ϕ-semisymmetric generalized Sasakian space-forms

U.C. DE ${ }^{\text {a }}$, PRADIP MAJHI ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, Kolkata 700019, West Bengal, India
${ }^{\mathrm{b}}$ Department of Mathematics, University of North Bengal, Raja Rammohunpur, Darjeeling 734013, West Bengal, India

Received 12 July 2013; received in revised form 18 November 2014; accepted 14 January 2015
Available online 12 February 2015

Abstract

The object of the present paper is to study ϕ-Weyl semisymmetric and ϕ-projectively semisymmetric generalized Sasakian space-forms. Finally, illustrative examples are given.

Keywords: Generalized Sasakian space-form; ϕ-Weyl semisymmetric manifold; ϕ projectively semisymmetric manifold; Conformally flat; Projectively flat

2010 Mathematics Subject Classification: 53C15; 53C25

1. Introduction

The nature of a Riemannian manifold mostly depends on the curvature tensor R of the manifold. It is well known that the sectional curvatures of a manifold determine its curvature tensor completely. A Riemannian manifold with constant sectional curvature c is known as a real space-form and its curvature tensor is given by

$$
R(X, Y) Z=c\{g(Y, Z) X-g(X, Z) Y\}
$$

A Sasakian manifold with constant ϕ-sectional curvature is a Sasakian space-form and it has a specific form of its curvature tensor. Similar notion also holds for Kenmotsu and cosymplectic space-forms. In order to generalize such space-forms in a common frame Alegre, Blair and Carriazo [1] introduced and studied generalized Sasakian space-forms. These space-forms are defined as follows:

[^0]
http://dx.doi.org/10.1016/j.ajmsc.2015.01.002
1319-5166 (c) 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Given an almost contact metric manifold $M(\phi, \xi, \eta, g)$, we say that M is a generalized Sasakian space-form if there exist three functions f_{1}, f_{2}, f_{3} on M such that the curvature tensor R is given by

$$
\begin{align*}
R(X, Y) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{1.1}
\end{align*}
$$

for any vector fields X, Y, Z on M. In such a case we denote the manifold as $M\left(f_{1}, f_{2}, f_{3}\right)$. In [1] the authors cited several examples of generalized Sasakian space-forms. If $f_{1}=\frac{c+3}{4}$, $f_{2}=\frac{c-1}{4}$ and $f_{3}=\frac{c-1}{4}$, then a generalized Sasakian space-form with Sasakian structure becomes a Sasakian space-form. In [12], Kim studied conformally flat generalized Sasakian space-forms and locally symmetric generalized Sasakian space-forms. He proves some geometric properties of generalized Sasakian space-form which depends on the nature of the functions f_{1}, f_{2} and f_{3}. A large number of geometers have studied generalized Sasakian space-forms in the papers [2,3,5,4,8]. In [9] De and Sarkar study locally ϕ-symmetric generalized Sasakian space-forms and generalized Sasakian space-forms with η-recurrent Ricci tensor. Also De and Sarkar [10] study projectively flat, projectively semisymmetric generalized Sasakian space-forms. Again in [16] Yildiz and De study ϕ-Weyl semisymmetric and ϕ-projectively semisymmetric non-Sasakian (k, μ)-contact metric manifolds. Motivated by these studies in this paper we study ϕ-Weyl semisymmetric and ϕ-projectively semisymmetric generalized Sasakian space-forms. The present paper is organized as follows:

After preliminaries in Section 3, we consider ϕ-Weyl semisymmetric generalized Sasakian space-forms and obtain necessary and sufficient conditions for a generalized Sasakian spaceform to be ϕ-Weyl semisymmetric. Section 4 deals with ϕ-projectively semisymmetric generalized Sasakian space-forms. Finally, illustrative examples are given.

2. Preliminaries

In an almost contact metric manifold we have [6,7]

$$
\begin{align*}
& \phi^{2}(X)=-X+\eta(X) \xi, \quad \phi \xi=0 \tag{2.1}\\
& \eta(\xi)=1, \quad g(X, \xi)=\eta(X), \quad \eta(\phi X)=0 \tag{2.2}\\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.3}\\
& g(\phi X, Y)=-g(X, \phi Y), \quad g(\phi X, X)=0 \tag{2.4}\\
& g(\phi X, \xi)=0 \tag{2.5}
\end{align*}
$$

Again we know that [1] in a $(2 n+1)$-dimensional generalized Sasakian space-form:

$$
\begin{align*}
& R(X, Y) Z= f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
&+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
&+f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
&+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{2.6}\\
& S(X, Y)=\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y)-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \eta(Y) . \tag{2.7}\\
& Q X=\left(2 n f_{1}+3 f_{2}-f_{3}\right) X-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \xi . \tag{2.8}
\end{align*}
$$

$$
\begin{align*}
& R(X, Y) \xi=\left(f_{1}-f_{3}\right)[\eta(Y) X-\eta(X) Y] \tag{2.9}\\
& R(\xi, X) Y=\left(f_{1}-f_{3}\right)[g(X, Y) \xi-\eta(Y) X] \tag{2.10}\\
& S(X, \xi)=2 n\left(f_{1}-f_{3}\right) \eta(X) \tag{2.11}\\
& S(\xi, \xi)=2 n\left(f_{1}-f_{3}\right) \tag{2.12}\\
& Q \xi=2 n\left(f_{1}-f_{3}\right) \xi \tag{2.13}\\
& r=2 n(2 n+1) f_{1}+6 n f_{2}-4 n f_{3} \tag{2.14}
\end{align*}
$$

where R, S and r denote the curvature tensor of type (1,3), Ricci tensor of type (0,2) and scalar curvature of the space-form respectively.

A $(0, p)$-tensor field T on (M, g) is called parallel when it is invariant under parallel translation, that is, when

$$
\nabla T=0
$$

in particular, if the Riemann-Christoffel curvature tensor R is parallel, that is,

$$
\nabla R=0
$$

then M is said to be locally symmetric.
This condition of local symmetry is equivalent to the fact that at every point $P \in M$, the local geodesic symmetry $F(P)$ is an isometry [14]. The class of Riemannian symmetric manifolds is a very natural generalization of the class of manifolds of constant curvature.

A Riemannian manifold $\left(M^{2 n+1}, g\right)$ is said to be semisymmetric if its curvature tensor R satisfies $R(X, Y) \cdot R=0, X, Y \in \chi(M)$, where $R(X, Y)$ acts on R as a derivation [13]. Every symmetric space is semisymmetric, but the converse is not true, in general.

For a $(2 n+1)$-dimensional Riemannian manifold the Weyl conformal curvature tensor is defined by [15]

$$
\begin{align*}
C(X, Y) Z= & R(X, Y) Z-\frac{1}{2 n-1}\{S(Y, Z) X-S(X, Z) Y \\
& +g(Y, Z) Q X-g(X, Z) Q Y\} \\
& +\frac{r}{2 n(2 n-1)}\{g(Y, Z) X-g(X, Z) Y\} \tag{2.15}
\end{align*}
$$

where r is a scalar curvature and Q is the Ricci operator defined by $g(Q X, Y)=S(X, Y)$.
After the conformal curvature tensor, the projective curvature tensor is an important tensor from the differential geometric point of view. Let M be a $(2 n+1)$-dimensional Riemannian manifold. If there exists a one-to-one correspondence between each coordinate neighbourhood of M and a domain in Euclidean space such that any geodesic of a Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 1, M$ is locally projectively flat if and only if the well-known projective curvature tensor P vanishes. The projective curvature tensor is defined by [15]

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{2 n}\{S(Y, Z) X-S(X, Z) Y\} \tag{2.16}
\end{equation*}
$$

where S is the Ricci tensor of M.

Definition 2.1. An almost contact metric manifold ($\left.M^{(2 n+1)}, g\right), n>1$, is said to be ϕ-Weyl semisymmetric if

$$
C(X, Y) \cdot \phi=0
$$

on M.
Definition 2.2. An almost contact metric manifold $\left(M^{(2 n+1)}, g\right), n>1$, is said to be ϕ projectively semisymmetric if

$$
P(X, Y) \cdot \phi=0
$$

on M, for all $X, Y \in \chi(M)$.

3. ϕ-WEYL SEMISYMMETRIC GENERALIZED SASAKIAN SPACE-FORMS

Let M be a $(2 n+1)$-dimensional $(n>1) \phi$-Weyl semisymmetric generalized Sasakian space-forms. Therefore $C(X, Y) \cdot \phi=0$ turns into

$$
\begin{equation*}
(C(X, Y) \cdot \phi) Z=C(X, Y) \phi Z-\phi C(X, Y) Z=0 \tag{3.1}
\end{equation*}
$$

for any vector fields X, Y and $Z \in \chi(M)$.
Now, from (2.15) it follows that

$$
\begin{align*}
C(X, Y) \phi Z= & R(X, Y) \phi Z-\frac{1}{2 n-1}\{S(Y, \phi Z) X-S(X, \phi Z) Y \\
& +g(Y, \phi Z) Q X-g(X, \phi Z) Q Y\} \\
& +\frac{r}{2 n(2 n-1)}\{g(Y, \phi Z) X-g(X, \phi Z) Y\} . \tag{3.2}
\end{align*}
$$

Using (2.6)-(2.8) in (3.2) yields

$$
\begin{align*}
C(X, Y) \phi Z= & f_{1}\{g(Y, \phi Z) X-g(X, \phi Z) Y\} \\
& +f_{2}\left\{g\left(X, \phi^{2} Z\right) \phi Y-g\left(Y, \phi^{2} Z\right) \phi X+2 g(X, \phi Y) \phi^{2} Z\right\} \\
& +f_{3}\{\eta(X) \eta(\phi Z) Y-\eta(Y) \eta(\phi Z) X \\
& +g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \eta(X) \xi\} \\
& -\frac{(2 n-1) f_{1}+3 f_{2}}{(2 n-1)}\{g(Y, \phi Z) X-g(X, \phi Z) Y\} \\
& +\frac{3 f_{2}+(2 n-1) f_{3}}{(2 n-1)}\{g(Y, \phi Z) \eta(X) \xi-g(X, \phi Z) \eta(Y) \xi\} . \tag{3.3}
\end{align*}
$$

By virtue of (2.1) we have from (3.3)

$$
\begin{align*}
C(X, Y) \phi Z= & -\frac{3 f_{2}}{(2 n-1)}\{g(Y, \phi Z) X-g(X, \phi Z) Y\} \\
& +f_{2}\{-g(X, Z) \phi Y+\eta(Z) \eta(X) \phi Y+g(Y, Z) \phi X-\eta(Y) \eta(Z) \phi X \\
& -2 g(X, \phi Y) Z+2 g(X, \phi Y) \eta(Z) \xi\} \\
& -\frac{3 f_{2}}{(2 n-1)}\{g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \eta(X) \xi\} \tag{3.4}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\phi C(X, Y) Z= & -\frac{3 f_{2}}{(2 n-1)}\{g(Y, Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y \\
& -\eta(Y) \eta(Z) \phi X\}+f_{2}\{g(Y, \phi Z) X-g(X, \phi Z) Y \\
& +g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \eta(X) \xi \\
& -2 g(X, \phi Y) Z+2 g(X, \phi Y) \eta(Z) \xi\} \tag{3.5}
\end{align*}
$$

Substituting (3.4), (3.5) in (3.1) yields

$$
\begin{align*}
& \frac{2(n+1)}{(2 n-1)} f_{2}\{-g(Y, \phi Z) X+g(X, \phi Z) Y-g(X, \phi Z) \eta(Y) \xi+g(Y, \phi Z) \eta(X) \xi \\
& \quad+g(Y, Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y-\eta(Y) \eta(Z) \phi X\}=0 \tag{3.6}
\end{align*}
$$

which implies either $f_{2}=0$ or,

$$
\begin{align*}
& -g(Y, \phi Z) X+g(X, \phi Z) Y-g(X, \phi Z) \eta(Y) \xi+g(Y, \phi Z) \eta(X) \xi \\
& \quad+g(Y, Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y-\eta(Y) \eta(Z) \phi X=0 \tag{3.7}
\end{align*}
$$

Taking the inner product by W of (3.7) we obtain

$$
\begin{align*}
& - \\
& \quad \\
& \quad(Y, \phi Z) g(X, W)+g(X, \phi Z) g(Y, W) \\
& \quad-g(X, \phi Z) \eta(Y) \eta(W)+g(Y, \phi Z) \eta(X) \eta(W) \tag{3.8}\\
& \quad+g(Y, Z) g(\phi X, W)-g(X, Z) g(\phi Y, W)+\eta(X) \eta(Z) g(\phi Y, W) \\
& \quad-\eta(Y) \eta(Z) g(\phi X, W)=0
\end{align*}
$$

Putting $Y=W=e_{i}$, where $\left\{e_{i}, \xi\right\},(1 \leq i \leq 2 n)$ is the orthonormal basis of the tangent space at each point of the manifold and taking summation over i, we get

$$
\begin{equation*}
(2 n-3) g(X, \phi Z)=0 \tag{3.9}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
g(X, \phi Z)=0 \tag{3.10}
\end{equation*}
$$

which is a contradiction. Conversely, if $f_{2}=0$ then from (3.6) it follows that the space-form is ϕ-Weyl semisymmetric. Therefore from the above discussion we can state the following:

Theorem 3.1. $A(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space-form $M\left(f_{1}, f_{2}\right.$, f_{3}) is ϕ-Weyl semisymmetric if and only if $f_{2}=0$.

In [12] U.K. Kim proved that for a $(2 n+1)$-dimensional generalized Sasakian space-form the following holds:
(i) If $n>1$, then M is conformally flat if and only if $f_{2}=0$.
(ii) If M is conformally flat and ξ is a Killing vector field, then M is locally symmetric and has constant ϕ-sectional curvature.

In view of the first part of the above theorem of Kim we obtain the following:
Corollary 3.1. $A(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space-form $M\left(f_{1}, f_{2}\right.$, f_{3}) is ϕ-Weyl semisymmetric if and only if it is conformally flat.

Also, in view of the second part of the above theorem of Kim we immediately get the following:

Corollary 3.2. For a $(2 n+1)$-dimensional $(n>1) \phi$-Weyl semisymmetric generalized Sasakian space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ with ξ as a Killing vector field is locally symmetric and has constant ϕ-sectional curvature.

Hence from Theorem 3.1 and Corollary 3.1 we can state the following:
Corollary 3.3. Let $M\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space-form. Then the following statements are equivalent:
(i) M is ϕ-Weyl semisymmetric;
(ii) M is conformally flat;
(iii) $f_{2}=0$.

Recently, in [1] P. Alegre, D. Blair and A. Carriazo prove if a generalized Sasakian spaceform $M\left(f_{1}, f_{2}, f_{3}\right)$ is a Sasakian manifold, then the functions f_{1}, f_{2}, f_{3} are constant and $f_{1}-1=f_{2}=f_{3}$.

Now, in this case $f_{2}=0$ implies $f_{3}=0$ and $f_{1}=1$. Thus from (1.1) we obtain $R(X, Y) Z$ $=g(Y, Z) X-g(X, Z) Y$, that is, the manifold is of constant curvature 1. It is known that if a $(2 n+1)$-dimensional $(n>1)$ Riemannian manifold is of constant curvature, then the manifold is conformally flat. Also conformally flatness implies ϕ-Weyl semisymmetric. Hence we can state the following:

Corollary 3.4. $A(2 n+1)$-dimensional $(n>1)$ Sasakian manifold is ϕ-Weyl semisymmetric if and only if the manifold is of constant curvature 1 .

4. ϕ-PROJECTIVELY SEMISYMMETRIC GENERALIZED SASAKIAN SPACE-FORMS

Let M be a $(2 n+1)$-dimensional $(n>1) \phi$-projectively semisymmetric generalized Sasakian space-forms. Therefore $P(X, Y) \cdot \phi=0$ turns into

$$
\begin{equation*}
(P(X, Y) \cdot \phi) Z=P(X, Y) \phi Z-\phi P(X, Y) Z=0 \tag{4.1}
\end{equation*}
$$

for any vector fields X, Y and $Z \in \chi(M)$.
Now,

$$
\begin{equation*}
P(X, Y) \phi Z=R(X, Y) \phi Z-\frac{1}{2 n}\{S(Y, \phi Z) X-S(X, \phi Z) Y\} \tag{4.2}
\end{equation*}
$$

Using (2.7) in (4.2) we obtain

$$
\begin{align*}
P(X, Y) \phi Z= & R(X, Y) \phi Z-\frac{1}{2 n}\left[\left(2 n f_{1}+3 f_{2}-f_{3}\right)\{g(Y, \phi Z) X\right. \\
& -g(X, \phi Z) Y\}] \tag{4.3}
\end{align*}
$$

By virtue of (2.6) we obtain from (4.3)

$$
\begin{align*}
P(X, Y) \phi Z= & -\frac{\left(3 f_{2}-f_{3}\right)}{2 n}\{g(Y, \phi Z) X-g(X, \phi Z) Y\} \\
& +f_{2}\{g(Y, Z) \phi X-g(X, Z) \phi Y \\
& +\eta(X) \eta(Z) \phi Y-\eta(Y) \eta(Z) \phi X \\
& -2 g(X, \phi Y) Z+2 g(X, \phi Y) \eta(Z) \xi\} \\
& +f_{3}\{g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \eta(X) \xi\} . \tag{4.4}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\phi P(X, Y) Z= & -\frac{\left(3 f_{2}-f_{3}\right)}{2 n}\{g(Y, Z) \phi X-g(X, Z) \phi Y\} \\
& -\frac{\left(3 f_{2}-f_{3}\right)}{2 n}\{\eta(X) \eta(Z) \phi Y-\eta(Z) \eta(Z) \phi X\} \\
& +f_{2}\{g(Y, \phi Z) X-g(X, \phi Z) Y\} \\
& +f_{2}\{g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \eta(X) \xi\} \\
& +f_{2}\{-2 g(X, \phi Y) Z=g(X, \phi Y) \eta(Z) \xi\} . \tag{4.5}
\end{align*}
$$

Substituting (4.4), (4.5) in (4.1) yields

$$
\begin{align*}
& \frac{(2 n+3) f_{2}-f_{3}}{2 n}\{-g(Y, \phi Z) X+g(X, \phi Z) Y+g(Y, Z) \phi X-g(X, Z) \phi Y \\
& \quad+\eta(Z) \eta(X) \phi Y-\eta(Y) \eta(Z) \phi X\} \\
& \quad+\left(f_{3}-f_{2}\right)\{g(X, \phi Z) \eta(y) \xi-g(Y, \phi Z) \eta(X) \xi\}=0 \tag{4.6}
\end{align*}
$$

Putting $Y=\xi$ in (4.6) we obtain

$$
\begin{equation*}
\left\{(2 n-1) f_{3}+3 f_{2}\right\} g(X, \phi Z) \xi=0 \tag{4.7}
\end{equation*}
$$

which implies that $f_{3}=\frac{3 f_{2}}{1-2 n}$. Hence we can state the following:
Theorem 4.1. For a $(2 n+1)$-dimensional ϕ-projectively semisymmetric $(n>1)$ generalized Sasakian space-form $M\left(f_{1}, f_{2}, f_{3}\right), f_{3}=\frac{3 f_{2}}{1-2 n}$ holds.

In a recent paper [10] De and Sarkar proved the following:
Theorem 4.2 ([10]). A $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ is projectively flat if and only if $f_{3}=\frac{3 f_{2}}{1-2 n}$.

Suppose $f_{3}=\frac{3 f_{2}}{1-2 n}$ holds. Therefore $P=0$ and hence $P(X, Y) \cdot \phi=0$. Thus in view of Theorem 4.1 we can state the following:

Theorem 4.3. $A(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space-form $M\left(f_{1}, f_{2}\right.$, f_{3}) is ϕ-projectively semisymmetric if and only if $f_{3}=\frac{3 f_{2}}{1-2 n}$.

From Theorem 7.2 of [11], we note that a $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space-form is Ricci semisymmetric if and only if $f_{3}=\frac{3 f_{2}}{1-2 n}$. In virtue of Theorem 4.3, we immediately state the following:

Corollary 4.1. $A(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space-form $M\left(f_{1}, f_{2}\right.$, f_{3}) is ϕ-projectively semisymmetric if and only if it is Ricci semisymmetric.

Also from Theorems 4.2, 4.3 and Corollary 4.1 we can state the following:
Corollary 4.2. Let $M\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space-form. Then the following statements are equivalent:
(i) M is ϕ-projectively semisymmetric;
(ii) M is projectively flat;
(iii) M is Ricci semisymmetric;
(iv) $f_{3}=\frac{3 f_{2}}{1-2 n}$.

5. Examples

Examples 1. In [1], it was shown that the warped product $\mathbb{R} \times_{f} \mathbb{C}^{m}$ is a generalized Sasakian space-form with

$$
f_{1}=-\frac{\left(f^{\prime}\right)^{2}}{f^{2}}, \quad f_{2}=0, \quad f_{3}=-\frac{\left(f^{\prime}\right)^{2}}{f^{2}}+\frac{f^{\prime \prime}}{f}
$$

where $f=f(t), t \in \mathbb{R}$ and f^{\prime} denotes the derivative of f with respect to t. If we choose $m=4$ and $f(t)=e^{t}$, then $M\left(f_{1}, f_{2}, f_{3}\right)$ is a 5-dimensional conformally flat generalized Sasakian space-form, since $f_{2}=0$. Therefore all the equivalent conditions of Corollary 3.3 are verified.

Examples 2. Let $N(a, b)$ be a generalized complex space-form of dimension 4, then by the warped product $M=\mathbb{R} \times N$ endowed with the almost contact metric structure $\left(\phi, \xi, \eta, g_{f}\right)$ is a generalized Sasakian space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ [1] with

$$
f_{1}=\frac{a-\left(f^{\prime}\right)^{2}}{f^{2}}, \quad f_{2}=\frac{b}{f^{2}}, \quad f_{3}=\frac{a-\left(f^{\prime}\right)^{2}}{f^{2}}+\frac{f^{\prime \prime}}{f}
$$

where $f=f(t), t \in \mathbb{R}$ and f^{\prime} denotes the derivative of f with respect to t. If we choose $a=0, b=1$ and $f(t)=t$ with $t>0$, then $f_{1}=-\frac{1}{t^{2}}, f_{2}=\frac{1}{t^{2}}$ and $f_{3}=-\frac{1}{t^{2}}$. Hence $f_{2}=-f_{3}$.

On the other hand, from Corollary 4.2 for $(2 n+1)$-dimension generalized Sasakian spaceform $M\left(f_{1}, f_{2}, f_{3}\right)$ we have $f_{3}=\frac{3 f_{2}}{1-2 n}$. Therefore in dimension 5 , that is, for $n=2$ we have $f_{2}=-f_{3}$. So all the equivalent conditions of Corollary 4.2 are verified.

Acknowledgements

The authors are thankful to the referees for their comments and valuable suggestions towards the improvement of this paper.

References

[1] P. Alegre, D.E. Blair, A. Carriazo, Generalized Sasakian space-forms, Israel J. Math. 141 (2004) 157-183.
[2] P. Alegre, A. Carriazo, Submanifolds of generalized Sasakian space-forms, Taiwanese J. Math. 13 (2009) 923-941.
[3] P. Alegre, A. Carriazo, Generalized Sasakian space-forms and conformal changes of metric, Results Math. 59 (2011) 485-493.
[4] P. Alegre, A. Carriazo, Structures on generalized Sasakian space-forms, Differential Geom. Appl. 26 (2008) 656-666.
[5] P. Alegre, A. Carriazo, C. Özgür, S. Sular, New examples of generalized Sasakian space-forms, Proc. Est. Acad. Sci. 60 (2011) 251-257.
[6] D.E. Blair, Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, 1976.
[7] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, 2000.
[8] U.C. De, P. Majhi, Certain curvature properties of generalized Sasakian space-forms, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 83 (2013) 137-141.
[9] U.C. De, A. Sarkar, Some results on generalized Sasakian space-forms, Thai J. Math. 8 (2010) 1-10.
[10] U.C. De, A. Sarkar, On the projective curvature tensor of generalized Sasakian space-forms, Quaest. Math. 33 (2010) 245-252.
[11] U.C. De, A. Sarkar, Some curvature properties of generalized Sasakian space-forms, Lobachevskii J. Math. 33 (2012) 22-27.
[12] U.K. Kim, Conformally flat generalized Sasakian space-forms and locally symmetric generalized Sasakian space-forms, Note Mat. 26 (2006) 55-67.
[13] O. Kowalski, An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X, Y) \cdot R=0$, Czechoslovak Math. J. 46 (1996) 427-474.
[14] B. O'Neill, Semi-Riemannian geometry. With applications to relativity, in: Pure and Applied Mathematics, vol. 103, Academic Press, Inc., New York, 1983.
[15] K. Yano, M. Kon, Structures on manifolds, in: Series in Pure Math, vol. 3, World Scientific Publ. Co., Singapore, 1984.
[16] A. Yildiz, U.C. De, A classification of (k, μ)-contact metric manifolds, Commun. Korean Math. Soc. 27 (2012) 327-339.

[^0]: * Corresponding author.

 E-mail addresses: uc_de@yahoo.com (U.C. De), mpradipmajhi @ gmail.com (P. Majhi). Peer review under responsibility of King Saud University.

