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Abstract This paper is a unified study of real-valued functions on an infinite

network, with results generalizing some of those proved in the case of random

walks, finite and infinite electrical networks and Schrödinger operators.
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1. Introduction

Random walks, finite and infinite electrical networks and Schrödinger equations
are three of the important topics which make an extensive use of the discrete
Laplacian operator and its properties. Though the problems are varied in these
three cases, the methods of solving them have generally a common approach based
on the properties of the discrete Laplace operator. In this paper, we introduce the
notion of aðxÞ-Laplacian operator on the set of real-valued functions defined on
an infinite network X, where aðxÞ denotes some real-valued function on X. The
potential theory developed for the aðxÞ-Laplace operator covers the important
developments with the above-mentioned three theories.
aud University. Production

.V. All rights reserved.
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2. Preliminaries

Let X denote an infinite network. That is, X is an infinite graph with a countable
number of vertices and a countable number of edges, each edge e ¼ ½x; y� joining
some pair of vertices x and y; there are no self loops, that is no edge of the form
e ¼ ½x; x�; if e ¼ ½x; y� is an edge, then we write x � y and say that x and y are
neighbours. We assume that X is connected, that is given any two vertices a and
b in X there exists a finite path fa ¼ a0; a1; . . . ; an ¼ bg connecting a and b; and
that X is locally finite, that is for any vertex x, the number of neighbours of x is
finite. For any pair of vertices x and y, there is an associated real number
tðx; yÞP 0 such that tðx; yÞ > 0 if and only if x � y. Consequently, note that
for any vertex x;

P
ytðx; yÞ ¼ tðxÞ > 0. We do not assume that tðx; yÞ ¼ tðy; xÞ.

Let E be a subset of X. We say that a vertex x in E is an interior vertex of E if
and only if x and all its neighbours in X are in E. The set of all interior points of E
is denoted by E

�
and the boundary of E is @E ¼ E n E

�
. Let u be a function defined

on E. For x 2 E
�
, the Laplacian of u at x is defined as
DuðxÞ ¼
X
y

tðx; yÞ½uðyÞ � uðxÞ�:
u is said to beD-superharmonic (D-subharmonic andD-harmonic, respectively) onE
if and only if DuðxÞ 6 0 (DuðxÞP 0 and DuðxÞ ¼ 0, respectively) for every x 2 E

�
.

In the case of random walks in a tree T (Cartier, 1972, Anandam and Bajunaid,
2007) which is considered as an infinite network without closed paths with transi-
tion probabilities fpðx; yÞg, a real-valued function u is said to be D-superharmonic
on T if and only if

P
ypðx; yÞ½uðyÞ � uðxÞ� 6 0 for each x. Since

P
ypðx; yÞ ¼ 1, u is

D-superharmonic if and only if uðxÞP
P

ypðx; yÞuðyÞ. A function v is said to be
D-subharmonic if and only if �v is D-superharmonic; and a function h is said to
be D-harmonic if and only if h and �h are D-superharmonic.

In the case of an infinite electrical network X, conductance being given by
cðx; yÞ ¼ cðy; xÞ, a real-valued function u is D-superharmonic if and only ifP

ycðx; yÞ½uðyÞ � uðxÞ� 6 0 for each x 2 X. Since cðxÞ ¼
P

ycðx; yÞ > 0 for each

x, u is D-superharmonic if and only if uðxÞP
P

y
cðx; yÞ
cðxÞ uðyÞ.

In the case of the Schrödinger equation DuðxÞ ¼ qðxÞuðxÞ on X with
q P 0; qX0; u is said to be q-superharmonic if and only if

P
ycðx; yÞuðyÞ

6 ½cðxÞ þ qðxÞ�uðxÞ for each x, that is uðxÞP
P

y
cðx; yÞ

cðxÞþqðxÞ uðyÞ.
If we define aðx; yÞ ¼ pðx; yÞ or cðx; yÞ

cðxÞ or cðx; yÞ
cðxÞþqðxÞ depending on the above three

cases, then more generally we can deal with these cases in a single study.

3. aðxÞ-Harmonic sheaf

Let X denote an infinite network with a countable number of vertices and a count-
able number of edges. Denote x � y to mean that there is an edge ½x; y� joining x
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and y, in which case the vertices x and y are said to be neighbours. We assume that
X is connected and locally finite. On X, given a system of real numbers faðx; yÞg
such that aðx; yÞP 0 for any pair of vertices x and y and aðx; yÞ > 0 if and only if
x � y. Here aðx; yÞ may or may not be symmetric. Consider an arbitrary real-val-
ued function aðxÞ on X. A real-valued function u on a subset E in X is said to be
aðxÞ-superharmonic on E if and only if aðxÞuðxÞP

P
yaðx; yÞuðyÞ for every x 2 E

�
.

Similarly aðxÞ-harmonic functions and aðxÞ-subharmonic functions on E are
aðxÞuðxÞ ¼

P
yaðx; yÞuðyÞ and aðxÞuðxÞ 6

P
yaðx; yÞuðyÞ for every x 2 E

�
, respec-

tively. If we write AuðxÞ ¼ �aðxÞuðxÞ þ
P

yaðx; yÞuðyÞ, then u is said to be aðxÞ-
superharmonic if and only if AuðxÞ 6 0. This system defines a new harmonic sheaf
named as aðxÞ-harmonic sheaf. The new harmonic sheaf has lots of properties that
are similar to D-harmonic sheaf (Abodayeh and Anandam, 2008). Here we prove
all the discrete potential-theoritic results related to the aðxÞ-harmonic sheaf in a
more general way.

Note 3.1. If aðxÞ ¼ 1 for every x 2 X, then we have a situation as in random
walks. If aðxÞ ¼ aðxÞ ¼

P
yaðx; yÞ for every x 2 X, then we have the situation as in

electrical networks. If aðxÞP aðxÞ for every x 2 X and if aðx0Þ > aðx0Þ for at least
one x0 2 X, then we have the situation as in Schrödinger operators.
3.1.1. If s1 and s2 are aðxÞ-superharmonic functions on a subset E of X, then
s ¼ inffs1; s2g is also aðxÞ-superharmonic on E.
Proof. Let x0 2 E
�
. Since s ¼ inffs1; s2g, assume that sðx0Þ ¼ s1ðx0Þ. Since s1 is

aðxÞ-superharmonic,
aðx0Þsðx0Þ ¼ aðx0Þs1ðx0ÞP
X
y

aðx0; yÞs1ðyÞP
X
y

aðx0; yÞsðyÞ:
Hence s is aðxÞ-superharmonic on E. h
3.1.2. If un is a sequence of aðxÞ-superharmonic (or aðxÞ-harmonic) functions on a

subset E of X, and if uðxÞ ¼ lim

n!1
unðxÞ exists and is finite for all x 2 E, then u

is aðxÞ-superharmonic (or aðxÞ-harmonic) on E.
Proof. Since un is aðxÞ-superharmonic, AunðxÞ 6 0. That is,
�aðxÞunðxÞ þ
X
y

aðx; yÞunðyÞ 6 0:
Taking limits when n!1, we obtain
�aðxÞuðxÞ þ
X
y

aðx; yÞuðyÞ 6 0:
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Hence u is aðxÞ-superharmonic on E. Similar argument shows that if each un is
aðxÞ-harmonic on E, then u ¼ lim un is also aðxÞ-harmonic on E. h
3.1.3. If s P 0 is an aðxÞ-superharmonic function on X and sðx0Þ ¼ 0 for some
x0 2 X , then s � 0.
Proof. Suppose sðx0Þ ¼ 0 for some x0. Since s is aðxÞ-superharmonic, Asðx0Þ 6 0.
That is,
�aðx0Þsðx0Þ þ
P
y

aðx0; yÞsðyÞ 6 0:

This implies that
P
y

aðx0; yÞsðyÞ 6 0

andhence sðyÞ ¼ 0; forevery y � x0:
Since X is connected, s � 0. h
Note 3.2. If aðx0Þ 6 0 for some x0 in X, then there cannot be any positive aðxÞ-
superharmonic function on X.

For, suppose there exists a positive aðxÞ-superharmonic function s on X. Then
AsðxÞ 6 0.

Now,
�aðx0Þsðx0Þ þ
P
y

aðx0; yÞsðyÞ 6 0:

Hence;
P
y

aðx0; yÞsðyÞ 6 aðx0Þsðx0Þ 6 0

which implies that sðyÞ ¼ 0; forevery y � x0:
This implies that s � 0, since X is connected.

Remark 3.3. If there is no positive aðxÞ-superharmonic function on X, then there
is no significance in proceeding further with this paper. To prove results in
potential theory globally, we need at least one positive aðxÞ-superharmonic
function on X. So we assume in the sequel that aðxÞ > 0 for all x 2 X.

Lemma 3.4. Let F ¼ ffigi2I be an increasingly filtered family of functions on a net-
work X. Suppose fðxÞ ¼ supi2IfiðxÞ is finite for each x 2 X. Then there exists an
increasing sequence of functions fn on X; ffng is a sequence of the family F, such
that fðxÞ ¼ lim

n!1
fnðxÞ.
Proof. Let y; z 2 X. Then there exists two increasing sequences of functions ff0ng
and ff00ng from ffig such that fðyÞ ¼ lim

n!1
f0nðyÞ and fðzÞ ¼ limn!1f

00
nðzÞ. Now F

being a filtered family, choose a subsequence ff000n g of this family constructed as
follows
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Let f0001 P maxff01; f001g:

Inductively define f000n P maxff0n; f00n; f000n�1g for n > 1. Then ff000n g is an increasing se-
quence of functions from the family F. Since f000n P f0n and lim

n!y
f0nðyÞ ¼ fðyÞ ¼

supifiðyÞ, we conclude that lim
n!1

f000n ðyÞ ¼ fðyÞ. Similarly lim
n!1

f000n ðzÞ ¼ fðzÞ.
If t 2 X is another vertex, then adopting the above procedure we can extract an

increasing sequence ffivn ðxÞg from the family F such that fiv P f000n for all n and
fðxÞ ¼ lim

n!1
fivðxÞ if x ¼ y; z or t. Since X is countable, the above procedure can be

extended to obtain an increasing sequence ffng from the family F such that
fðxÞ ¼ lim

n!1
fnðxÞ for all x 2 X. h
Theorem 3.5. Let u ¼ fuigi2I be an increasingly filtered family of aðxÞ-subharmonic
(aðxÞ-harmonic, respectively) functions on X such that uðxÞ ¼ supiuiðxÞ is finite for
each x 2 X. Then u is aðxÞ-subharmonic (aðxÞ-harmonic, respectively) on X.

Proof. By the above Lemma 3.4, there exists an increasing sequence of functions
fung from u such that uðxÞ ¼ lim

n!1
unðxÞ for every x 2 X. Since unðxÞ is aðxÞ-subhar-

monic (aðxÞ-harmonic, respectively) on X, by 3.1.2 u is aðxÞ-subharmonic (aðxÞ-
harmonic, respectively) on X. h

Theorem 3.6. Let u(x) be aðxÞ-superharmonic and v(x) be aðxÞ-subharmonic on a
subset E of X such that vðxÞ 6 uðxÞ. Then there exists an aðxÞ-harmonic function
hðxÞ on E such that vðxÞ 6 hðxÞ 6 uðxÞ.

Proof. Let F be the family of all aðxÞ-subharmonic functions s on E such that
sðxÞ 6 uðxÞ. Fix z 2 E

�
. Now
sðzÞ 6
X
y

aðz; yÞ
aðzÞ sðyÞ:
Take
szðxÞ ¼
sðxÞ if x–zP
y

aðz; yÞ
aðzÞ sðyÞ if x ¼ z:

8<
:

Now, szðzÞ ¼
P

y
aðz; yÞ
aðzÞ sðyÞP sðzÞ and szðxÞ ¼ sðxÞ if x–z, which implies

sðxÞ 6 szðxÞ for all x 2 X.
Hence if y–z; szðyÞ ¼ sðyÞ 6

P
b
aðy; bÞ
aðyÞ sðbÞ 6

P
b
aðy; bÞ
aðyÞ szðbÞ and if y ¼ z,

szðzÞ ¼
P

b
aðz; bÞ
aðzÞ sðbÞ ¼

P
b
aðz; bÞ
aðzÞ szðbÞ. Hence sz is aðxÞ-subharmonic on each vertex

in E, and aðxÞ-harmonic at the vertex z. Clearly sz 6 u on E. For,
szðxÞ ¼ sðxÞ 6 uðxÞ if x–z and if x ¼ z, then
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szðzÞ ¼
X
y

aðz; yÞ
aðzÞ sðyÞ 6

X
y

aðz; yÞ
aðzÞ uðyÞ

6 uðzÞ; since u is aðxÞ � superharmonic:
Hence sz 2 F is an increasingly filtered family of functions each being aðxÞ-har-
monic at z and majorized by uðxÞ, we conclude that if hðxÞ ¼ sups2FsðxÞ then
hðzÞ ¼ supy2FsðzÞ ¼ supz2FszðzÞ. Hence h is aðxÞ-harmonic at the vertex z. Since
z is arbitrary in E

�
we conclude that h is aðxÞ-harmonic on E and v 6 h 6 u. h
Definition 3.7. Let s P 0 be an aðxÞ-superharmonic function on X. Suppose any
aðxÞ-subharmonic function v on X majorized by s is non-positive, then s is said to
be an aðxÞ-potential on X.

In other words, a non-negative aðxÞ-superharmonic function p is an aðxÞ-
potential if and only if the following condition is satisfied: If v is aðxÞ-subharmonic
on X and v 6 p, then v 6 0.

As an immediate consequence of the above Theorem 3.6, we have the following:
Riesz representation: If s P 0 is aðxÞ-superharmonic on X, then s is the unique

sum of an aðxÞ-potential p and an aðxÞ-harmonic function h P 0.

Theorem 3.8. Given a pair of vertices x and y in X there exist two constants b > 0
and c > 0 such that buðxÞ 6 uðyÞ 6 cuðxÞ, for any aðxÞ-superharmonic function
u P 0 on X.

Proof. Let fx ¼ x0; x1; . . . ; xn ¼ yg be a path connecting x and y. Since u is aðxÞ-
superharmonic,
Auðx0Þ ¼ �aðx0Þuðx0Þ þ
X
z

aðx0; zÞuðzÞ 6 0:
Hence,
aðx0Þuðx0Þ P
P
z

aðx0; zÞuðzÞ

P aðx0;x1Þuðx1Þ

and uðx0Þ P aðx0;x1Þ
aðx0Þ uðx1Þ:
Again,
aðx1Þuðx1Þ P
P
y

aðx1; yÞuðyÞ

P aðx1; x2Þuðx2Þ and

uðx1Þ P aðx1;x2Þ
aðx1Þ uðx2Þ:
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Therefore,
uðx0ÞP
aðx0; x1Þ

aðx0Þ
aðx1; x2Þ

aðx1Þ
uðx2Þ:
Proceeding further, we arrive at the inequality
uðx0ÞP
aðx0; x1Þ

aðx0Þ
aðx1; x2Þ

aðx1Þ
. . .

aðxn�1; xnÞ
aðxn�1Þ

uðxnÞ;
which is of the form uðxÞP buðyÞ. The other inequality uðxÞ 6 cuðyÞ is proved
similarly. h
Theorem 3.9. (Generalized aðxÞ-Dirichlet problem) Let F be an arbitrary set in X.
Let E � F

�
and f be a real-valued function on F n E. Suppose there exists an aðxÞ-

superharmonic function uðxÞ and an aðxÞ-subharmonic function vðxÞ on f such that
vðxÞ 6 uðxÞ on f, vðxÞ 6 fðxÞ 6 uðxÞ on F n E. Then there exists a function h on f
such that h ¼ f on F n E; v 6 h 6 u on f and AhðxÞ ¼ 0 for every x 2 E.

Proof. Let
u0ðxÞ ¼
fðxÞ if x 2 F n E
uðxÞ if x 2 E:

�

Then u0 is a function defined on f. Let z 2 E. Since E � F
�
and u is aðxÞ-superhar-

monic on f,
aðzÞu0ðzÞ ¼ aðzÞuðzÞP
X
y

aðz; yÞuðyÞP
X
y

aðz; yÞu0ðyÞ; since u0

6 u on F:
Hence Au0ðzÞ 6 0 at every vertex in E and u0 ¼ f on F n E. Similarly, if
v0ðxÞ ¼
fðxÞ if x 2 F n E
vðxÞ if x 2 E;

�

then Av0ðzÞP 0 at every vertex z 2 E and v0 ¼ f on F n E. Moreover, v0 6 u0 on f.
Let F be the family of functions s on f such that s ¼ f on F n E; s 6 u on f and
AsðzÞP 0 at every vertex z 2 E. Let hðxÞ ¼ sups2FsðxÞ. Then as in Theorem 3.6
it follows that h is aðxÞ-harmonic at each vertex z in E, v 6 h 6 u on f so that
h ¼ f on F n E. h
4. aðxÞ-Potentials

Even if aðxÞ > 0 for every x 2 X, it is possible that there may not be any positive
aðxÞ-superharmonic function on X.
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Example 4.1. Let X ¼ f0; 1; 2 . . .g; aðx; yÞ ¼ 1 if x � y and aðnÞ ¼ 1
2nþ1 for every

n P 0. Let v P 0 be aðxÞ-superharmonic on X. Let vð0Þ ¼ b and vðiÞ ¼ bi for
every i. Since að0Þvð0ÞP vð1Þ, we have b P b1.

Now að1Þvð1ÞP vð0Þ þ vð2Þ, that is b1 P 1
3 b1 P bþ b2 which implies b1 P b.

Hence b1 ¼ b. Moreover, b1 P bþ b2 which implies b P bþ b2; that is b2 6 0.
Since v P 0; b2 ¼ 0. Since b2 P b1 þ b3, we have 0 P bþ b3 which implies
b ¼ 0; b3 ¼ 0. Note that for i P 1, if bi ¼ 0, then since bi�1 þ biþ1 6 bi we should
have bi�1 ¼ 0 and bi ¼ 0. Consequently, bi ¼ 0 8i.

To obtain further significant results on aðxÞ-superharmonic functions on an
infinite network X, we need to assume that there exists at least one positive
aðxÞ-superharmonic function on X.

Assumption I. There exists a function n > 0 on X such that
aðxÞnðxÞP
X
y

aðx; yÞnðyÞÞ; forevery x 2 X:
Example 4.2. The above assumption in the case of Schrödinger operators
DquðxÞ ¼ DuðxÞ � qðxÞuðxÞ reads as follows. Recall in this case DuðxÞ ¼P

ycðx; yÞ½uðyÞ � uðxÞ� ¼
P

ycðx; yÞuðyÞ
h i

� cðxÞuðxÞ so that aðxÞ ¼ cðxÞ þ qðxÞ.
Hence the assumption takes the form that there exists a function n > 0 such that
½cðxÞ þ qðxÞ�nðxÞP
X
y

cðx; yÞnðyÞ for every x 2 X;
that is qðxÞP DnðxÞ
nðxÞ for every x 2 X. This in particular permits the possibility of q

taking non-positive values also.

Theorem 4.3. (Classical aðxÞ-Dirichlet problem)Let f be an arbitrary set inX and f be
a real-valued function on @F such that jfj 6Mn for some M > 0. Then there exists a
function h on f such that jhj 6Mn on f, h is aðxÞ-harmonic on f and h ¼ f on @F.

Proof. Take E ¼ F
�
; v ¼ �Mn and u ¼Mn in the Generalized aðxÞ-Dirichlet

problem. Then the theorem follows. h

Corollory 4.4. Let f be an arbitrary finite set of X. Let f be a real-valued function on
@F. Then there exists an aðxÞ-harmonic function h on f such that h ¼ f on @F.

Proof. Since @F is finite we can always find someM > 0 such that jfj 6Mn on @F.
Then the corollary is a consequence of the Theorem 4.3. h
Theorem 4.5. Let f P 0 be an arbitrary function on X. Let F be the family of aðxÞ-
superharmonic functions on X such that s P f on X. IfF is a non-empty family, then
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RfðxÞ ¼ inf
s2F

sðxÞ is a non-negative aðxÞ-superharmonic function on X such that RfðxÞ
is an aðxÞ-harmonic function at each vertex in E ¼ fz : AfðzÞP 0g, in particular at
each vertex x 2 X, where fðxÞ ¼ 0.

Proof. Since F is a decreasingly filtered family of non-negative aðxÞ-superhar-
monic functions, we prove as in Lemma 3.4 that RfðxÞ ¼ infs2FsðxÞ is a non-neg-
ative aðxÞ-superharmonic function on X. By the Minimum Principle RfðxÞ > 0 for
each x, if fX0 on X. Let z 2 E. Then RfðzÞP fðzÞ. Let
uðxÞ ¼
RfðxÞ if x–zP
y

aðz; yÞ
aðzÞ RfðyÞ if x ¼ z:

8<
:

Note uðxÞ is an aðxÞ-superharmonic function and u is aðxÞ-harmonic at x ¼ z and

u 6 Rf on X. If x–z; uðxÞ ¼ RfðxÞP fðxÞ; at x ¼ z; uðzÞ ¼
P

y
aðz; yÞ
aðzÞ RfðyÞ

P
P

y
aðz; yÞ
aðzÞ fðyÞP fðzÞ since z 2 E. Hence uðxÞP fðxÞ for all x 2 X, that is

u 2F and hence u P Rf on X. Consequently u ¼ Rf on X. In particular,

RfðzÞ ¼ uðzÞ ¼
P

y
aðz;yÞ
aðzÞ RfðyÞ. That is, RfðxÞ is aðxÞ-harmonic at x ¼ z. h

Now, if fðxÞ ¼ 0 at some vertex x 2 X, then AfðxÞ ¼ �aðxÞfðxÞ þ
P

yaðx; yÞfðyÞ
¼
P

yaðx; yÞfðyÞP 0 and hence x 2 E. Consequently RfðxÞ is aðxÞ-harmonic at
each vertex x 2 X where fðxÞ ¼ 0.

Theorem 4.6. Suppose there exists a positive aðxÞ-potential on X. Then given any y,
there exists a unique aðxÞ-potential GyðxÞ with point aðxÞ-harmonic support fyg
(that is, GyðxÞ is harmonic outside fyg) such that AGyðxÞ ¼ �dyðxÞ for every x 2 X.

Proof. Define f on X such that
fðxÞ ¼
1 if x ¼ y

0 if x–y:

�

Then take Rf (as in Theorem 4.5) which is a positive aðxÞ-superharmonic function
on X, Rf is aðxÞ-harmonic outside fyg. Let AðRfðyÞÞ ¼ �b where b > 0. Define
GyðxÞ ¼ 1

bRfðxÞ. Then A½GyðxÞ� ¼ �dyðxÞ for every x 2 X.

Note that RfðxÞ (and hence GyðxÞ) is an aðxÞ-potential on X. For by hypothesis,
there exists a positive aðxÞ-potential p on X and hence RfðxÞ 6 pðxÞ

pðyÞ. Since RfðxÞ is
dominated by the aðxÞ-potential 1

pðyÞ pðxÞ, it follows that RfðxÞ itself is an aðxÞ-po-
tential on X.

Theorem 4.7. (Domination principle) Let s be a non-negative aðxÞ-superharmonic
function on X and p be an aðxÞ-potential on X with aðxÞ-harmonic support on B (that
is, ApðxÞ ¼ 0 for x 2 X n B). Suppose s P p on B. Then s P p on X.
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Proof. Let q ¼ infðs; pÞ. Then q is an aðxÞ-potential on X such that q ¼ p on B.
Let u ¼ p� q on X. On X n B; ApðxÞ ¼ 0 while AqðxÞ 6 0 so that AuðxÞP 0
on X n B. Moreover, u ¼ 0 on B and u P 0 on X n B and so that if x 2 B, then
AuðxÞ ¼ �auðxÞ þ
X
y

aðx; yÞuðyÞ ¼ 0þ
X
y

aðx; yÞuðyÞP 0:
Hence AuðxÞP 0 on X. That is u ¼ p� q is aðxÞ-subharmonic on X and since
u 6 p, we conclude that u 6 0. That is p 6 q on X. Consequently p ¼ q on X, so
that s P p on X. h

Corollory 4.8. If GyðxÞ is the aðxÞ-Green’s function on X with point harmonic sup-

port fyg, then GyðxÞ 6 GyðyÞ
nðyÞ nðxÞ for every x 2 X.

Proof. Since GyðxÞ is an aðxÞ-potential with harmonic support fyg and sðxÞ ¼
GyðyÞ
nðyÞ nðxÞ is an aðxÞ-superharmonic function majorizing GyðxÞ on its harmonic sup-

port fyg, we have by Domination principle, GyðxÞ 6 GyðyÞ
nðyÞ nðxÞ for all x 2 X. h
5. aðxÞ-Parahyperbolic networks

Assumption I above implies that n > 0 is an aðxÞ-superharmonic function. Let us
denote by H the aðxÞ-harmonic sheaf on X. Let us define a new harmonic sheaf
Hn on X as follows: u 2Hn if and only if nu 2H. Let u be Hn-harmonic, then
nu is H-harmonic. Hence
aðxÞnðxÞuðxÞ ¼
P
y

aðx; yÞnðyÞuðyÞ: This can be written as

anðxÞuðxÞ ¼
P
y

anðx; yÞuðyÞ;
where anðxÞ ¼ aðxÞnðxÞ and anðx; yÞ ¼ aðx; yÞnðyÞ.
Correspondingly the Laplacian operator An associated with the Hn-harmonic

sheaf can be written as
AnuðxÞ ¼ �anðxÞuðxÞ þ
X
y

anðx; yÞuðyÞ:
Let now sðxÞ be An-superharmonic. That is,
anðxÞsðxÞP
P
y

anðx; yÞsðyÞ:

Hence aðxÞ½nðxÞsðxÞ�P
P
y

aðx; yÞ½nðyÞsðyÞ�:
This means that nðxÞsðxÞ is A-superharmonic and conversely. That is sðxÞ is An-
superharmonic if and only if nðxÞsðxÞ is A-superharmonic. Thus changes from
H-harmonic sheaf to Hn-harmonic sheaf and vice versa are facile. However, if
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the above-mentioned Assumption I is made in the H-harmonic sheaf, then the
constant 1 becomes superharmonic in Hn-harmonic sheaf. Keeping the facile
interchange between H and Hn sheaves in mind, we simplify Assumption I to
read as Assumption II given below.

Assumption II. aðxÞP
P

yaðx; yÞ ¼ aðxÞ for every x 2 X. That is, the constant 1 is
aðxÞ-superharmonic on X.
Now, if 1 is aðxÞ-superharmonic, then by Theorem 3.6 there exists an aðxÞ-har-
monic function h on X such that 0 6 h 6 1. It opens up three possibilities:

1. The constant 1 is harmonic on X. That is aðxÞ ¼ aðxÞ for all x 2 X . This case has
been extensively studied in Yamasaki (1979), Soardi (1994), Abodayeh and
Anandam (2008). Hence we leave out this case in this paper.

2. The constant 1 is superharmonic but not harmonic on X. In this case, there may
be some harmonic function h on X such that 0 < hðxÞ < 1 on X. Then as indi-
cated in the beginning of this section, if we consider the associated harmonic
sheaf Hh (that is u is Hh-harmonic if and only if hðxÞuðxÞ is H-harmonic), then
1 is Hh-harmonic on X. We can then carry out the potential-theoretic study on
X as in the case of (1).

3. The last case is when 1 is superharmonic but not harmonic on X and there is no
harmonic function h on X such that 0 < hðxÞ < 1. That is 1 is an aðxÞ-potential
on X. This is the case of the aðxÞ-parahyperbolic network which is considered
now.
Definition 5.1. (Sujith and Madhu, 2011) We say that X is aðxÞ-parahyperbolic if
and only if 1 is an aðxÞ-potential on X.

The importance of the following Minimum Principle in an aðxÞ-parahyperbolic
network comes from the fact that it is valid on an arbitrary subset E. The usual
Minimum Principle on a general network X is valid only for finite subsets.
Theorem 5.2. (Minimum Principle) Let E be an arbitrary subset of an aðxÞ-parahy-
perbolic network X, E–X. Let u be a lower bounded aðxÞ-superharmonic function on
E. If u P 0 on @E, then u P 0 on E.

Proof. Let v ¼ infðu; 0Þ on E. Extend v by 0 outside E. Denote this extended func-
tion also by v. Note v 6 0 on E and v ¼ 0 on @E. Hence v is aðxÞ-superharmonic
on X and v 6 0 on X. Since by assumption v is lower bounded on E, say
uðxÞP �m; m > 0, for every x 2 E, we have 0 P v P �m on X. In particular
�v 6 m on X. Now �v is aðxÞ-subharmonic on X and m is aðxÞ-potential on
the aðxÞ-parahyperbolic network X. Hence �v 6 0 on X which implies
0 6 v ¼ infðu; 0Þ 6 0 on E. Hence u P 0 on E. h
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Corollory 5.3. Let E be a proper subset of an aðxÞ-parahyperbolic network. Let h be
a bounded aðxÞ-harmonic function on E such that h ¼ 0 on @E. Then h ¼ 0 on E.

Corollory 5.4. Let X be an aðxÞ-parahyperbolic network. E is a proper subset of X
and f is a bounded real-valued function on @E. Then the Dirichlet solution on E with
boundary values f on @E is unique.

Proof. Existence: There exists a bounded harmonic function h on E such that
h ¼ f on @E (Theorem 3.9). Uniqueness: This follows from Corollary 5.3. h
6. Comparison of aðxÞ-superharmonic functions

Comparing the Laplacian operator D and the Schrödinger operator Dq in an infi-
nite network, we have already noted that the Laplace operator D corresponds to
the case a1ðxÞ ¼ aðxÞ for every x 2 X (that is a function u is D-superharmonic if
and only if u is aðxÞ-superharmonic) and the Schrödinger operator Dq corresponds
to the case a2ðxÞ ¼ aðxÞ þ qðxÞ for every x 2 X. The relations between D and Dq

can be studied by analysing the aðxÞ values of the operators, noting that
a2ðxÞP a1ðxÞ for all x 2 X and a2ðx0Þ > a1ðx0Þ for some x0 in X.

In the sequel, we take a1ðxÞ and a2ðxÞ as two real-valued functions on X such
that a2ðxÞP a1ðxÞ for every x 2 X and a2ðx0Þ > a1ðx0Þ for some x0 2 X.

Proposition 6.1. If u > 0 is a1ðxÞ-superharmonic on X, then u is a2ðxÞ-superhar-
monic on X.

Proof. Since u > 0 is a1ðxÞ-superharmonic, a1ðxÞuðxÞP
P

yaðx; yÞuðyÞ. Now
a2ðxÞuðxÞP a1ðxÞuðxÞP

P
yaðx; yÞuðyÞ. Hence u is a2ðxÞ-superharmonic. h

Similarly we prove the following.

Proposition 6.2. If u > 0 is a2ðxÞ-subharmonic, then u is a1ðxÞ-subharmonic.

Theorem 6.3. If u > 0 is an a1ðxÞ-potential, then u is an a2ðxÞ-potential.

Proof. By Proposition 6.1, u is an a2ðxÞ-superharmonic function. Let v be an
a2ðxÞ-subharmonic function such that 0 6 v 6 u. By Proposition 6.2 any non-neg-
ative a2ðxÞ-subharmonic is a1ðxÞ-subharmonic. Hence v is an a1ðxÞ-subharmonic
function majorized by an a1ðxÞ-potential u. Hence v � 0. Thus u is an a2ðxÞ-
potential. h

Theorem 6.4. Suppose X has positive a1ðxÞ-potentials. Then for any y 2 X, the
a1ðxÞ-Green’s potential G1ðxÞ with point support fyg and the a2ðxÞ-Green’s potential
G2ðxÞ with the same support fyg exists. Also G2ðxÞ 6 G1ðxÞ for every x 2 X.
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Proof.
A1G1ðxÞ ¼ �a1ðxÞG1ðxÞ þ
X
y

aðx; yÞG1ðyÞ

P �a2ðxÞG1ðxÞ þ
X
y

aðx; yÞG1ðyÞ; since a2ðxÞP a1ðxÞ ¼ A2G1ðxÞ:
Now, �dyðxÞ ¼ A1G1ðxÞP A2G1ðxÞ. Also �dyðxÞ ¼ A2G2ðxÞ. Therefore A2G2ðxÞ
P A2G1ðxÞ, that is A2½G1ðxÞ � G2ðxÞ� 6 0 which implies G1ðxÞ � G2ðxÞ ¼ sðxÞ
where s is a2ðxÞ-superharmonic. Now G1ðxÞ ¼ G2ðxÞ þ sðxÞ which implies
G2ðxÞ þ sðxÞP 0. That is �sðxÞ 6 G2ðxÞ, hence �sðxÞ 6 0. Consequently
G1ðxÞP G2ðxÞ. h
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