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KEYWORDS Abstract Let @ and b be two even integers with 2 < a < b, and let k be a nonneg-
Graph; ative integer. Let G be a graph of order n. Its binding number bind(G) is defined as
Binding number; follows,

[a, b]-Factor;
(a, b, k)-Critical graph
[N (X)|

X1

In this paper, it is proved that G is an (a,b,k)-critical graph if bind(G) >
% and pn > @3 4 bk Furthermore, it is shown that the result
in this paper is best possible in some sense.
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1. Introduction

The graphs considered here will be finite undirected graphs without loops or multi-
ple edges. Let G be a graph. We use V(G) and E(G) to denote its vertex set and
edge set, respectively. For x € V(G), we denote by dg(x) the degree of x in G,
and by Ng(x) the set of vertices adjacent to x in G. The minimum vertex degree
of G is denoted by 6(G). For S ¢ V(G), Ng(S) = U,esNg(x). For a nonempty sub-
set S of V(G) we denote by G[S] the subgraph of G induced by S, and
G — S = G[V(G)\S] for a proper subset S of V(G). We say that S is independent
if Ng(S) NS = (. The binding number bind(G) of G is defined by

bind(G) = min{% L0~ X C V(G), No(X)# V(G)}.

Let a and b be integers with 0 < a < b. An [a, b]-factor of a graph G is defined as a
spanning subgraph F of G such that a < di(x) < b for every vertex x of G (where
of course dr denotes the degree in F). And if « = b = r, then an [a, b]-factor is
called an r-factor. A graph G is called an (a,b, k)-critical graph if after deleting
any k vertices of G the remaining graph of G has an [a,b]-factor. If G is an
(a, b, k)-critical graph, then we also say that G is (a, b, k)-critical. If a = b = r, then
an (a,b,k)-critical graph is simply called an (r, k)-critical graph. In particular, a
(1, k)-critical graph is simply called a k-critical graph.

Many authors [1,2] investigated the graphs factors. Liu and Yu [6] studied the
characterization of (r,n)-critical graphs. Liu and Wang [5] gave the characteriza-
tion of (a, b, k)-critical graphs with a < b. Li [3,4] showed three sufficient condi-
tions for graphs to be (a,b,k)-critical graphs. Zhou [9,11,10] obtained some
sufficient conditions for graphs to be (a, b, k)-critical graphs. Liu and Liu [7] gave
a binding number and minimum degree condition for a graph to be an («, b, k)-crit-
ical graph. The following result on (a, b, k)-critical graphs was proved by Zhou and
Jiang in [11].

Theorem 1 (/1). Let a, b and k be nonnegative integers with 1 < a < b. Let G be a
graph of order n with n = w + blfcl, and suppose that

(a+b—-1)(n—-1)

bind(G) > bn—(atb)—bk+2
Then G is an (a,b,k)-critical graph.
Zhou and Jiang [11] also showed that the cgrlf()h‘luon bind(G) > % in

Theorem 1 can not be replaced by bind(G) > m For the proof of opti-
mality (in this sense), they considered the case when a + b + k is odd and
n = letb (@b Dk g an integer. Then they constructed a non (a,b, k)-critical
graph G w1th bind(G) = % It is easy to see that in this case, either a
and b are both odd, or a is even and b is odd. Thus, the question is:
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Is the condition bind(G) > %‘optimal in the other cases? (i.e. when (a
and b are both even) or (a is odd and b is even)).
In this paper, we study this question when the integers a and b are both even. In

this case, we improve our previous result and obtain the following theorem.

Theorem 2. Let a and b be two even integers with 2 < a < b, and let k be a
nonnegative integer. Let G be a graph of order n with n > (“H’)(bﬂ +1)ka1’ and

suppose that

(a+b—-1)(n—-1)
bn—(a+b)—bk+3

Then G is an (a,b,k)-critical graph.

bind(G) >

If £ = 0 in Theorem 2, then we get the following corollary.

Corollary 1. Let a and b be two even integers with 2 < a < b. Let G be a graph of
order n with n = W‘;—+b_3) and suppose that

(a+b—-1)(n—1)
bn—(a+b)+3 "
Then G has an [a,b]-factor.

bind(G) >

2. Preliminary lemmas

Let @ and b be two positive integers with ¢ < b, and let G be a graph. For any
S c V(G), define

de_s(T) = _ do_s(x)
xeT
and
66(S, T) = b|S| + dg_s(T) — a|T],
where 7' = {x: x € V(G)\S, dg_s(x) < a — 1}. In the following, we define
h =min{dg_s(x) : x € T}.
Obviously, 0 < h<a— 1.

Liu and Wang [5] proved the following result which is applied in the proof of
the theorems.

Lemma 2.1 [5]. Let a, b and k be nonnegative integers with 1 < a < b, and let G be
a graph of order n =z a + k + 1. Then G is (a,b,k)-critical if and only if for any
ScV(G) with| S| >k
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5G(S7 T) 2 bk?
where T = {x:x € V(G)\S, dg_s(x) <a— 1}.

Lemma 2.2. [8]Let ¢ be a positive real, and let G be a graph of order n with
bind(G) > c. Then 6(G) > n — "=

Lemma 2.3. Let a and b be two even integers with 2 < a < b, and let k be a nonneg-
ative integer. Let G be a graph of order n. If 6G(S,T) < bk — 1 for some SC V(G),

then | S| < “=lmbiz,

Proof 1. By the definition of 4 and the condition of Lemma 2.3, we have

bk —1 = 66(S, T) = b|S| + ds_s(T) — a|T| = b|S| + h|T| — a|T|
= b|S| = (a—n)|T,
that is,
b|S| — (a—h)|T| — bk < —1. (1)

Case 1. /1 is even.
In this case, the left-hand side of (1) is even, thus

b|S| — (a —h)|T| — bk < 2. (2)
According to (2), 0 < h<a—1 and st +1171 < n, we obtain
bk —2 = b|S| — (a = )|T| = b|S| — (a — h)(n —|S])
= (a+b—h)|S| - (a— h)n,
which implies
(a—h)n+bk -2

S| <
151 a+b—h

Case 2. /i 1s odd.

Subcase 2.1. There exists x € T such that dg_g(x) = # + 1. In this case, we get
d-s(T) = h|T| + 1. (3)
In terms of (3), dg(S,T) < bk —1,0<h<a—1 and | S +17 < n, we have
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bk —1 = 06(S,T) = b|S| + dg_s(T) — a|T| = b|S|+ h|T| + 1 — a|T|
=b|S|—(a—=h)|T|+1 = b|S|—(a—h)(n—|S|) +1
=(a+b—n)|S|—(a—h)n+1,
that is,
(a—h)n+bk -2

<
151 < a+b—h

Subcase 2.2. V(G)\(SU T) # ().
In this case, we obtain

IS|+|T| <n—1. (4)
From (1) and (4) and 0 < /2 < a — 1, we have
bk —1 = b|S| — (a—h)|T| = b|S| — (@a—h)(n—1—|S])
=(a+b—-"n)|S|—(a—hn+ (a—h)
> (a+b—h)|S|—(a—h)n+1,
which implies
(a—h)n+ bk -2

<
1S < a+b—h

Subcase 2.3. V(G)\(SUT) = () and dg_s(x) = h for each x € T.In this case,
dgrr(x) = h for each x € T. Since h is odd, | 71 is even. Thus, the
left-hand side of (1) is even. Therefore, we obtain

bk —2 = b|S|— (a — h)|T|.
Combining this with | S| + |71 = n, we have
bk—2 = b|S|—(a—h)(n—|S|)=(a+b—h)|S|— (a— h)n,
that is,
(a —h)n+ bk —2
a+b—nh )
This completes the proof of Lemma 2.3. [

S| <

3. The proof of Theorem 2

Proof 2. Let G be a graph satisfying the hypothesis of Theorem 2. We prove the
theorem by contradiction. Suppose that G is not an (a, b, k)-critical graph. Then by
Lemma 2.1, there exists a subset S of V(G) with| S > k such that
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36(S, T) < bk —1, (5)

where T = {x:x € V(G)\S, dg_s(x) < a — 1}. Clearly, T# (0 by (5). Let & be as in
Section 2, and 0 < h<a— 1.
We shall consider various cases by the value of 4 and derive contradictions.

Case 1. h=0. Let X = {x: x€ T,ds_s(x) = 0}. Then X#( and Ng(V(G)\S)
N X = (. According to the definition of bind(G) and the condition of The-
orem 2, we have

(a+b—-1)(n—1)

[Ne(V(G)\ S)| _ n—|X]
bn— (a+b) — bk +3

VGI\S] a8 ©)

< bind(G) <

Now we prove the following claim. [

Claim 1. bn — (a + b) — bk + 2 > n—1.

(a+b)( a+b 3)

Proof 3. According to n > ) 2 and 2 < a < b, we have

b(bn— (a+b)—bk+2—(n—1))=b((b— 1)n— (a+b) —bk+3)
1)<(a+b)(a+b—3)+ bk
)

bn—(
> b(b— p b_1>—b(a+b)—b2k+3b

(b—1)(a+b)(a+b—3)+b’k—b(a+b)—b*k+3b
(b—1)(a+b)(a+b—3)—b(a+b—-3)
(a+b—3)((b—1)(a+b)—b)>(a+b—3)((a+b)—b)=a(a+b—3)>0.

Thus, we obtain

bn—(a+b)—bk+2>n—1.

This completes the proof of Claim 1. [

In terms of (6), n > W + 2, | X1 > 1 and Claim 1, we obtain

(a+b—1)(n—1)|S|>(a+b—1)(n—1)n— (bn—(a+b) —bk+3)n
+(bn—(a+b)—bk+3)|X|=(a—1)(n—1)n+(a—2)n
+ (bk—1)n+(bn—(a+b)—bk+3)|X| = (a—1)(n—1)n
(bk—1)n+ (bn— (a+b) — bk +3)|X|=(a—1)(n—1)n
(

+
+(bk—1)(n—1)4bk — 1+ (bn—(a+b) —bk+3)|X]|

> (a—1)(n—1)n+(bk—1)(n—1)+ (bn—(a+b) —bk+2)|X|
>(a—1)(n—1)n+(bk—1)(n—1)+(n—1)|X],
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which implies
(a—1)n+bk—1+|X|
ST )
On the other hand, by (5) and | S| + | 71 < n, we have
bk —1 = 06(S,T) = b|S| + dg-s(T) — a|T| = b|S| — (a— 1)[T] - |X]|
bS] —(a—1)(n—|S]) = [X| = (a+b—1)[S] = (a = 1)n — |X],

=
=

that is,

(a—1Dn+bk—1+|X|
a+b—-1

which contradicts (7).

S <

9

Case 2.1 <h<a-1.
Accordmg to Lemma 2.2 and the hypothesis of Theorem 2, we have

bn—(a+b)—bk+3 (a— 1)n+(a+b)+bk—3
a+b—1 a+b—1
We choose x; € T such that dg_g(x;) = h. Thus, we obtain
|S| +h = |S| + d-s(x1) = ds(x1) = 0(G).
Combining this with (8), we have
a—1)n+ (a+b)+ bk -3
a+b—1

3(G) > n— (8)

S| > 8(G) —h > ¢

—h. 9)

Subcase 2.1. h = 1. From (9), we get
(a—Dn+(a+b)+bk-3 [ — (a—1)n+ bk -2

a+b—1 a+b—1
which contradicts Lemma 2.3.

S| >

I

Subcase 2.2.2 < h < a— 1. In terms of Lemma 2.3 and (9), we obtain
(a—h)n—i—bk—2+h>(a—1)n+(a+b)+bk 3
a+b—h a+b—1

Set f(h) = “AC2 L Using n > “HUt=3) 4 b we have

_(a+b—=h)(—n)+(a—hn+bk—2 — —bn+bk—2
Ak (a+b—h) 1= (a+b—h)*
<—bn+bk—2 —((a+b)(a+b—3)+bk)+bk—2 1

< +1< +1=— <0.
(a+b—2)° (a+b—2)° at+b—2

(10)
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Thus, we get

flh) < f12). (11)

. (a=2)n+bk—2 (a—1)n+(a+b)+bk—3
Claim 2. =—57—+2 < a+b—1 :

Proof 4. According to n > M—i— Y and 2 < a < b, we have
(a+b—1)(a+b-2) Dn+ (a+b)+bk—3 (a—2)n+bk—2_2
a+b—1 a+b-2
—(at+b-2)a—Dn+(a+b—2)(a+b—3)+(a+b—2)bk
—(a—l—b—l)( = (a+b—1)bk—2a+b—1)at+b—23)

—bn—(a+b)(a+b—3)—bk > b(

—(a+b)(a+b—-3)—bk=—-2>20.
b b—3)—bk bb_kl 0

(a+b)atb—3) bk
b +b—1>

Thus, we have
(a—2)n+bk—2 (a—l)n+(a+b)+bk—3
+2<
a+b-2 a+b—1
This completes the proof of Claim 2. [

By Claim 2, we obtain

(a—2)n+ bk —2 (a=Dn+(a+b)+bk=3

2) = 2 <
f2) atb-2 at+bh—1
Combining this with (10) and (11), we get
(a—1)n+(a+b)+bk—3 (a—1Dn+ (a+b) + bk — 3

<Slh) <f2) <

a+b—1
It is a contradiction.
From the argument above, we deduce the contradictions. Hence, G is an
(a, b, k)-critical graph.
This completes the proof of Theorem 2. [

a+b—-1

Remark 1. Let us show that the condition bind(G) Aatb= Dl iy Theorem 2

> bn—{(ath)—bk+3
can not be replaced by bind(G) > % Let a,b and k be three even

integers such that 2 <a < b and “eth- 317) (@t2b-Dk is an integer. We write

n= ("+b)(“+b_3g+(“+2b_l)k, [=9tk 1 and m=n-2l=n—(a+b+k-2)=
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(a—1)(a+b— 2) 24+(at+b—1)k

. Clearly, m,n,/ are three positive integers. Let G = K, \/ IK>.
Let X = V(le) then for any X 6 X,| NG(X\{x})| = n — 1. By the definition of

bind(G), bind(G) = ‘foi?iﬁ} d = 4 = s = e e Let S = V(K,).T =
V(IK5), then S =m >kl 71 = 21. Thus, we obtain

06(S,T) = b|S| — a|T| + dg-s(T) = b|S| — a|T| + |T| = b|S| — (a — 1)|T]
(@—D)(a+b-2)—2+(a+b— Dk

=b
b

—(a—1)(a+b+k-2)
= bk — 2 < bk.

By Lemma 2.1, G is not an (a, b, k)-critical graph. In the above sense, the result of
Theorem 2 is best possible.

Remark 2. Zhou and Jiang [11] proved Theorem 1, and showed that the condition

bind(G) > % is sharp when either a and b are both odd, or a is even and b

is odd. In this paper, we improve the binding number condition by bind(G)

> % when a and b are both even, and show that the condition in this case

is sharp. Thus, we present the following problem:

Let a, b and k be three nonnegative integers such that 1 < a < b, ais odd and b

is even. Suppose that n is sufficiently large for a, b and k, and bind(G) >
(a+b—1)(n—1)

P (@ih) bk i3 Then, whether a graph G of order n is (a, b, k)-critical or not?
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