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Parameters; eral properties. We also prove some general theorems for the explicit evaluations
Explicit values of the parameter A4, , and find many explicit values. Finally, we establish an

explicit formula for values of l//(e_z”"

of Ay, and give examples.
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) for any positive real number 7 in terms

1. Introduction

For ¢:=¢™, Im(z) > 0, define Ramanujan’s theta-functions ¢(q), ¥(g), and
A=q) as

E-mail address: nipennak@yahoo.com

1319-5166 © 2012 King Saud University. Production
and hosting by Elsevier B.V. All rights reserved.

Peer review under responsibility of King Saud
University. g
doi:10.1016/j.ajmsc.2012.01.004 ELSEVIER

Production and hosting by Elsevier



http://dx.doi.org/10.1016/j.ajmsc.2012.01.004
mailto:nipennak@yahoo.com
http://dx.doi.org/10.1016/j.ajmsc.2012.01.004
http://www.sciencedirect.com/science/journal/13195166

106 N. Saikia

o]

$(q) = > ¢" =15(0, 2z)

n=-—00
o]

ig) =D g =271g7%9,(0, 2),
n=0

and

f=a) = (a4 9). = ¢ (2),
where 1,, 95 are classical theta-functions [7, p. 464], n denotes the Dedekind
eta-function and

(a5 9) == [J(1 = ag").

k=0

In his first notebook [6, vol. I, p. 248] S. Ramanujan recorded many elementary
and non elementary values of ¢(¢) and v (g). All these values were proved by
Berndt [4, p. 325] and Berndt and Chan [5]. They also found new explicit values
¢(q). Recently, Yi [8,9] evaluated many new values of ¢(¢) and f{¢) using modular
identities, transformation formulae for theta-functions and the parameters
Fhns r;\,ﬂ, hy.n, and h;m, defined, respectively, by

() g = ek (1.1)
n KA g0/ — gk’ ’
PR () g = eV (1.2)
k,n k1/4q(kf])/24f(qlc) ) )
ey e Jf& N (1.3)
kK ¢(q")
and
N Mj qg= efzn\/”/_k, (14)

kn .
"k (=g
Baruah and Saikia [2] also obtained several new explicit values of the theta-func-

tion (g) by finding explicit values of the parameters g, and g, , which are de-
fined, respectively, by

I l//(_q) __ —m\/n/k
Sen = A gy (—gy 1T ! (1.5)
and
b j40) , q= e’”\/”/_k. (1.6)

gk,n = k1/4q<k‘1)/8¢(q")

In sequel to the above work, we now define a new parameter Ay, for any positive
real numbers k and »n and involving theta-functions ¢(g) and ¥(q) as
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(l)(_Q) q= e " n/k'
2k1/4qk/4lp(q2k) ’

In this paper, we study several properties of A4, , which are analogous to those
of hy, and gi, and also establish its connections with the parameter r;, and
Ramanujan’s class invariants. We prove some general theorems for the explicit
evaluations of A, by using some new theta-function identities and find many ex-
plicit values of A4 ,. We also offer a general formula for explicit evaluations of
Y(q) in terms of A, and find some particular values.

In Section 2, we record some transformation formulae for theta-functions and
list the explicit values of r, and Ay, from [1] and [8] for ready reference in the later
sections.

In Section 3, we prove some new theta-function identities which will be used in
the subsequent sections.

In Section 4, we study several properties of Ay, and establish relations connect-
ing Ay, with r;,, and Ramanujan’s class invariants.

In Section 5, we prove some general theorems for the explicit evaluations of 4y,
and find many explicit values of 4, by using the results in Sections 2—4.

Finally, in Section 6, we offer a general formula for the evaluations of (g) in
terms of Ay, and find some particular values.

To end this introduction, we define Ramanujan’s modular equation. Let K, K,
L, and L' denote the complete elliptic integrals of the first kind associated with the
moduli &, k', [, and 7, respectively. Suppose that the equality

!/
WKL (1.8)
"KTL

(1.7)

kn =

holds for some positive integer n. Then a modular equation of degree » is a rela-
tion between the moduli £ and / which is implied by (1.8). Ramanujan recorded his
modular equations in terms of o and f§, where o = k% and = *. We say that f§
has degree n over «. By denoting z, = ¢*(¢"), where ¢ = exp(—nK'/K), | ¢ < 1,
the multiplier m connecting o and f is defined by m = z;/z,.

2. Preliminary results

Lemma 2.1 [3, p. 43, Entry 27(1)]. If o and B are such that the modulus of each
exponential argument is less than 1 and off = 7, then

2vap(e ) = /B rp(—e ) (2.1)
Lemma 2.2 [3, p. 122, Entry 10(1), (i1), (ii1)]. We have
b(q) = V=1, (2.2)

d(—q) = vz (1l — ), .
d(—¢*) =z (1 — )", (2.4)



108 N. Saikia

Lemma 2.3. ([3, p. 123, Entry 11(iii), (iv), (v)]). We have

ol

v(q’) :%, (2.5)
i — 2

et - 26)
Z1 — —061/4

R e )

We also note that if we replace ¢ by ¢” in the Lemmas 2.2 and 2.3, then z; and «
will be replaced by z, and f3, respectively, where f§ has degree n over .

Lemma 2.4. ([3, p. 233, (5.2), (5.5)]). If m = z;/z3 and f has degree 3 over «, then

_(m+1)@E-—m)’ (m—1)G+m)

1— = 2.
163 and f 16m (28)
Lemma 2.5. ([3, p. 231, Entry 5(X)]). If B has degree 3 over «, then
3
m(l =) (1= )= 2 (1= )R (1~ )
=21 -1 -p}"~ (2.9)
Lemma 2.6. ([1,8]). If ry,, is as defined in (1.1), then
72.3:(14—\/5)]/4, 1”2.12:25/24(2(1+\/§+\/g))]/8, 1’4’4:25/16(14‘\/—2‘)[/4,
a1 =22 (1+v2)"2(16+15-24 4+ 12v/24+9. 2948 5= \/SJ”f
V5+/5 1+\f 1+f5/8(2+3f+f)‘/8
I'sp) = 1/4—7 Iys= 20 = \/-

- {2 14+35v2— 28\/_)}1/8 ey v,
r29—(\/_+\/_ (V3— \/—)2/1 ' =211+ V2)
r2"32:23/16(1—|—\/5)1/4(164—15~2]/4+12\/§+9-23/4)1/8, 72.3/2:2_7/24(1+\/§)1/47

/4
VVEE1+v3)
r2,6=21/24(1+\/§)]/4, Vz,s/z=< L ) )

a0 = G(l +V3) (W;+ ﬁ)) e G(l VB VE T+ ﬁ)) "

51/4+1 25/8
1‘2,25/2:W> Vz,sozm 1/8( JF\/_) :(2+‘/§)1/4»
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| 1/2
1*4,5:72(1+ﬁ+\/2(1+ﬁ)) , ra7=(8+3V7)"*
1/8 1/4
r4‘s:2”“(1+\/§)3/8<4+\/2+10\@> ,r4,9—%+%+?,

r4,25:%(3+<‘f5+xf5+\4/§), 1’4,492%(\/44—\/74—\/214—8\/74—\/\/7+\/21+8\/7>

g 9/8 1/8
r4,6:(1+\/§)3/8(2(1+\/§+\/6))/7 r4‘|0:(1+\/§) (2;3\/§+\/§) ’

raas=2"8(V34+V2)(1435V2-28V3)", 1y =271 (14 V3) P (14 V3 + V2345,
rp=2"2- 1)V V3) P4 V2 +2v3 434 (V3+1)) .

Baruah and Saikia [1] corrected Y1’s incorrect value of r 75.

2
)

From [8, p. 12, Theorem 2.1.2(i)—(iii)], we note that

k1 = lark,n = Fnk and Tk = 1/”k,n~ (2-10)

Lemma 2.7. ([8]). If hy,, is as defined in (1.3), then

1_21/3+41/3 2

- = h3<4 = 3
V3 V3-1

S

hys = (V3 =3)"*  hyy=

V5—1
h3,5: 2 .

3. Theta-function identities

In this section, we prove some new theta-function identities which will be used in
the subsequent sections.

B 2
Theorem 3.1. UP:% and Q :%
32 [4PF Q?

Proof. Transcribing P by using (2.3) and (2.6) and simplifying, we obtain
PZ
=—. 3.1
8+ P* 3.

Similarly, transcribing Q by using (2.4) and (2.7) and simplifying, we arrive at
01+ V1 —a)’ — (164 20%) V1 —a = 0. (3.2)

1 —«o
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Employing (3.1) in (3.2) and simplifying, we obtain

2P+ 4P +8P°Q° + P'Q* — 0" =0. (3.3)
Dividing (3.3) by P°Q? and rearranging the terms, we complete the proof. [J
$(=4) $(=4")
Theorem 3.2. If P=———~ and Q = ———~
ql/le(q4) q3/2lp(ql2)

P 0 32 P
then <a_%>+<PQ+E>+6<§+%>:O'

Proof. Transcribing P and Q using (2.3) and (2.6) and simplifying, we obtain

PZ Q2
X = l—a:m and y::\/l—ﬂzg_‘_Qz’ (34)

where f§ has degree 3 over a.
Employing (3.4) in Lemma 2.5, we obtain

mx + y = 2(xy)"* (3.5)
and

¥ 2(x)"*. (3.6)

m
Eliminating m between (3.5) and (3.6) and then simplifying, we arrive at

235 (Vay = 1) = (x = ») (). (3.7)
Squaring (3.7) and simplifying, we obtain

4/xp(xy +1) = x* + y* + 6xy. (3.8)

Squaring (3.8) and then factorizing by employing (3.4), we deduce that
(P* —32PQ — 6P*Q — 6PQ* — P*Q° — 0%
(P* +32PQ + 6P*Q + 6PQ* + P°Q° — 0*) = 0. (3.9)

It is examined that there exists a neighborhood about origin, where the first factor
of (3.9) is not zero. Then the second factor is zero in this neighborhood. By the
identity theorem the second factor is identically zero. Thus, we conclude that

P*4+32PQ 4+ 6P3Q + 6PQ* + P*Q° — 0* = 0. (3.10)
Dividing (3.10) by P?Q?* and rearranging the terms, we complete the proof. [
Theorem 3.3. If P = M and Q = $(4)

Y (q°) $(q*)
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432 —-2880" +1280° — 160°
B 0% — 60" +80* -3 ‘

Proof. Transcribing P by using (2.3) and (2.5) and Q by (2.2), we obtain

then P

1/4
P:2\/n_q<1—;a> and Q= Vm, (3.11)

where f§ has degree 3 over o and m = z;/z;.
From (3.11), we deduce that

1 —
P = 16Q4< ; “). (3.12)
Employing Lemma 2.4 in (3.12) and simplifying, we find that
Ptm — 13 +m)m* —160*(m+1)(3 —m)’ = 0. (3.13)

Substituting for m from (3.11) in (3.13) and then simplifying, we complete the
proof. [

4. Properties of 4, ,

Theorem 4.1. For all positive real numbers k and n, we have

(1) Ak,] = ]a
(i1) Ai 1jn = 1/ Ay .

Proof. Using the definition of 4, and Lemma 2.1, we easily arrive at (i). Replac-
ing n by 1/n in A4, and using Lemma 2.1, we find that 4, , A, 1/, = 1 which com-
pletes the proof of (i)). [

Remarks 4.2. By using the definitions of ¢(¢), ¥(¢g) and A, ,, it can be seen that
Ay, has positive real value and that the values of A, , increase as n increases when
k > 1. Thus, by Theorem 4.1(i), Ay, > 1foralln > 1ifk > 1.

Theorem 4.3. For all positive real numbers k, m, and n, we have

An1k,n

Ak,n/m = A .
nk,m

Proof. Using the definition of 4, ,, we obtain
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Amk,n _ n1/4¢<_e—2m /n/mk)
Ank,m m1/4¢(_€72n\ /m/nk)

(4.1)

Using Lemma 2.1 in the denominator of right hand side of (4.1) and simplifying,
we complete the proof.

Corollary 4.4. For all positive real numbers k and n, we have

Akz n Ank,nAk,n/k .

Proof. Setting k = n in Theorem 4.3 and simplifying using Theorem 4.1(ii), we
obtain

A2,y = Amicjc Atk (4.2)
Replacing m by n, we complete the proof. [
Theorem 4.5. Let k, a, b, ¢, and d be positive real numbers such that ab = cd. Then
Aa,bAkc.kz/ = Alca,kbAc,d-

Proof. From the definition of A4, ,, we deduce that, for positive real numbers £, a,
b, ¢, and d,

en(k—l)\/ﬁ/4w(e—2n\/tﬁ)

-1 _
Ak”’kbA"J’ - kl/4l//(e*2k”m) (4.3)
and
n(k—1)Ved/4 —2nved
e e
AreraA g = il ) (4.4)

kl/4l/j(e—2kn\/z'2')
Now the result follows readily from (4.3), (4.4) and the hypothesis ab = ¢d. O

Corollary 4.6. For any positive real numbers n and p, we have
Appp = Ay nApp-

Proof. The result follows immediately from Theorem 4.5 with a = p?
b=1lc=d=pandk =n U

Now, we give some relations connecting the parameter Ay, with r;, and
Ramanujan’s class invariants.
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Theorem 4.7. Let k and n be any positive real numbers. Then

2
,

(l) Akﬂn _ 4k.n’
k,n
2
,

(11) Ani = #Ak,n-
r4k,n

Proof. Let ¢ = e ™"/ Using the results ¢(—g) =ﬂ(_§)
from [3, p. 39] in the definition of A4y ,, we find that M4

_ f<_q2k)f2(_CI) ) (45)
2k A=) (™)

Employing the definition of ry, from (1.1) in (4.5), we complete the proof of (i).
Proof of (ii) follows easily from (i). [

and Y(q) =

k.

Corollary 4.8. For all positive real numbers n and p, we have

() A1y =13,
2
.
(ii) A, = -2,
n.n
(iil) Apnp = An_’npzAp_’pl"Z;z.

Proof. To prove (i), we set k = 1 in Theorem 4.7(i) and use the result r,; = 1
from (2.10). Proof of (ii) follows from Theorem 4.7(i) with k = n. To prove
(iii), we set a = 1,b = p>, ¢ = d = p, and k = n in Theorem 4.5 and use part (i).

Theorem 4.9. For all positive real number n, we have

2
(i) A,y =28,
g

2n

(ii) 4,2, = 2"%g, G~

Proof. (i) From [8, p. 18, Theorem 2.3.3(i)], we note that

8n = T2/2 (4.6)
where the class invariant g, is given by
gl‘l = 271/2q_]/247(_q)7

where ¢ := e ™" n is a positive real number, and y(¢) = (—¢;¢”).
Setting n = 2 and replacing k by n, we get
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},2
A,y =22 (4.7)

r2J‘l

where we used the result r4,, = r,x from (2.10).
Using the result (4.6) in (4.7), we complete the proof.

To prove (ii), we replace n by n/2 in part (i) and use the result
g4, = 2%, G, from [4, p. 187, Entry 2.1], where the class invariant G, is given
by G, = 272 (). O

5. Explicit evaluations of 4, ,

In this section, we prove some general theorems on Ay, and then use these theo-
rems to find explicit values of A4y .

Theorem 5.1. We have

1 24:,\°  [Azan\’
25/2 A2 2.n o 2,4n 8 _ 0
( " i A%An " A2’4n AZ,n "

Proof. We use the definition of A4y, in Theorem 3.1 to prove the theorem. [

Theorem 5.2. We have
(i) 42 = V2 4+ V2,
(ii) Aq = \/2(2 +V24 W)
(i) Ao = 1/V2+ V2= /552
@) A =1 2(24 V24 VTT32) =\ (V2= )VTT 32 - V) 2

Proof. Setting n = 1/2 in Theorem 5.1 and using Theorem 4.1(ii), we obtain

27/2 4 . ( )
—+ |45, +8=0. 5.1
A, \4, 7
Solving (5.1) and using the fact in Remark 4.2, we complete the proof of (i).
Again setting n = 1 in Theorem 5.1 and using Theorem 4.1(i), we obtain

1 4
2’2 (1 + A—2> + (A—2 — A§14> +8=0. (5.2)
2.4 24
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Solving (5.2) and using the fact in Remark 4.2, we prove (ii).
Proofs of (iii) and (iv) easily follow from parts (i) and (ii), respectively and the
Theorem 4.1(i1). O

Theorem 5.3. We have

A2 2 Azg 2 5 1 A2 A29
L) = (=) 42 Appdrgn +—— )+ 6+ ) =0
<A279n> (Az,n * 2nflosn + Az Az on * Az on - Asp

Proof. Proof follows from Theorem 3.2 and the definition of 4;,. U

Theorem 5.4. We have

(1) Ar3 = \/2+\/§+ V9 + 6V2,
(i) Aap =3 4+2V2+1/2(9+ 6V2),

(ili) 4213 = (3 —2V2)VI+6V2+V2 -2,
(iv) Aa10 = 1/2(9 + 6V2) — (3 +2V2).

Proof. Setting » = 1/3 in Theorem 5.3 and using Theorem 4.1(ii), we obtain

1 1
At v A2 ) 2P =0, 5.3
(A% 2,3> <A§’3 23 ( )

Solving (5.3) and using the fact in Remark 4.2, we arrive at (i).
Again setting # = 1 in Theorem 5.3 and using Theorem 4.1(i), we obtain
1 1
(— - A§79> + (6 +2%%) <A— - Aw) =0. (5.4)

2
A2,9 2.9

Solving (5.4) and using the fact in Remark 4.2, we complete the proof of (ii).
Noting A>3 = 1/A>3 and A5 19 = 1/A59 from Theorem 4.1(ii), we prove (iii)
and (iv), respectively. [

Theorem 5.5. We have

() 432 = (2+2v2)(1 + V2 +V6)) s
(ii) Asy = 2'/4(1 FV2) 16+ 1524 1 12v2 + 923/4> ,
(iii) Ass = 212(5 4+ \/3)1/2(51/4 _ 1)72 =275 4 \/5)1/2(51/4 i 1)2(\/§+ 1)2}
(iv) Asr =27"2(1+ 3" 2 +3v2+V35)"*,

(v) Aor =24 (V3 +V2)(1 +35v2 - 28V3)"*,

(vi) dgy = 210(1 4+ v2)*(16 + 15214 + 12v/2 4 2344
(vii) 4300 = 241 +V3)"%,

1/4
s
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(viii) Asjna = 2741 +V5)" P (V5 + 1+ V2)'4,
(ixX) Aasjpn = 27"8(V/S 4+ 1754+ 1).

Proof. The proof of the theorem follows from Theorem 4.7(i) and the correspond-
ing values of ry, from Lemma 2.6. [

One can easily find values of 431/, A4.1/4, As1/5, As 12, Aoj2, Ag.1/2. A3p21)2,
Asp 12, and Asspr 12 by using Theorems 5.5 and 4.1(i1).

Theorem 5.6. We have

(1) A, =1, 4
(i) 412 = 21/4(1 +v2) ",
(i) 4i5 = (2+3)",
(iv) A4 =251+ 2)'",

(V) Ais = <1+ﬁ+\/m>/z,

i) Ao = (1+v2)" (21 + V2 +6))1/4
1/2

(vi) 417 = (8+3v7)"",
viii) Aig =2"2(14v2)" (4 4+ V24 10v2) 1/4,
1/4 2
(ix) 419 = ;+3\é+\§§ ,
(x) 410 = (1 + \/5)9/4(2 +3v2 + \/5) 1/4/4,
(xi) A =24 (1+v2)(16 4+ 1524 +12v2+9-2%)1/4,
(xii) 415 = 24 (v3 +v2) (1 +35V2 — 28v/3) 1/4,

(xiii) A5 = (3+\4/§+\/§+ \V5_3>2/4,
(xiv) 449 = (\/4+\/7+ 21 + 87 + \/\/7+ V21 +8\/7>4/16.

Proof. The proof of the theorem follows from Corollary 4.8(i) and the corre-
sponding values of r4, from Lemma 2.6. [

The values of 4, forn =1,2,3,4,5,6,7,8,9, 10, 16, 18, 25, and 49 can
easily be calculated by applying Theorems 5.6 and 4.1(ii).

Theorem 5.7. We have

. 9— 18K, +8V3HS, — 34,
MUUOR, — 18K, + 83k, — 3
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Proof. A proof of the theorem follows directly from Theorem 3.3 and the defini-
tions of 4, and A, from (1.3) and (1.7), respectively. [

Theorem 5.8. We have

() 43 =3 (=3+2v3)" (30 - 183+ Vo9 +6V3)

(i) Asa=V2(~84+69v2+36v3—31v6) " (105-90v2+126V3—80v/6) ",
(i) Ass = (=57 =323+ 275 + 16V15) "' (3 83 - 9v5 4 8v15) "

W) Asg=(—1+2" + L. + + _ n -1/4
(iv) 43 1423129 6\/§/ 39418213 49223 _2\/3+22¥3/3 /

Proof. The proof of the theorem follows from Theorem 5.7 and the corresponding
values of /5, from Lemma 2.7. [

The values of 45, forn = 3,4, 5, and 9 can easily be found by applying The-
orems 5.8 and 4.1(i1).

Theorem 5.9. We have

Agg = 271/1231/8(\/5_ 1)—5/6(1 N \/5)_1/3(\/5+ \/5)2/3(_3 +2\/§>3/8
X (1 +\/§+\/§33/4>_1/3(4_\/§+2\/§+33/4(\/§+ 1))2/3

x <3o —18V3 41/ -9+ 6\/§> 71/4.

Proof. Setting » = 2 and p = 3 in Corollary 4.6, we get

Ass = A1g2A433. (5.5)
Again setting £ = 18 and n = 2 in Theorem 4.7(i), we find that

Ao = ”32.2”1_81,2 = ”%,72”2_,137 (5.6)

where we used the result r4, = r,; from (2.10).
Employing the values of r, 7, and r, 15 from Lemma 2.6 in (5.6), we obtain

s () (1 B) () v

x (4 —V242V3 4+ 343 + 1))2/3.
(5.7)

Employing the values of A5, from (5.7) and 45 3 from Theorem 5.8(i) in (5.5), we
complete the proof. [
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The value of Ag /¢ easily follows from Theorems 5.9 and 4.1(ii).

6. Explicit evaluations of y(q)

—2nm

In this section, we establish an explicit formula for (e
ber n and give some examples.

), for positive real num-

Lemma 6.1. Let a = n'/#*/T(3/4). Then
p(—e™) =a27 V4,
For proof, see Entry 1(ii) in Chapter 35 of [4, p. 325].
Theorem 6.2. For every positive real number n, we have

2—5/4aenn/4

—2nm\ __
w(e )_ nl/4An.n

Proof. Using the definition of 4,,,, and Lemma 6.1, we complete the proof. [

Theorem 6.3. We have

() Y(e ") = a2 %™,

(i) (o) = a2 e (2 - V)
(i) (o) = a2 94354 (30 - 18V3 + /-9 1 6V3) (-3 +2v3)
@) yle ™) =a2 e (1+2) (1641527 +12v2 4 9274)
(
(

1/2

(V) lﬂ e’w”) _ a277/45—]/465n/4(51/4 ) (5 i \/—) 1/2

(vi) 6712”) — qe’/20~17/123-3/8 (\/5 _ 1)5/6(1 " \/§)1/3 (\/z-i- \/§)_2/3
(-3+2v3) " x (14 V3+ V23 (4 - V24 2V3 3B+ 1)
(30— 18v3+ V=9 +6V3) v

Proof. The proof of the theorem follows from Theorem 6.2 and the corresponding
values of A4,, from Theorem 5.6(1), Theorem 5.2(1), Theorem 5.8(i), Theo-
rem 5.5(ii) and (iii), and Theorem 5.9. [

The values of y(e ") for n = 2, 4, and 8 can also be found in [4, p. 325].
References

[1] N.D. Baruah, N. Saikia, Modular equations and explicit values of Ramanujan—Selberg continued fraction,
Int. J. Math. Math. Sci. 2006 (2006) 1-15. Article ID 54901.



A new parameter for Ramanujan’s theta-functions 119

[2] N.D. Baruah, N. Saikia, Two parameters for Ramanujan’s theta-functions and their explicit values, Rocky
Mountain J. Math. 37 (6) (2007) 1747-1790.

[3] B.C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.

[4] B.C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1998.

[5] B.C. Berndt, H.H. Chan, Ramanujan’s explicit values for the classical theta-function, Mathematika 42 (1995)
278-294.

[6] S. RamanujanNotebooks, 2 vols., Tata Institute of Fundamental Research, Bombay, 1957.

[7] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1966,
Indian edition is published by Universal Book Stall, New Delhi, 1991.

[8] J. Yi, Construction and Application of Modular Equations, Ph.D. Thesis, University of Illinois at Urbana
Champaign, 2004.

[9] J. Yi, Theta-function identities and the explicit formulas for theta-function and their applications, J. Math.
Anal. Appl. 292 (2004) 381-400.



	A new parameter for Ramanujan’s  theta-functions and explicit values
	1 Introduction
	2 Preliminary results
	3 Theta-function identities
	4 Properties of Ak,n
	5 Explicit evaluations of Ak,n
	6 Explicit evaluations of ψ(q)
	References


