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1. Introduction and preliminaries

Recently there has been great interest in studying the behavior of rational and
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second order rational difference equations are of paramount importance in their
own right, and furthermore we believe that these results offer a prototype towards
the development of the basic theory of the global behavior of solutions of non-
linear difference equations of order greater than one. Many authors studied the
global behavior of the recursive sequence
xnþ1 ¼
aþ bxn

Aþ Bxn�1
; n ¼ 0; 1; . . . ; ð1:1Þ
where a; b; A; and B are nonnegative real numbers (see Jaroma et al., 1995; Kocic
and Ladas, 1993; Kocic et al., 1993). Eq. (1.1) is a very simple looking equation for
which it has long been conjectured that its equilibrium is globally asymptotically
stable. To this day, the conjecture has not been proven or refuted. Also, Hamza
and El-Sayed (1998) studied the stability of the recursive sequence
xnþ1 ¼
aþ bx2

n

1þ cxn�1
; n ¼ 0; 1; . . . ; ð1:2Þ
where a P 0 and b; c > 0: For related results see Berg (2002), El-Owaidy et al.
(2005a,b), Gibbsons et al. (2000), Jaroma et al. (1995), Aboutaleb et al. (2001),
Kelly and Peterson (1991), Kocic and Ladas (1993), Kocic et al. (1993), Kulenović
and Ladas (2002) and Stević (2001, 2002a,b,c, 2003).

In this paper we generalize the results due to Eq. (1.1) to the rational difference
equation
xnþ1 ¼
aþ bxn

Aþ Bxk
n�1

; n ¼ 0; 1; . . . ;
where a; b; A; B and k are positive real numbers with non-negative initial condi-
tions such that
Aþ Bxk
n�1 > 0; 8n P 0:
Let I be some interval of real numbers and let
f : I� I! I
be a continuously differentiable function. Then for every set of initial conditions
fx0; x�1g 2 I; the difference equation
xnþ1 ¼ fðxn;xn�1Þ; n ¼ 0; 1; . . . ; ð1:3Þ
has a unique solution fxng1n¼�1:

Definition 1.1. A point x 2 I is called an equilibrium point of Eq. (1.3) if
x ¼ fðx; xÞ;

or equivalently, x is a fixed point of gðxÞ ¼ fðx; xÞ.
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Definition 1.2. Let x be an equilibrium point of Eq. (1.3), then we have:

(i) The equilibrium point x of Eq. (1.3) is called locally stable if for every � > 0;
there exists d > 0 such that x�1; x0 2 I with
jx0 � xj þ jx�1 � xj < d;

then we have

jxn � xj < � for all n P �1:

(ii) The equilibrium point x of Eq. (1.3) is called locally asymptotically stable if it

is locally stable, and if there exists c > 0 such that x�1; x0 2 I with
jx0 � xj þ jx�1 � xj < c;

then we have

lim
n!1

xn ¼ x:
(iii) The equilibrium point x of Eq. (1.3) is called a global attractor if for every
x�1; x0 2 I we have
lim
n!1

xn ¼ x:
(iv) The equilibrium point x of Eq. (1.3) is called globally asymptotically stable if
it is locally asymptotically stable and a global attractor.

(v) The equilibrium point x of Eq. (1.3) is unstable if x is not locally stable.

Let
p ¼ @f

@u
ðx;xÞ and q ¼ @f

@v
ðx; xÞ
denote the partial derivatives of fðu; vÞ evaluated at the equilibrium point x of Eq.
(1.3), i.e. x ¼ fðx;xÞ. Then the equation
ynþ1 ¼ pyn þ qyn�1; n ¼ 0; 1; . . . ð1:4Þ

is called the linearized equation associated with Eq. (1.3), about the equilibrium
point x: Then its characteristic equation is
k2 � pk� q ¼ 0: ð1:5Þ

We need the following theorems.

Theorem 1.1 (Linearized Stability (Kulenović and Ladas, 2002)).

(a) If both roots of the quadratic Eq. (1.5) lie in the open unit disk jkj < 1; then the
equilibrium point x of Eq. (1.3) is locally asymptotically stable.

(b) If at least one of the roots of Eq. (1.5) has absolute value greater than one, then
the equilibrium point x of Eq. (1.3) is unstable.

(c) A necessary and sufficient condition for both roots of Eq. (1.5) to lie in the open
unit disk jkj < 1; is
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jpj < 1� q < 2:

In this case the locally asymptotically stable equilibrium x is also called a sink.

(d) A necessary and sufficient condition for both roots of Eq. (1.5) to have absolute

value greater than one is
jqj > 1 and jpj < j1� qj:
In this case xis a repeller.
(e) A necessary and sufficient condition for one root of Eq. (1.5) to have absolute
value greater than one and for the other to have absolute value less than one is
p2 þ 4q > 0 and jpj > j1� qj:
In this case the unstable equilibrium point x is called a saddle point.
(f) A necessary and sufficient condition for a root of Eq. (1.5) to have absolute
value equal to one is
jpj ¼ j1� qj;
or

q ¼ �1 and jpj 6 2:

In this case the equilibrium point x is called a non-hyperbolic point.
For this issue, we refer the reader to Elaydi (1999), Kelly and Peterson (1991),
Kocic and Ladas (1993) and Kulenović and Ladas (2002).

2. Stability analysis

In this paper we consider the following recursive sequence
xnþ1 ¼
aþ bxn

Aþ Bxk
n�1

; n ¼ 0; 1; . . . ; ð2:1Þ
where a; b; A; B and k are positive real numbers.
By changing the variables xn ¼

ffiffiffiffiffiffiffiffi
b=Bk

p
yn; Eq. (2.1) is reduced to
ynþ1 ¼
sþ yn
rþ ykn�1

; n ¼ 0; 1; . . . ; ð2:2Þ
where s ¼ a=b
ffiffiffiffiffiffiffiffi
B=pk

p
and r ¼ A=b:

We summarize the results of this section in the following three theorems.

Theorem 2.1. The following statements are true:

(1) Assume that r > 1: Then Eq. (2.2) has a unique equilibrium point in ð0; s
r�1Þ:

(2) Assume that r < 1: Then we have:

(i) If r P s; then Eq. (2.2) has a unique equilibrium point in ðs; 1�;
(ii) If r < s; then Eq. (2.2) has a unique equilibrium point in ð1; s

rÞ:

(3) Assume that r ¼ 1: Then y ¼

ffiffi
skþ1
p

is an equilibrium of Eq. (2.2).
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Proof. A point y is an equilibrium point of Eq. (2.2) if and only if y is a root of the
function
fðxÞ ¼ xkþ1 þ ðr� 1Þx� s: ð2:3Þ
s s kþ1

(1) Let r > 1; then f ð0Þ ¼ �s and f ðr�1Þ ¼ ðr�1 Þ > 0; whence f ðxÞ has a root

in ð0; s
r�1Þ.

(2) Let r < 1.

(i) Assume that r P s: Then f ðsÞ < 0 and f ð1Þ ¼ r � s P 0, whence f ðxÞ

has a root in ½s; 1�.
(ii) Assume that r < s; then f ð1Þ < 0 and f ðsrÞ ¼ skþ1�srk

rkþ1 > 0; whence f ðxÞ
has a root in ð1; s

rÞ.

The uniqueness of the equilibrium point in cases (1) and (2) is obvious.

(3) Let r ¼ 1; it is obvious that y ¼ ffiffi
skþ1
p

is the unique equilibrium point of Eq.
(2.2). h

In the sequel y denotes the unique equilibrium point of Eq. (2.2). In the follow-
ing Theorem we determine the conditions under which y is locally asymptotically
stable and unstable.

Lemma 2.1. The following statements are true:

(1) If r > ðk � 1Þyk; then the equilibrium point y is locally asymptotically stable.
(2) If r < ðk � 1Þyk; then the equilibrium point y is unstable, in fact a repeller.
(3) If r ¼ ðk � 1Þyk; then the equilibrium point y is a non-hyperbolic point.
Proof. The characteristic equation of the associated linearized Eq. (2.2) is
k2 ¼ pkþ q;
where
p ¼ 1

rþ yk
and q ¼ �kyk

ðrþ ykÞ :
The results follow directly by applying the Linearized Stability Theorem 1.1. h

In the following Theorem we determine more precisely necessary conditions (on
parameters) for y to be locally asymptotically stable and for y to be unstable.

Theorem 2.2. The following statements are true:

(1) Assume that k 6 1: Then the equilibrium point y is locally asymptotically
stable.

(2) Assume that k > 1: Then we have:
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(a) If kðr � 1Þ þ 1 6 0; then y is unstable;
(b) If kðr � 1Þ þ 1 > 0; then

kþ1

(i) s < r

1
k½kðr � 1Þ þ 1�=ðk � 1Þ k ) y is locally asymptotically stable;

(ii) s > r
1
k½kðr � 1Þ þ 1�=ðk � 1Þ

kþ1
k ) y is unstable, in fact a repeller;

(iii) s ¼ r
1
k½kðr � 1Þ þ 1�=ðk � 1Þ

kþ1
k ) y is a non-hyperbolic point.
Proof

(1) It is clear that for k 6 1; we have ðk � 1Þyk < r; so, by Lemma (2.1) y is
locally asymptotically stable.

(2) Now assume that k > 1.
(a) Assume that kðr � 1Þ þ 1 ¼ 0; so k � 1 ¼ r

1�r : Hence, ðk � 1Þyk > r; and y is
unstable, in fact a repeller. Now assume that kðr � 1Þ þ 1 < 0: Then
s

y
>

kðr� 1Þ þ 1

k� 1
:

Therefore, ðk� 1Þyk > r.

(b) Assume that kðr � 1Þ þ 1 > 0. It is easy to show that
ðk� 1Þyk < r() y >
sðk� 1Þ

kðr� 1Þ þ 1
;

ðk� 1Þyk > r() y <
sðk� 1Þ

kðr� 1Þ þ 1
;

ðk� 1Þyk ¼ r() y ¼ sðk� 1Þ
kðr� 1Þ þ 1

:

We have,

f
sðk� 1Þ

kðr� 1Þ þ 1

� �
¼ s

½kðr� 1Þ þ 1�
skðk� 1Þkþ1

½kðr� 1Þ þ 1�k
� r

" #
;

where fðxÞ is defined in (2.3).
(i) If s < r
1
k½kðr � 1Þ þ 1�=ðk � 1Þ

kþ1
k ; then sðk�1Þ

kðr�1Þþ1 < y; consequently ðk � 1Þyk < r:

Hence y is locally asymptotically stable.

(ii) If s > r
1
k½kðr � 1Þ þ 1�=ðk � 1Þ

kþ1
k ; then sðk�1Þ

kðr�1Þþ1 > y and ðk � 1Þyk > r; hence y is
unstable, in fact y is a repeller.

(iii) If s ¼ r
1
k½kðr � 1Þ þ 1�=ðk � 1Þ

kþ1
k ; then sðk�1Þ

kðr�1Þþ1 ¼ y; and y is a non-hyperbolic

point of Eq. (2.2). h

The following result is very useful in studying the global attractivity. By an

invariant interval I of a real function Gðx; yÞ we mean that Gðx; yÞ 2 I; 8x; y 2 I:
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Theorem 2.3 (Cunningham et al., 2001; Devault et al., 2001). Assume that Gðx; yÞ
is a continuous function which is non-decreasing (non-increasing) in x for each y and
non-increasing (non-decreasing) in y for each x. Assume that every solution of the
equation
ynþ1 ¼ Gðyn; yn�kÞ; n ¼ 0; 1; . . . ð2:4Þ
has an inferior limit k and superior limit K such that k and K belong to an invariant
interval I ¼ ½a; b� under G. Let y be a unique equilibrium point in I. If the system
x ¼ Gðx; yÞ and y ¼ Gðy; xÞ ð2:5Þ

ðx ¼ Gðy;xÞ and y ¼ Gðx; yÞÞ ð2:6Þ
has exactly one solution in I2; then y is a global attractor.

Proof. Let fyng
1
n¼�1 be a solution of (2.4) with initial conditions

y�k; y�kþ1; . . . ; y0 2 I; k ¼ limn!1 inf yn and K ¼ limn!1 sup yn. Assume that
Gðx; yÞ is non-decreasing (non-increasing) in x for each y and non-increasing
(non-decreasing) in y for each x: Take U1 ¼ GðK; kÞ ðU1 ¼ Gðk;KÞÞ and
L1 ¼ Gðk;KÞ ðL1 ¼ GðK; kÞÞ: For every � 2 ð0; k� aÞ; 9n0 2 N such that
k� � < yn < Kþ 2; 8n P n0:
Then
L1 6 k 6 K 6 U1:
Set Unþ1 ¼ GðUn;LnÞðUnþ1 ¼ GðLn;UnÞÞ and Lnþ1 ¼ GðLn;UnÞðLnþ1 ¼ GðUn;
LnÞÞ; n ¼ 1; 2; . . . One can see that
a 6 � � � 6 L2 6 L1 6 k 6 K 6 U1 6 U2 6 � � � 6 b:
Hence fUng is monotonically increasing to a number, say U 2 I; and fLng is
monotonically decreasing to a number, say L 2 I: This implies that ðU;LÞ 2 I2

is a solution of the system (2.5) and (2.6). Therefore, U ¼ L ¼ y ¼ k ¼ K: h

Corollary 2.1. Assume that Gðx; yÞ is a continuous function which is non- decreasing
(non-increasing) in x for each y and non-increasing (non-decreasing) in y for each x.
Let I ¼ ½a; b� be an invariant interval under Gðx; yÞ: Assume that y 2 I is a unique
equilibrium point of Eq. (2.4). Assume that J is a closed interval such that
Gðx; yÞ 2 I; 8x; y 2 J: If the system
x ¼ Gðx; yÞ and y ¼ Gðy;xÞ
ðx ¼ Gðy;xÞ and y ¼ Gðx; yÞÞ
has exactly one solution in I2; then y is a global attractor with basin Ikþ1:
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3. Boundedness of solutions

In this section we show that every solution of Eq. (2.2) is bounded and persists.
Moreover, if r > 1 we can determine a lower and upper bound for every solution
fyng

1
n¼�1 that depends on the coefficients and the initial value y0:
Theorem 3.1. Every solution of Eq. (2.2) is bounded from above and from below by
positive constants.

Proof. Let fyng be a solution of Eq. (2.2). Clearly, if the solution is bounded from
above by a positive constant M, then
ynþ1 P
s

rþMk
;

and so it is also bounded from below. Now assume for the sake of contradiction
that the solution is not bounded from above. Then there exists a subsequence
fy1þnmg

1
m¼0 such that limn!1nm ¼ 1; limm!1y1þnm ¼ 1, and y1þnm ¼ maxfyn : n

6 1þ nmg for m P 0: From Eq. (2.2) we see that
ynþ1 <
s

r
þ 1

r
yn for n P 0;
and so,
lim
n!1

ynm ¼ lim
n!1

ynm�1 ¼ 1:
Hence, for sufficiently large m,
0 6 y1þnm � ynm ¼
sþ ½ð1� rÞ � yknm�1�ynm

rþ yknm�1
< 0;
which is a contradiction and the proof is complete. h

Theorem 3.2. Assume that r – 1 and fyng
1
n¼�1 is a solution of Eq. (2.2). Then
a

1þ b að1�bn�2Þ
1�b þ y0b

n�2
h ik 6 yn 6 a

1� bn

1� b

� �
þ y0b

n; n P 2;
where a ¼ s
r
and b ¼ 1

r
.

Proof. By Eq. (2.2) we have

s

rþ ykn�1
6 ynþ1 <

s

r
þ yn

r
:

Set a ¼ s
r
and b ¼ 1

r
. By induction on n, we can get
a

1þ b að1�bn�2Þ
1�b þ y0b

n�2
h ik 6 yn 6 a

1� bn

1� b

� �
þ y0b

n; n P 2: �
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It is obvious that when r > 1, then every solution fyng
1
n¼�1 satisfies the following

inequality

a

1þ b½ a
1�bþ y0�

k
< yn <

a
1� b

þ y0; n P 2:
4. Global behavior of Eq. (2.2) when r > 1

In this section we investigate the global asymptotic stability of Eq. (2.2) when
r > 1:

Lemma 4.1. Let fyng
1
n¼�1 be a solution of Eq. (2.2), K ¼ limn!1 sup yn and

k ¼ limn!1 inf yn; then K and k satisfy the following two inequalities,
s

rþ ð s
r�1 Þ

k
6 k 6 K 6

s

r� 1
ð4:1Þ
and
sþ k

rþ Kk
6 k 6 K 6

sþ K

rþ kk
: ð4:2Þ
Proof. Inequality (4.1) is a direct consequence of Theorem (2.2), since r > 1. For
every � 2 ð0; kÞ; 9n0 2 N such that
k� � 6 yn 6 Kþ � for every n P n0;
so,
sþ k� �
rþ ðKþ �Þk

6 yn 6
sþ Kþ �
rþ ðk� �Þk

8n P n0 þ 1:
Therefore,
sþ k

rþ Kk
6 k 6 K 6

sþ K

rþ kk
: �
In the following we define
I0 ¼ 0;
s

r� 1

h i
:

Lemma 4.2. The interval I0 is invariant under the function
Gðx; yÞ ¼ sþ x

rþ yk
: ð4:3Þ
Proof. Let x; y 2 I0. Then
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0 <
s

rþ ð s
r�1 Þ

k
< Gðx; yÞ < sþ x

r
<

s

r� 1
: �
Theorem 4.1. If the system
y ¼ sþ y

rþ xk
and x ¼ sþ x

rþ yk
ð4:4Þ
has exactly one solution in I20; then the equilibrium point y is a global attractor.

Proof. Let fyng
1
n¼�1 be a solution of Eq. (2.2), K ¼ limn!1 sup yn and k ¼ limn!1

inf yn: By Lemma (4.1), we have K; k 2 I0 which is invariant under Gðx; yÞ. By The-
orem (2.3), y is a global attractor. h

The following Theorem determines conditions under which system (4.4) has ex-
actly one solution.

Theorem 4.2. Assume that k > 1: If s 6 ðr�1Þkþ1
k

h i1=k
, then system (4.4) has exactly

one solution in I20.

Proof. Assume that ðx; yÞ is a solution of system (4.4) in I2: Then we have
rþ xk ¼ s

y
þ 1 and rþ yk ¼ s

x
þ 1:
Hence,
xk � yk ¼ s

y
� s

x
¼ sðx� yÞ

xy
:

Assume towards a contradiction that x – y; ðsay y < xÞ. Hence,
xk � yk

x� y
¼ s

xy
:

By the Mean Value Theorem, there exists c 2 ðy;xÞ such that s
xy
¼ kck�1: Since

k > 1; we have s
xy
< kxk�1 and s

s
r�1
< s

y
< kxk < kð s

r�1 Þ
k
. This implies that
r� 1 < k
s

r� 1

� �k
;

which is a contradiction. Then system (4.4) has exactly one solution
ðx; yÞ ¼ ðy; yÞ: h

Now, we are ready to prove the main result of this section.

Theorem 4.3

(1) Assume that k 6 1: Then the equilibrium point y is globally asymptotically
stable.
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(2) Assume that k > 1. If s 6 ðr�1Þkþ1
k

h i1=k
, then the equilibrium point y is globally

asymptotically stable.
Proof. (1) Assume that k 6 1. In view of Theorem (2.2), it remains to show that
every solution fyng of Eq. (2.2) tends to y as n!1. Let fyng

1
n¼�1 be a solution of

Eq. (2.2). By Theorem (3.1) it is bounded by two positive numbers. Let
k ¼ lim
n!1

inf yn and K ¼ lim
n!1

sup yn
by inequality(4.2), we have
sþ k

rþ Kk
6 k 6 K 6

sþ K

rþ kk
;

from which we see that
kkð1� rÞ þ skk�1
6 sKk�1 þ Kkð1� rÞ:
If k < K, then
kkð1� rÞ þ skk�1 > sKk�1 þ Kkð1� rÞ;

which is a contradiction, whence k ¼ K, from which the result follows.

(2) Assume that k > 1 and s 6 ðr�1Þkþ1
k

h i1=k
. We have ðk�1Þ

kþ1sk

½kðr�1Þþ1�k < r, since
ðk� 1Þkþ1sk

r½kðr� 1Þ þ 1�k
<
ðk� 1Þkþ1ðr� 1Þkþ1

kr½kðr� 1Þ þ 1�k
¼ k� 1

k

� �
r� 1

r

� �
ðk� 1Þðr� 1Þ
kðr� 1Þ þ 1

� �k
< 1:
In view of Theorem (2.2), we get y is locally asymptotically stable. By combining
Theorems (4.1), and (4.2), we see that y is globally asymptotically stable. h

Open Problem (1): Investigate the global behavior of the solution of Eq. (2.2)

when r > 1 under the condition s > ðr�1Þkþ1
k

h i1=k
.

5. Global behavior of Eq. (2.2) when r ¼ 1

In this section, we investigate the global behavior of Eq. (2.2) when r ¼ 1; so Eq.
(2.2) yields
ynþ1 ¼
sþ yn
1þ ykn�1

; n ¼ 0; 1; . . . ð5:1Þ
Eq. (5.1) has a unique equilibrium point y ¼
ffiffi
skþ1
p
: Theorem (2.2) can be restated

as follows:
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Theorem 5.1. The following statements are true for Eq. (5.1).

(1) Assume that k 6 1: Then the equilibrium point y ¼
ffiffi
skþ1
p

is locally asymptot-
ically stable.

(2) Assume that k > 1: Then we have:
kþ1
(i) If s < 1=ðk � 1Þ k , then y is locally asymptotically stable.
(ii) If s > 1=ðk � 1Þ

kþ1
k , then y is unstable, in fact a repeller.

(iii) If s ¼ 1=ðk � 1Þ
kþ1

k , then y is a non-hyperbolic point.
ffiffip

Theorem 5.2. Assume that k < 1: Then the equilibrium point y ¼ skþ1 is globally
asymptotically stable.

Proof. Assume that k < 1: In view of Theorem (5.1), it remains to show that every
solution fyng of Eq. (5.1) tends to y as n!1: Let
k ¼ lim
n!1

inf yn and K ¼ lim
n!1

sup yn;
then we have
k P
sþ k

1þ Kk
and K 6

sþ K

1þ kk
:

Hence, Kkk
6 s 6 kKk and since k < 1; then k P K whence K ¼ k. h

Remark 5.1. The case where r ¼ 1 and k ¼ 1; was studied in Kulenović and Ladas
(2002).

Computer observations show that when k > 1 and s < 1=ðk� 1Þ
kþ1
k , then

y ¼
ffiffi
skþ1
p

of Eq. (5.1) is globally asymptotically stable. Also under the condition

s > 1=ðk� 1Þ
kþ1
k , the following properties hold

(1) When s > 1; then every solution converges to a five-period solution.
(2) When s ¼ 1; then every solution converges to a twenty-period solution.

6. Global behavior of Eq. (2.2) when r < 1

In this section we show that the equilibrium point y of the equation
ynþ1 ¼
sþ yn
rþ ykn�1

; n ¼ 0; 1; . . . ; ð6:1Þ
where r < 1; is a global attractor with some basin that depends on the coefficients.
Let y be a unique equilibrium point of Eq. (6.1). In the sequel define
Gðx; yÞ ¼ sþ x

rþ yk
:
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The following lemma determines invariant intervals dependent on r, s, and k.

Lemma 6.1. Assume that k < 1.

(1) If r P s
k�1

k , then I ¼ ½1; s
r� is invariant under G and I contains y.

(2) If r P 1þ s� sk, then I ¼ ½s; 1� is invariant under G and I contains y.

Proof. (1) The condition r P s
k�1
k , implies that s > 1. Hence by Theorem (2.1),

y 2 ð1; s
r
Þ. Let x; y 2 ½1; s

r
�, then we have
1 6
sþ 1

1þ ðs
r
Þk
6 Gðx; yÞ ¼ sþ x

rþ yk
6

sþ s
r

rþ 1
¼ s

r
:

(2) The condition r P 1þ s� sk; implies that s < 1. Also we can see that s 6 r:
Hence by Theorem (2.1) y 2 ½s; 1�: Let x; y 2 ½s; 1�; then we have
s ¼ sþ s

1þ 1
6 Gðx; yÞ ¼ sþ x

rþ yk
6

sþ 1

rþ sk
6 1: �
Consider the following system
y ¼ sþ y

rþ xk
and x ¼ sþ x

rþ yk
: ð6:2Þ
In the next theorem we determine some conditions under which system (6.2) has
exactly one solution.

Theorem 6.1. Assume that k < 1.

(i) If r
k

k�1 < s < ð1k rkþ1Þ
1
k, then system (6.2) has exactly one solution ðx; yÞ 2 ½1; s

r �
2
.

(ii) If k < s 6 r, then system (6.2) has exactly one solution ðx; yÞ 2 ½s; 1�2.

Proof. Assume that ðx; yÞ 2 I2 is a solution of system (6.2), and y < x, where
I ¼ ½1; s

r
� in statement (i) and I ¼ ½s; 1� in statement (ii). Then as before
xk � yk

x� y
¼ s

xy
:

There exists c 2 ðy; xÞ such that s
xy
¼ kck�1 < kyk�1. Hence kyk P s

x
.

(i) Since the condition r
k

k�1 < s < ð1k rkþ1Þ
1
k implies sk�1 < rk, then ½1; s

r� is an invari-
ant under G by Lemma (6.1). Since 1 6 x; y 6 s

r, then kðsr Þ
k P kyk P s

x P
rs
s ¼ r, whence sk P rkþ1

k , which is a contradiction. Therefore, x ¼ y ¼ y.
(ii) Since s 6 x; y 6 1, then k P kyk P s

x P s, which is a contradiction. There-
fore, x ¼ y ¼ y. h

Now, we are ready to prove the main result of this section.
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Theorem 6.2. Assume that k < 1.

(i) If r
k

k�1 < s < ð1k rkþ1Þ
1
k, then y is globally asymptotically stable with basin ½1; s

r �
2
.

(ii) If 1� r 6 sk � s and k < s, then y is globally asymptotically stable with basin
½s; 1�2.

Proof. (i) By Theorem (2.2) y is locally asymptotically stable and by Lemma (6.1)
the interval ½1; s

r
� is invariant under G and contains y. By Theorem (6.1) the con-

dition r
k

k�1 < s < ð1
k
rkþ1Þ

1
k, implies that system (6.2) has a unique solution in

½1; s
r
�2. By Corollary (2.1) y is a global attractor with basin ½1; s

r
�2. (ii) By the same

argument of (i) we can prove (ii). h

Open Problem (2): Investigate the global behavior of the solution of Eq. (2.2) when
r < 1 and k > 1.
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