4, Theorem 1].

Theorem 2.4. Let d:R fi R be a derivation of R and g be any mapping of R. If there are
positive integers m and n with m + n > 2 such that [d(x)m,g(y)n] = [xm,yn] for all
x,y 2 R and commutators in R are (m � n)!-torsion free, then R is commutative.

Proof. By the assumption, we have
½dðxÞm; gðyÞn� ¼ ½xm; yn� for all x; y 2 R: ð2:10Þ

Replacing x by 1 + x in (2.10) and using the fact that d(1) = 0, we get
m

1

� �
½x; yn� þ

m

2

� �
½x2; yn� þ . . .þ

m

m� 1

� �
½xm�1; yn� ¼ 0 for all x; y 2 R:
The above expression is same as the relation in (2.7) and henceforth using the same ap-
proach as we have used to obtain commutativity of R from the expression (2.7) in the
proof of Theorem 2.2, we get the required result. This proves the theorem. h

At the end, let us write two examples which show that the restriction in our results
are not superfluous.

Example 2.1. Let S be any noncommutative ring and
R ¼
0 a 0

0 0 0

a b 0

0
B@

1
CA
�������
a; b 2 S

8><
>:

9>=
>;:
Obviously, R is a ring without identity. Also, it can be easily seen that for any integer
n > 1, the identity [x,yn] = 0 holds for all x,y 2 R, but R is not commutative. Hence, in
Lemma 2.1 identity element is necessary. Further, define a mapping f:R fi R such that
f

0 a 0

0 0 0

a b 0

0
B@

1
CA ¼

0 0 0

0 0 0

0 b 0

0
B@

1
CA; a; b 2 S:
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It is easy to see that f satisfies all the requirements of Theorem 2.2. However, R is not
commutative.

Example 2.2. Let
R ¼
0 a b

0 0 c

0 0 0

0
B@

1
CA
�������
a; b; c 2 Z

8><
>:

9>=
>;:
Clearly, R is a ring without identity. Consider the mappings f,g:R fi R such that
f

0 a b

0 0 c

0 0 0

0
B@

1
CA ¼

0 a 0

0 0 0

0 0 0

0
B@

1
CA and g

0 a b

0 0 c

0 0 0

0
B@

1
CA ¼

0 0 0

0 0 c

0 0 0

0
B@

1
CA; a; b; c 2 Z:
It is straightforward to check that f, and g satisfy all the requirements of Theorem 2.3,
but R is not commutative.
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