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Abstract. Let G be a group and x(G) be the set of element orders of G. Let k 2 x(G)

and sk be the number of elements of order k in G. Let nse(G) = {skŒk 2 x(G)}. In Kha-

tami et al. and Liu’s works L3(2) and L3(4) are unique determined by nse(G). In this

paper, we prove that if G is a group such that nse(G) = nse(U3(5)), then G @ U3(5).
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1. INTRODUCTION

A finite group G is called a simple K4-group, if G is a simple group with Œp(G) Œ = 4. In
1987, J.G. Thompson posed a very interesting problem related to algebraic number
fields as follows (see [13]).

Thompson’s Problem. Let T(G) = {(n,sn) Œn 2 x(G) and sn 2 nse(G)}, where sn is the
number of elements with order n. Suppose that T(G) = T(H). If G is a finite solvable
group, is it true that H is also necessarily solvable?

It is easy to see that if G andH are of the same order type, then nse(G) = nse(H) and
ŒG Œ = ŒH Œ. It was proved that: Let G be a group and M some simple Ki-group, i = 3,4,
then G @ M if and only if ŒG Œ = ŒM Œ and nse(G) = nse(M) (see [11,10]). And also the
group A12 is characterizable by order and nse (see [7]). Recently, all sporadic simple
groups are characterizable by nse and order (see [5]).
6 15983178716.

ress: liust@suse.edu.cn

under responsibility of King Saud University.

Production and hosting by Elsevier

ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.

oi.org/10.1016/j.ajmsc.2013.05.004

mailto:liust@suse.edu.cn
http://dx.doi.org/10.1016/j.ajmsc.2013.05.004


134 S. Liu
Comparing the sizes of elements of same order but disregarding the actual orders of
elements in T(G) of the Thompson Problem, in other words, it remains only nse(G),
whether can it characterize finite simple groups? Up to now, some groups especial
for L2(q), where q 2 {7, 8, 9, 11, 13}, can be characterized by only the set nse(G) (see
[6,12]). The author has proved that the group L3(4) is characterizable by nse (see
[8]). In this paper, it is shown that the group U3(5) also can be characterized by
nse(U3(5)).

Here we introduce some notations which will be used. If n is an integer, then we
denote by p(n) the set of all prime divisors of n. Let G be a group. The set of element
orders of G is denoted by x(G). Let k 2 x(G) and sk be the number of elements of order
k in G. Let nseðGÞ ¼ fskjk 2 xðGÞg. Let p(G) denote the set of prime p such that G con-
tains an element of order p. Ln(q) denotes the projective special linear group of degree n
over finite fields of order q. Un(q) denotes the projective special unitary group of degree
n over finite fields of order q. The other notations and notions are standard (See [1]).

2. SOME LEMMAS

Lemma 2.1. [2]. Let G be a finite group and m be a positive integer dividing ŒG Œ. If
Lm(G) = {g 2G Œgm = 1}, then m jLmðGÞjj .

Lemma 2.2. [9]. Let G be a finite group and p 2 p(G) be odd. Suppose that P is a Sylow
p-subgroup of G and n = psm with (p,m) = 1. If P is not cyclic and s > 1, then the
number of elements of order n is always a multiple of ps.

Lemma 2.3. [12]. Let G be a group containing more than two elements. If the maximal
number s of elements of the same order in G is finite, then G is finite and ŒG Œ 6 s(s2 � 1).

Lemma 2.4. [3, Theorem 9.3.1]. Let G be a finite solvable group and ŒG Œ = mn, where
m ¼ pa1

1 � � � par
r ; ðm; nÞ ¼ 1. Let p = {p1,. . .,pr} and hm be the number of Hall p-subgroups

of G. Then hm ¼ q
b1
1 � � � qbs

s satisfies the following conditions for all i 2 {1, 2,. . ., s}:

(1) qbi
i � 1 (mod pj) for some pj.

(2) The order of some chief factor of G is divided by qbi
i .

To prove G @ U3(5), we need the structure of simple K4-groups.
Lemma 2.5. [14]. Let G be a simple K4-group. Then G is isomorphic to one of the
following groups:

(1) A7, A8, A9 or A10.
(2) M11, M12 or J2.
(3) One of the following:
(a) L2(r), where r is a prime and r2 � 1 = 2a Æ 3b Æ vc with a P 1, b P 1, c P 1,
and v is a prime greater than 3.
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(b) L2(2
m), where 2m � 1 = u, 2m + 1 = 3tb with m P 2, u, t are primes, t> 3,

b P 1.
(c) L2(3

m), where 3m + 1 = 4t, 3m � 1 = 2uc or 3m + 1 = 4tb, 3m � 1 = 2u,
with m P 2, u, t are odd primes, b P 1, c P 1.
(4) One of the following 28 simple groups: L2(16), L2(25), L2(49), L2(81), L3(4), L3(5),
L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9), S6(2), Oþ8 ð2Þ, G2(3), U3(4),
U3(5), U3(7), U3(8), U3(9), U4(3), U5(2), Sz(8), Sz(32),

2D4(2) or
2F4(2)’.

Lemma 2.6. Let G be a simple K4-group and 53iGi24Æ32Æ53Æ7. Then G @ U3(5).

Proof. From Lemma 2.5(1)(2), order consideration rules out this case. So we consider
Lemma 2.5(3). We will deal with this with the following cases.

Case 1. G @ L2(r), where r 2 {3, 5, 7}.

Let r = 3, then Œp(r2 � 1)Œ = 1, which contradicts Œp(r2 � 1)Œ = 3.
Let r = 5, 7 then Œp(r2 � 1)Œ = 2, which contradicts Œp(r2 � 1)Œ = 3.

Case 2. G @ L2(2
m), where u 2 {3, 5, 7}.
Let u = 3, then m= 2 and so 5 = 3tb. But the equation has no solution in N, a
contradiction.
Let u = 5, then 2m � 1 = 5. But the equation has no solution in N.
Let u = 7, then m = 3, and 23 + 1 = 3tb. Thus t= 3 and b = 1. But t> 3, a
contradiction.

Case 3. G @ L2(3
m) We will consider the case by the following two subcases.
Subcase 3.1. 3m + 1 = 4t and 3m � 1 = 2uc.
We can suppose that t 2 {3, 5, 7}.
Let t = 3, 5, 7, the equation 3m + 1 = 4t has no solution.
Subcase 3.2. 3m + 1 = 4tb and 3m � 1 = 2u.
We can suppose that u 2 {3, 5, 7}
Let u = 3, 5, 7, then the equation 3m � 1 = 2u has no solution in N, a
contradiction.

In review of Lemma 2.5(4), G @ U3(5).

This completes the proof of the Lemma. h
3. MAIN THEOREM AND ITS PROOF

Let G be a group such that nse(G) = nse(U3(5)), and sn be the number of elements of
order n. By Lemma 2.3 we have G that is finite. We note that sn = k/(n), where k is the
number of cyclic subgroups of order n. Also we note that if n > 2, then /(n) is even. If
m 2 x(G), then by Lemma 2.1 and the above discussion, we have
/ðmÞjsm
mj
X
djm

sd

8<
: ð1Þ



136 S. Liu
Theorem 3.1. Let G be a group with nse(G) = nse(U3(5)) = {1, 525, 3500, 10,500,
12,600, 15,624, 15,750, 31,500, 36,000}, where U3(5) is the projective special unitary
group of degree 3 over field of order 5. Then G @ U3(5).

Proof. We prove the theorem by first proving that p(G) j {2, 3, 5, 7}, second showing
that ŒG Œ = ŒU3(5) Œ, and so G @ U3(5).

By (1), p(G) j {2, 3, 5, 7, 19, 37, 10,501, 12,601}. If m> 2, then /(m) is even, then
s2 = 525, 2 2 p(G).

In the following, we prove that 19 R p(G). If 19 2 p(G), then by (1), s19 = 15750. If
2Æ19 2 x(G), then by Lemma 2.1, /(2Æ19) Œs2Æ19 and so s2Æ19 = 12,600, 15,624, 15,750,
31,500, 36,000. On the other hand, 2.19Œ 1 + s2 + s19 + s2Æ19(=28,876, 31,900, 32,026,
47,776, 52,276), a contradiction. So s2Æ19 R nse(G). Therefore 2Æ19 R x(G). Now we
consider Sylow 19-subgroup P19 acts fixed point freely on the set of elements of order 2,
then ŒP19ŒŒ s2, a contradiction. Similarly we can prove that the primes 37, 10,501 and
12,601 do not belong to p(G). Hence we have p(G) j {2, 3, 5, 7}. Furthermore, by (1)
s3 = 3500, s5 = 15,624, and s7 = 36,000.

If 2a 2 x(G), then /ð2aÞ ¼ 2a�1js2a and so 0 6 a 6 6.
If 3a 2 x(G), then 1 6 a 6 3.
If 5a 2 x(G), then 1 6 a 6 4.
If 7a 2 x(G), then 1 6 a 6 2.

Therefore we have that {2} j p(G) j {2, 3, 5, 7}
Since exp(P2) = 2, 4, 8, 16, 32, 64, then by Lemma 2.1, jP2j j1þ s2 þ s22 þ � � � þ s26

and so ŒP2 ŒŒ26.

If 3 2 p(G) and exp(P3) = 3, 9, 27, then by Lemma 2.1, ŒP3 ŒŒ1 + s3 + s9 + s27 and
so ŒP3 ŒŒ35

If 5 2 p(G) and exp(P5) = 5, 25, 125, 625, then by Lemma 2.1,
jP 5j j1þ s5 þ s52 þ s53 þ s54 and so ŒP5 ŒŒ54.
If 7 2 p(G) and exp(P7) = 7, 49, then by Lemma 2.1, jP 7j j1þ s7 þ s72 and so
ŒP7 ŒŒ72.
Case a. p(G) = {2}. Therefore 126,000 + 3500k1 + 10,500k2 + 12,600k3 +15,624k4 +
15,750k5 + 31,500k6 + 36,000k7 = 2m, where k1,. . .,k7 and m are non-negative
integers. We rule out this case since Œx(G) Œ = 7 and Œnse(G) Œ = 9.

Case b. p(G) = {2, 3}. We know that exp(P3) = 3, 9, 27.

Let exp(P3) = 3. Then by Lemma 2.1, ŒP3 ŒŒ 1 + s3 and so ŒP3 ŒŒ32. If ŒP3 Œ = 3,
then since n3 = s3//(3), 5, 7 2 p(G), a contradiction. Therefore ŒP3 Œ = 9 and
126,000 + 3500k1 + 10,500k2 + 12,600k3 + 15,624k4 + 15,750k5 + 31,500k6 +
36,000k7 = 2mÆ32, where k1,. . .,k7, and m are non-negative integers and
0 6

P7
i¼1ki 6 3. Since 126,000 6 ŒG Œ 6 126,000 + 3Æ36000, then m= 14, which

is a contradiction since m is at most 7.
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Let exp(P3) = 9. Then by Lemma 2.1, jP 3j j1þ s3 þ s32 and so ŒP3 ŒŒ33. If ŒP3 Œ = 9,
then n3 ¼ s32=/ð32Þ, it follows that 5 or 7 belongs to p(G), a contradiction. Thus
ŒP3 Œ = 27, then 126,000 + 3500k1 + 10,500k2 + 12,600k3 + 15,624k4 +
15,750k5 + 31,500k6 + 36,000k7 = 2m�33, where k1,. . ., k7, and m are non-nega-
tive integers and 0 6

P7
i¼1ki 6 11. Since 126,000 6 ŒG Œ 6 126,000 + 11Æ36000,

then m= 14, 15, which is a contradiction since m is at most 7.
Let exp(P3) = 27. Then by Lemma 2.1, ŒP3 ŒŒ 1 + s3 + s9 + s27 and so ŒP3 ŒŒ35. If
ŒP3 Œ = 27, then n3 = s27//(27) and so 5, 7 2 p(G), a contradiction. If ŒP3 Œ = 81,
then 126,000 + 3500k1 + 10,500k2 + 12,600k3 + 15,624k4 + 15,750k5 +
31,500k6 + 36,000k7 = 2m�34, where k1,. . .,k7, and m are non-negative integers
and 0 6

P7
i¼1ki 6 16. Since 126,000 6 ŒG Œ 6 126,000 + 16Æ36000, then m = 11,

12, 13, which is a contradiction since m is at most 7. Similarly if ŒP3 Œ = 35, then
m= 10, 11, a contradiction.

Case c. p(G) = {2, 5}. We know that exp(P5) = 5, 25, 125, 625. If exp(P5) = 5, then
by Lemma 2.1, ŒP5 ŒŒ1 + s5 and so ŒP5 ŒŒ56.
If ŒP5 Œ = 5, then n5 = s5//(5) and so 3, 7 2 p(G), a contradiction.
If ŒP5 Œ = 52, then 126,000 + 3500k1 + 10,500k2 + 12,600k3 + 15,624k4 +
15,750k5 + 31,500k6 + 36,000k7 = 2m�52, where k1,k2,. . .,k7,m are nonnegative
integers and 0 6

P7
i¼1ki 6 3. Since 126,000 6 ŒG Œ 6 126,000 + 3Æ36000, then

the equation has no solution.
If ŒP5 Œ = 53,54, then similarly we get the same results.
If ŒP5 Œ = 55, then m = 6 or 7 and so 126,000 + 3500k1 + 10,500k2 +
12,600k3 + 15,624k4 + 15,750k5 + 31,500k6 + 36,000k7 = 2m�55 where k1,. . .k7,
m are non-negative integers and 0 6

P7
i¼0sk 6 17. But the equation has no

solution in N.
If ŒP5 Œ = 56, then similarly, the equation has no solution in N.

If exp(P5) = 52, then by Lemma 2.1, jP 5j j1þ s5 þ s52 and so ŒP5 ŒŒ53. If ŒP5 Œ = 52,
then 3 or 7 2 p(G) since n5 ¼ s52=/ð52Þ, a contradiction. If ŒP5 Œ = 53, then
126,000 + 3500k1 + 10,500k2 + 12,600k3 + 15,624k4 + 15,750k5 + 31,500k6
+ 36,000k7 = 2m�53, where k1,k2,. . .,k7,m are nonnegative integers and
0 6

P7
i¼1ki 6 8. Since 126,000 6 ŒG Œ 6 126,000 + 8Æ36000, then the equation

has no solution in N.
If exp(P5) = 53, then by Lemma 2.1, jP 5j j1þ s5 þ s52 þ s53 and so ŒP5 ŒŒ54. If
ŒP5 Œ = 53, then 3 or 7 2 p(G) since n53 ¼ s53=/ð53Þ, a contradiction. If
ŒP5 Œ = 54, then 126,000 + 3500k1 + 10,500k2 + 12,600k3 + 15,624k4 +
15,750k5 + 31,500k6 + 36,000k7 = 2m�54, where k1,k2,. . .,k7,m are nonnegative
integers and 0 6

P7
i¼1ki 6 13. Since 126,000 6 ŒG Œ 6 126,000 + 13Æ36000, then

the equation has no solution in N
If exp(P5) = 54, then ŒP5 Œ = 54. We also have 3 or 7 2 p(G), a contradiction.

Case d. p(G) = {2, 7}. We know that exp(P7) = 7, 49.Let exp(P7) = 7. Then by
Lemma 2.1, ŒP7 ŒŒ1 + s7 and so ŒP7 Œ = 7. Since n7 = s7//(7), then 3,
5 2 p(G), a contradiction. Let exp(P7) = 49. Then by Lemma 2.1,
jP 7j j1þ s7 þ s72 and so ŒP7 ŒŒ72. Since n7 ¼ s72=/ð72Þ, then 3, 5 2 p(G), a
contradiction.
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Case e. p(G) = {2, 3, 5}.

From Lemma 2Æ7,3Æ5 R x(G) Similarly 4Æ5,4Æ3 R x(G). It follows that the Sylow
5-subgroups of G acts fixed freely on the set of elements of order 3 of G and so
ŒP5 ŒŒs3 = 15,750 and ŒP5ŒŒ53. Similarly ŒP3 ŒŒ32.

We know that exp(P5) = 5, 25, 125.

If exp(P5) = 5, then by Lemma 2.1, ŒP5 ŒŒ1 + s5 and ŒP5 ŒŒ56. So ŒP5 ŒŒ53.

If ŒP5 Œ = 5, then n5 = s5//(5) and so 7 2 p(G), a contradiction.
If ŒP5 Œ = 52, then 126,000 + 3500k1 + 10,500k2 + 12,600k3 + 15,624k4 +
15,750k5 + 31,500k6 + 36,000k7 = 2m � 3n � 52, where k1,k2,. . .,k7,m and n are
nonnegative integers and 0 6

P7
i¼1ki 6 21. Since 126,000 6 ŒG Œ 6

126,000 + 21Æ36000, then (m, n) = (6, 4), (7, 4), (5, 5), (6, 5), (7, 5), but n is at most
3, a contradiction.
If ŒP5 Œ = 53, then similarly (m, n) = (7, 2) but m is at most 6, a contradiction.

If exp(P5) = 52, then by Lemma 2.1, jP5j j1þ s5 þ s52 and so ŒP5 ŒŒ53.

If ŒP5 Œ = 52, then 7 2 p(G) since n5 ¼ s52=/ð52Þ and s52 2 {3500, 10,500, 12,600,
31,500}, a contradiction. If s52 ¼ 36;000, then n5 = 1800. On the other hand, by
Sylow theorem, n5 = 5k + 1 for some integer k.
If ŒP5 Œ = 53, then 126,000 + 3500k1 + 10,500k2 + 12,600k3 + 15,624k4 +
15,750k5 + 31,500k6 + 36,000k7 = 2m � 3n � 53, where k1,k2,. . .,k7,m are nonnega-
tive integers and 0 6

P7
i¼1ki 6 38. Since 126,000 6 ŒG Œ 6 126,000 + 38Æ36000, then

we also have a contradiction as the case ‘‘exp(P5) = 5 and ŒP5 Œ = 53’’.

If exp(P5) = 53, then by Lemma 2.1, jP5j j1þ s5 þ s52 þ s53 and ŒP5 ŒŒ54. So
ŒP5 Œ = 53. Since n5 ¼ s53=/ð53Þ, then if s53 2 f3500; 10;500; 31;500; 36;000g, 7 2 p(G),
a contradiction; if s53 ¼ 36;000, then n5 = 360, on the other hand, by Sylow’s theorem
n5 = 5k+ 1 for some integer k, but the equation has no solution in N.

Case f. p(G) = {2, 3, 7}. We know that exp(P7) = 7, 49. Let exp(P7) = 7. Then by
Lemma 2.1, ŒP7 ŒŒ1 + s7 and so ŒP7 Œ = 7. Since n7 = s7//(7), then 5 2 p(G),
a contradiction. Let exp(P7) = 49. Then by Lemma 2.1, jP 7j j1þ s7 þ s72
and so ŒP7 ŒŒ72. Since n7 ¼ s72=/ð72Þ, then 5 2 p(G), also we get a
contradiction.

Case g. p(G) = {2, 5, 7}. Let exp(P7) = 7, 49. Then similarly as the Case f, 3 2 p(G), a
contradiction.

Case h. p(G) = {2, 3, 5, 7}. In the following, we first show that ŒG Œ = 24 Æ 32 Æ 53 Æ 7 or
ŒG Œ = 25 Æ 32 Æ 53 Æ 7 and second prove that G @ U3(5)).

Step 1. ŒG Œ = 24 Æ 32 Æ 53 Æ 7 or ŒG Œ = 25 Æ 32 Æ 53 Æ 7.

We have known that ŒP2 ŒŒ26, ŒP3 ŒŒ35, ŒP5 ŒŒ54 and ŒP7 ŒŒ72.

If 2Æ7 2 x(G), set P and Q are Sylow 7-subgroups of G, then P and Q are conjugate
in G and so CG(P) and CG(Q) are also conjugate in G. Therefore we have s2Æ7 = /
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(2Æ7) Æ n7 Æ k, where k is the number of cyclic subgroups of order 2 in CG(P7). Since
n7 = s7//(7) = 36,000/6, 36,000 Œs2Æ7 and so s2Æ7 = 36000. But by Lemma 2.1,
2Æ7 Œ 1 + s2 + s7 + s2Æ7, a contradiction. Therefore 2Æ7 R x(G), it follows that the
Sylow 2-subgroups of G acts fixed freely on the set of elements of order 7, ŒP2ŒŒs7 and
so ŒP2ŒŒ25. Similarly 3.7 R x(G) and ŒP3ŒŒ 32; 5Æ7 R x(G), ŒP5ŒŒ53 and ŒP7ŒŒ7.

Therefore we can assume that ŒG Œ = 2m Æ 3n Æ 5p Æ 7. Since 126,000 = 24 Æ 32 Æ 53 Æ
7 6 ŒG Œ = 2m Æ 3n Æ 5p Æ 7, then ŒG Œ = 24 Æ 32 Æ 53 Æ 7 or ŒG Œ = 25 Æ 32 Æ 53 Æ 7.

Step 2. G @ U3(5)

We first prove that there is no group such that ŒG Œ = 25 Æ 32 Æ 53 Æ 7 and
nse(G) = nse(U3(5)). Then by [11], we have G @ U3(5).

Let ŒG Œ = 25�32 Æ 53 Æ 7 and nse(G) = nse(U3(5)).

Let G be soluble. Since s7(G) = 36,000, then n7(G) = s7(G)/6 = 6000 = 24 Æ 53 Æ 3.
Thus by Lemma 2.4, 3 ” 1(mod 7), a contradiction. So G is insoluble.

Therefore G has a normal series 1/K/ L/G such that L/K is isomorphic to a simple
Ki-group with i= 3, 4 as 49 does not divide the order of G.

If L/K is isomorphic to a simple K3-group, from [4], L/K @ A5,A6, L2(7), L2(8), U3(4),
U4(2). Let L/K @ A5. Then ŒG/L ŒŒ 23 Æ 3 Æ 52 Æ 7.

Let A/K:¼CG/K(L/K). Then A/K \ L/K= 1.

We see that (G/K)/(A/K)[Aut(L/K)= S5 and so G/A[ S5 . Since A/K, L/K/G/K,
A/K · L/K 6 G/K. Therefore ŒL/K ŒŒG/A Œ and so G/A @ A5 or S5. i.e.,
ŒA Œ = 23 Æ 3 Æ 52 Æ 7 or 22 Æ 3 Æ 52 Æ 7. By Sylow theorem, n7(A) = 1, 8, 15, 50, 120. Since
A/G, we have that n7(A) = n7(G), and so s7(G) = 6, 48, 90, 300, 720, which contradicts
s7(G) 2 nse(G). Similarly we can rule out the other cases ‘‘L/K @ A6, L2(7), L2(8), U3(4),
U4(2)’’.

Hence G is isomorphic to a simple K4-group, then by Lemma 2.6, L/K @ U3(5).
So G/A 6 Aut(U3(5)). Therefore G/A @ U3(5), G/A @ 2�U3(5), G/A @ 3�U3(5) or
G/A @ S6 Æ U3(5).

If G/A @ U3(5), then order consideration ŒA Œ = 2. It follows that A is a normal
subgroup generated by a 2-central element of G. So there exists an element of order 2.7,
which is a contradiction. Similarly we can rule out the cases ‘‘G/A @ 2 Æ U3(5), G/
A @ 3 Æ U3(5) or G/A @ S6 Æ U3(5)’’.

Therefore ŒG Œ = 24 Æ 32 Æ 53 Æ 7 = ŒU3(5) Œ and so by [11], G @ U3(5).

This completes the proof of the theorem. h

Remark 3.2. From [12,6] and [8], some alternating groups, where q = 7, 8, 9, 11, 13,
L3(4), and U3(5) can be characterized by only nse. But for the other simple groups,
whether can it be characterized by nse? So we put forward the following problem:
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Problem 1. Let H is a simple group. Is a group G isomorphic to H if and only if
nse(G) = nse(H)?
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