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Abstract In this paper, we continue to study some properties, such as the exis-

tence of non-oscillatory solution, boundedness and persistence, global asymp-

totic stability, etc., for the rational difference equation in the title, which has

been investigated in the known literature. We first point out some errors for

the results in the known literature, then solve some questions existing in the

known literature and finally state some new results.
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1. Introduction and preliminaries

Consider the following rational difference equation
xnþ1 ¼
Aþ

Pk
i¼0aixn�iPk

i¼0bixn�i
; n ¼ 0; 1; 2; . . . ; ð1:1Þ
where k is a positive integer, the coefficients A, ai, bi, i = 0, . . . ,k and the initial
conditions x�k,x�k+1, . . . ,x�1,x0 are positive real numbers, which ensure that
every solution of Eq. (1.1) is positive.

Set ~a ¼
Pk

i¼0ai and ~b ¼
Pk

i¼0bi. Then the equilibria points of Eq. (1.1) are the
solutions of the equation
~x ¼ Aþ ~a~x
~b~x

; ð1:2Þffiffiffiffiffiffiffiffiffiffiffip

from which one can see that ~x1;2 ¼ ~a� ~a2þ4A~b

2~b
.

This demonstrates that Eq. (1.1) has a unique positive equilibrium point

~x ¼ ~aþ
ffiffiffiffiffiffiffiffiffiffiffi
~a2þ4A~b
p

2~b
. Because of every solution of Eq. (1.1) being positive, we only con-

sider the unique positive equilibrium in the sequel.
Now, we present some crucial necessities about the equilibrium point of a high-

er-order difference equation.

Definition 1. Let I be some interval of real numbers and let
f : Ikþ1 ! I
be a continuously differentiable function.
Then for every set of initial conditions x�k, . . . ,x�1, x0 2 I, the difference

equation
xnþ1 ¼ fðxn;xn�1; . . . ;xn�kÞ; n ¼ 0; 1; 2; . . . ð1:3Þ
has a unique solution fxng1n¼�k.
A point ~x is called an equilibrium point of Eq. (1.3) if
~x ¼ fð~x; ~x; . . . ; ~xÞ;

that is, xn ¼ ~x for n P 0 is a solution of Eq. (1.3), or equivalently ~x is a fixed point
of f.

Let F : (0,1)k+1 fi (0,1) be a continuous function defined by
Fðu0; u1; . . . ; ukÞ ¼
Aþ

Pk
i¼0aiuiPk

i¼0biui
: ð1:4Þ
The linearized equation of Eq. (1.1) associated with ~x is



A note for ‘‘On the rational recursive sequence xnþ1 ¼
Aþ
Pk

i¼0
aixn�iPk

i¼0
bixn�i

’’
17
ynþ1 ¼
Xk
j¼0

bjyn�j; ð1:5Þ
where
bj ¼
oFð~x; ~x; . . . ; ~xÞ

ouj
¼

aj � bj~x

~b~x
: ð1:6Þ
The characteristic equation of the linearized Eq. (1.5) is given by
kkþ1 ¼
Xk
j¼0

bjk
k�j: ð1:7Þ
Recently, the authors of Zayed and El-Moneam [15] studied Eq. (1.1) and ob-
tained some results as follows.

Conclusion 1 (Theorem 5 of Zayed and El-Moneam [15]). If all roots of the poly-
nomial Eq. (1.7) lie in the open unit disk ŒkŒ < 1, then
Xk

j¼0
jbjj < 1:
Conclusion 2 (Theorem 6 of Zayed and El-Moneam [15]). Let fxng1n¼�k be a posi-
tive solution of the difference Eq. (1.1) such that for some n0 P 0,
either xn P ~x for all n P n0

or xn 6 ~x for all n P n0:
Then {xn} converges to the equilibrium point ~x as n fi1.

Conclusion 3 (Theorem 7 of Zayed and El-Moneam [15]). If fxng1n¼�k is a positive
solution of Eq. (1.1) which is monotonic increasing, then it is bounded and
persists.

Conclusion 4 (Theorem 8 of Zayed and El-Moneam [15]). The positive equilib-
rium points ~x1;2 of the difference Eq. (1.1) are globally asymptotically stable. Let’s
evaluate the above Conclusions 1–4. First, we give a counter example to show that
the above Conclusion 1 is wrong.

Example 1. Consider the polynomial Eq. (1.7) with k = 1 with the form
k2 � kþ a ¼ 0; 0 < a 6 1
4
: ð1:9Þ
Obviously, the roots of this equation are given by
k1;2 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a
p

2
:
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Since 0 < a 6 1
4
, it is clear that
0 < k1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a
p

2
< 1 and 0 < k2 ¼

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a
p

2
< 1:
Namely, all roots of Eq. (1.9) satisfy ŒkŒ < 1. But
X1
i¼0
jbij ¼ 1þ a > 1:
This example shows that Conclusion 1 is wrong.
Conclusion 2 essentially reads that every non-oscillatory solution of Eq. (1.1)

approaches ~x. But a problem naturally rises: Are there non-oscillatory solutions of
Eq. (1.1)? This problem is not answered in Zayed and El-Moneam [15]. Similarly,
Conclusion 3 actually shows that every monotonic increasing positive solution of
Eq. (1.1) is bounded and persists. The problem is: Does Eq. (1.1) have monotonic
increasing solution? How about not monotonic increasing solutions of Eq. (1.1)?
Bounded or unbounded? Is every positive solution of Eq. (1.1) bounded and
persist? All these questions are not solved in Zayed and El-Moneam [15]. In this
paper, we will positively answer these questions.

Both Conclusion 4 and its proof are also wrong. In fact, although

~x2 ¼ ~a�
ffiffiffiffiffiffiffiffiffiffiffi
~aþ4A~b
p
2~b

is an equilibrium of Eq. (1.1), it is just a negative equilibrium

point of Eq. (1.1). And to consider its global asymptotic stability is meaningless
relative to all positive solutions of Eq. (1.1). On the other hand, in the proof of the
Theorem 8 of Zayed and El-Moneam [15],
Xk
i¼0

bi~xj � ai

~b~xj

�����
����� ¼

Xk
i¼0

bi~xi � ai

~b~xj

; j ¼ 1; 2
is obviously wrong if additional conditions are not added. In addition, the func-
tion F of (1.4) ((3) in Zayed and El-Moneam [15]) does not satisfy to be nonde-
creasing in each of its arguments. Thus, the theorem 3 in Zayed and El-
Moneam [15] cannot be used.

Based on the above analysis, the corresponding properties of Eq. (1.1) is worthy
further investigating.

The study of rational difference equation such as Eq. (1.1) is quite challeng-
ing and rewarding due to the fact that some results of rational difference
equations offer prototypes for the development of the basic theory of the global
behavior of nonlinear difference equations; moreover, the investigations of
rational difference equations are still in its infancy so far. To see this, refer to the
monographs [5,6] and the papers [7,2,11,9,10,12,4,13,3,14,8 and the references
cited therein].
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2. Main results

In this section, we will formulate our main results in this note.
Firstly, we will present the existence of non-oscillatory solutions of Eq. (1.1),

which has not been answered in Zayed and El-Moneam [15]. One can derive the
following result.

Theorem 2.1. Assume that
max
06i6k�1

ai

bi

� �
6 ~x <

ak

bk

:

Then Eq. (1.1) possesses non-oscillatory solutions asymptotically approaching its
equilibrium point ~x.

The main tool to prove this theorem is to make use of L. Berg’ Inclusion Theorem
[1]. Now, for the sake of convenience of statement, we first state some preliminaries.
Consider a general real nonlinear difference equation of order l P 1 with the form
Fðxn;xnþ1; . . . ;xnþlÞ ¼ 0; ð2:1Þ

where F : Rlþ1#R; n 2 N0. Let un and wn be two sequences satisfying wn > 0 and
wn = o(un) as n fi1. Then, (maybe under certain additional conditions), for any
given e > 0, there exist a solution fxng1n¼�l of Eq. (2.1) and an n0ð�Þ 2 Nsuch
un � �wn 6 xn 6 un þ �wn; n P n0ð�Þ: ð2:2Þ
Denote
Xð�Þ ¼ xn : un � �wn 6 xn 6 un þ �wn; n P n0ð�Þf g;
which is called an asymptotic stripe. So, if xn 2 X(e), then it is implied that there
exists a real sequence Cn such that xn = un + Cnwn and ŒCnŒ 6 e for n P n0(e).

We now state the inclusion theorem [1].

Lemma 2.2. Let F(x0,x1, . . . ,xl) be continuously differentiable when xi = yn+i,
for i = 0,1, . . . , l, and yn 2 X(1). Let the partial derivatives of F satisfy
Fxi
ðyn; ynþ1; . . . ; ynþlÞ � Fxi

ðun;unþ1; . . . ;unþlÞ

as n fi1 uniformly in Cj for ŒCj Œ 6 1,n 6 j 6 n + l, as far as Fxi

–0. Assume that
there exist a sequence fn > 0 and constants A0,A1, . . . ,Al such that both
Fðun; . . . ;unþlÞ ¼ oð fnÞ
and
wnþiFwi
ðun; . . . ;unþlÞ � Ai fn
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for i = 0,1, . . . , l as n fi1, and suppose there exists an integer s, with 0 6 s 6 l,
such that
jA0j þ � � � þ jAs�1j þ jAsþ1j þ � � � þ jAlj < jAsj:

Then, for sufficiently large n, there exists a solution fxng1n¼�l of Eq. (2.1) satisfying
Eq. (2.2).

Proof of Theorem 2.1. Put yn ¼ xn � ~x. Then Eq. (1.1) is transformed into
ðynþ1 þ ~xÞ
Xk
i¼0

biyn�i þ ~b~x

 !
� Aþ ~a~xþ

Xk
i¼0

aiyn�i

 !
¼ 0; n ¼ 0; 1; . . . :
So, for n = �k, � k + 1, . . . ,
ynþkþ1
Xk
i¼0

biynþk�i þ ~b~x

 !
þ
Xk
i¼0
ðbi~x� aiÞynþk�i ¼ 0: ð2:3Þ
An approximate equation of Eq. (2.3) is the equation
~b~xznþkþ1 þ
Xk
i¼0
ðbi~x� aiÞznþk�i ¼ 0; n ¼ �k;�kþ 1; . . . ð2:4Þ
provided that zn fi 0 as n fi1. The general solution to (2.4) is zn ¼
Pk

i¼0cit
n
i ,

where ci, i = 0,1, . . . ,k, are complex numbers and ti, i = 0,1, . . . ,k, are the
(k + 1) zeros of the polynomial
PðtÞ ¼ ~b~xtkþ1 þ
Xk
i¼0
ðbi~x� aiÞtk�i:
Obviously,
Pð1Þ ¼ ~b~xþ
Xk
i¼0
ðbi~x� aiÞ ¼ ~b~xþ ~b~x� ~a ¼ 2~b~x� ~a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 þ 4A~b

q
> 0
and
Pð0Þ ¼ bk~x� ak < 0:
So P(0)P(1) < 0. Hence, P(t) = 0 has a solution t0 2 (0,1). Now, choose the solu-
tion zn ¼ tn0 for this t0 2 (0,1). For some k 2 (1,2), define the sequences {un} and
{wn} respectively as follows:
un ¼ tn0 and wn ¼ tkn0 : ð2:5Þ

Obviously, wn > 0 and wn = o(un) as n fi1.

Now, define again the function
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Fðx0;x1; . . . ;xk;xkþ1Þ ¼ xkþ1
Xk
i¼0

bixk�i þ ~b~x

 !
þ
Xk
i¼0
ðbi~x� aiÞxk�i: ð2:6Þ
Then the partial derivatives of F w.r.t. x0,x1, . . . ,xk+1 respectively are
Fxi
¼ ðxkþ1 þ ~xÞbk�i � ak�i; i ¼ 0; 1; . . . ; k;

Fxkþ1 ¼
Pk
i¼0

bixk�i þ ~b~x:
ð2:7Þ
When yn 2 X(1),yn � un. So,
Fxi
ðyn; ynþ1; . . . ; ynþkþ1Þ � Fxi

ðun;unþ1; . . . ;unþkþ1Þ; i ¼ 0; 1; . . . ; kþ 1;
as n fi1 uniformly in Cj for ŒCj Œ 6 1,n 6 j 6 n+ k + 1.
Moreover, from the definition (2.6) of the function F and Eq. (2.5), after some

calculation, we find
Fðun;unþ1; . . . ;unþkþ1Þ ¼
Xk
i¼0

bit
2nþ2kþ1�i
0 þ

Xk
i¼0
ðbi~x� aiÞtnþk�i0 þ ~b~xtnþkþ10

¼
Xk
i¼0

bit
2nþ2kþ1�i
0 :
Now, choose fn ¼ tkn0 . Then one can easily see that
Fðun; . . . ;unþkþ1Þ ¼ oðfnÞ as n!1:

Again, from (2.5) and (2.7), one has that
wnþiFxi
ðun;unþ1; . . . ;unþkþ1Þ ¼ t

kðnþiÞ
0 ðbk�it

nþkþ1
0 þ bk�i~x� ak�iÞ;

i ¼ 0; 1; . . . ; k;

wnþkþ1Fxkþ1ðun;unþ1; . . . ;unþkþ1Þ ¼ t
kðnþkþ1Þ
0

~b~xþ
Pk
i¼0

bit
nþk�i
0

� �
:

Hence wnþiFxi
� Aifn; i ¼ 0; 1; . . . ; kþ 1, where
Ai ¼ tki0 ðbk�i~x� ak�iÞ; i ¼ 0; 1; . . . ; k;Akþ1 ¼ ~b~xt
kðkþ1Þ
0 :
Therefore, one has
jA1j þ � � � þ jAkþ1j ¼ tk0jbk�1~x� ak�1j þ t2k0 jbk�2~x� ak�2j þ � � � þ tkk0 jb0~x� a0j

þ ~b~xt
ðkþ1Þk
0

< t0ðbk�1~x� ak�1Þ þ t20ðbk�2~x� ak�2Þ þ � � � þ tk0ðb0~x� a0Þ
þ ~b~xtkþ10

¼ �ðbk~x� akÞ ¼ jA0j:
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Up to here, all conditions of Lemma 2 with l = k + 1 and s = 0 are satisfied.
Accordingly, we see that, for arbitrary e 2 (0,1) and for sufficiently large n, say
n P N0 2 N, Eq. (2.3) has a solution fyng

1
n¼�k in the stripe

un � ewn 6 yn 6 un + ewn, n P N0, where un and wn are as defined in (2.5).
Because un � �wn > un � wn ¼ tn0 � tkn0 > 0, yn > 0 for n P N0. Thus, Eq. (1.1)
has a solution fxng1n¼�k satisfying xn ¼ yn þ ~x > ~x for n P N0. Since Eq. (1.1) is
an autonomous equation, fxnþN0þkg

1
n¼�k still is its solution, which evidently satis-

fies xnþN0þk > ~x for n P �k. Therefore, the proof is complete. h

Remark 2.3. If we take un ¼ �tn0 in (2.5), then un þ �wn < �tn0 þ tkn0 < 0. At this
time, Eq. (1.1) possesses solutions fxng1n¼�k which remain below its equilibrium
for all n P �k, i.e., Eq. (1.1) has solutions with a single negative semi-cycle.

Remark 2.4. The existence and asymptotic behavior of non-oscillatory solution of
Eq. (1.1) has not been found to be considered in the known literatures.

Secondly, we answer the existing problem for Conclusion 3 (i.e., Theorem 7 of
Zayed and El-Moneam [15]). The following results are derived.

Theorem 2.5. Every positive solution of Eq. (1.1) is bounded and persists.

Proof. From Eq. (1.1) one see that, for n P 0,
xnþ1 ¼
Aþ

Pk
i¼0aixn�iPk

i¼0bixn�i
>

min06i6kai

Pk
i¼0xn�i

max06i6kbi

Pk
i¼0xn�i

¼
min
06i6k

ai

max
06i6k

bi

¼: P:
Then, for n P k+ 1,
xnþ1 ¼
Aþ

Pk
i¼0aixn�iPk

i¼0bixn�i
<

APk
i¼0bixn�i

þmax06i6kai

Pk
i¼0xn�i

min06i6kbi

Pk
i¼0xn�i

<
A

~bP
þmax06i6kai

min06i6kbi

;

from which one knows that every positive solution of Eq. (1.1) is bounded and
persists. The proof is completed. h

Remark 2.6. Theorem 2.5 demonstrates that, all positive solutions of Eq. (1.1),
regardless of monotonoc inreasing ones or not monotonoc inreasing ones, are
bounded and persist. So, with respect to the boundedness and persistence, it is
not important whether the solutions of Eq. (1.1) are monotonoc inreasing or not.

Finally, we state the global asymptotical stability for positive equilibrium point
~x of Eq. (1.1). The result is as follows.
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Theorem 2.7. Assume that bi = ai, i = 0,1, . . . ,k. Then the positive equilibrium
point ~x of Eq. (1.1) are globally asymptotically stable.

In order to prove this theorem, one needs the following lemma.

Let us consider the higher order difference equation
xnþ1 ¼ fðxn; xn�1; . . . ; xn�mÞ; n ¼ 0; 1; . . . ; ð2:8Þ

where m is a nonnegative integer and f : Rmþ1 ! R is a given function. Assume the
following:

There exists r0, s0 with �1 6 r0 < s0 61 such that:

(H1) f(u0, u1, . . . , um) is nonincreasing in each u0, u1, . . . , um 2 I0 where
I0 = (r0, s0] if s0 <1 and I0 = (r0,1) otherwise.

(H2) g(u) = f(u, . . . , u) is continuous and strictly decreasing for u 2 I0.
(H3) There is r 2 [r0,s0) such that r < g(r) 6 s0. If r0 = �1 or

limt!rþ
0
gðtÞ ¼ 1, then we assume that r 2 (r0,s0).

(H4) and (H3) holding implies that Eq. (2.8) has a unique fixed point x* in the open
interval (r,g(r)).

(H5) There is s 2 [r,x*) such that g2(u)> u for all u 2 (s,x*).

Lemma 2.8 [6, Theorem 1, P111]. If (H1)–(H3) and (H5) hold then x* is stable
and attracts all solutions of Eq. (2.7) with initial values in (s,g(s)).

Proof. From the known assumption bi = ai, i = 0,1, . . . ,k, one can see that ~a ¼ ~b

and ~x ¼ ~aþ
ffiffiffiffiffiffiffiffiffiffiffi
~a2þ4A~b
p

2~b
> 1.

The linearized equation of Eq. (1.1) associated with ~x is Eq. (1.5). Because of
Xk
i¼0

bi~x� ai

~b~x

����
���� ¼Xk

i¼0
bi

~x� 1

~b~x

����
���� ¼ ~x� 1

~x
< 1;
it follows from [2, Remark 1.3.1, P12] that ~x is locally asymptotically stable. It next
suffices to prove that ~x is globally attractive, which will completed by utilizing
Lemma 2.8.

Notice that Eq. (1.1) is now reduced into
xnþ1 ¼
APk

i¼0bixn�i
þ 1; n ¼ 0; 1; 2 . . . :
So, one can choose I0 = (0,1) in (H1) and r = 1 in (H3). Again,
gðuÞ ¼ fðu; . . . ; uÞ ¼ A

~bu
þ 1 is continuous and strictly decreasing for u 2 I0; more-

over, g2ðuÞ ¼ Au
Aþ~bu
þ 1 > u for all u 2 (0,x*), holding evidently. Thus, all conditions

of Lemma 2.8 are satisfied. The proof is over. h
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